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Motivation 
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 Applications: distributed optimization, machine learning (e.g., LASSO),… 

 Challenge: costly projections per iteration  double-loop algorithm!?        

 Streaming ``Big Data’’ analytics  Online optimization 

 Formulation of interest 

 General enough, other constraints can be included … 

: closed proper convex 



Road ahead 
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 Batch ADM: convergence rate 

 Online ADM (OADM): regret analysis 

 Bregman divergence:  convex and strongly convex  

 No Bregman divergence: convex and strongly convex  

 Inexact OADM 

 Stochastic OADM 



Batch ADM 
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 Augmented Lagrangian (          ) 

 Equality constraint not satisfied per iteration ?! 

 Algorithm per iteration t (given             ) 

Q: How many iterations k needed to obtain a ϵ-optimal solution? 



Convergence rate 

5 

 (as1) (a) Optimal                   exists,                                        ,  

              (b)   

 No smoothness assumption (needed for online scenario) 

Theorem 1: For the iterates                 , and any feasible   

 Not enough since                may not be feasible 



Proof of Theorem 1 
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 Lemma 1: For the iterates                  ,  

Proof: Using the subgraident inequality  

Similarly for g,  



Cont’d proof 
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 Adding up both sides in Lemma 1 for t=1,…,T 

 The rest follows readily from convexity … 



Constraint violation 
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                             is an optimal sol. if 

 Residual function 

 Monotonically non-increasing residuals 

Theorem 2: For the iterates  

               for the variational form of optimality 



Online ADM (OADM) 
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 Formulation 

 Naïve approach (e.g., COMID) 

 Complex double-loop algorithm 

 Augmented Lagrangian at time t 



OADM algorithm 
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 OADM is COMID with a single ADM iteration 

 Message 



Regret analysis 
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 Algorithm presents                  nature reveals loss     & cons. violation 

 Objective’s regret 

 Optimality’s regret 

 Assumptions 

    (a2) Bounded subgradient, i.e.,  

     

    (a3) α-strongly convex                                     for some  

     

    (a4)  



Convex ft, g (η > 0) 
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Theorem 2: If (a1) - (a4) hold, then for                  and              ,   

 No assumptions on A, B, c, and the subgradient of g (suits indicator fn.) 

 If                      , then  

 Proof: Based on Lemma 1, three point property of Bergman divergence, 

and Fenchel-young inequality ….  



Proof sketch 
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 From Lemma 1 

 Three point property 

 Fenchel-Young’s inequality 

 Finally, bounding 

 

     and summing up both sides the result follows. 



Strongly convex ft, g (η > 0) 
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 ft : β1-strongly convex  

 g: β2-strongly convex  

  Theorem 3: If (a1) – (a4) hold, then for               and  



OADM with η = 0 
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 Algorithm 

             s.t.                          [e.g., in consensus opt.            ] 

 New assumptions: (a5) A square and invertible, (a6)  

 Regret of  



Regret bounds 
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Theorem 4: If (a1) – (a6) hold, and                            , then  

 Theorem 5: Under (a1)-(a6), if g is β2-strongly convex, and                       , 



Inexact OADM 
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 Expensive to solve for    , exactly, e.g., logistic regression loss 

 Theorems 2, 3 still hold for: 

Case 1) Linearizing ft  

Case 2) Linearizing both ft  and quadratic penalty 

Case 3) Composite objective                       (COMID)  



Stochastic OADM 
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 Stochastic formulation: 

                                                  : unbiased estimate of  

               Inexact OADM   

  Corollary 1: Under (a1) – (a3), if                    and              , then 

(a) Expected regret  

 (b) High-probability regret  


