DUAL AVERAGING FOR DISTRIBUTED OPTIMIZATION

Presentation by: Mojtaba Kadkhodaie

University of Minnesota

March 10, 2014

Reference

J. Duchi, A. Agarwal, and M. Wainwright "Dual Averaging for Distributed Optimization: Convergence Analysis and Network Scaling," *IEEE Transactions on Automatic control*, 57:3, 592-606, 2012.

Agenda

- Introduction
- Standard (Centralized) Dual Averaging Algorithm
- Distributed Dual Averaging
- Convergence Analysis
- Simulation Results

Motivation

Network-structured optimization problems arise in various areas.

- Machine Learning:
 - Large training dataset
 - Distribute the data between processors
 - Minimize empirical loss over the *i*-th dataset

- Multi-agent coordination
- Sensor network estimation

Problem Setup

- Undirected graph: G = (V, E)
 - $G = \{1, 2, \cdots, n\}$: Vertex set
 - ▶ $E \subset V \times V$: Edge set

$$\min_x \frac{1}{n} \sum_{i=1}^n f_i(x) \; \text{ subject to } x \in \mathcal{X}$$

(1)

- $f_i : \mathbb{R}^d \to \mathbb{R}$: convex objective associated with agent $i \in V$
- \mathcal{X} : closed and convex set
- ► Agent *i*
 - maintains its own parameter vector x_i.
 - has local access to f_i .
 - directly communicates with its neighbors

 $j \in N(i) = \{j \in V | (i, j) \in E\}.$

Basic Tools and Assumptions

- $\phi: \mathcal{X} \to \mathbb{R}$: proximal function
 - ▶ 1-strongly convex w.r.t. the norm $\|\cdot\|$

$$\phi(y) \ge \phi(x) + \langle \nabla \phi(x), y - x \rangle + \frac{1}{2} \|y - x\|^2 \quad \forall x, y \in \mathcal{X}$$

•
$$\phi(x) = \frac{1}{2} ||x||_2^2$$
 and ℓ_2 -norm

- $\phi(x) = \sum_{i=1}^{d} (x_i \log x_i x_i)$ and ℓ_1 -norm
- Proximity operator

$$\Pi_{\mathcal{X}}^{\phi}(z,\alpha) = \arg\min_{x\in\mathcal{X}} \left\{ \langle z,x \rangle + \frac{1}{\alpha} \phi(x) \right\}$$

• $f_i: L-$ Lipschitz continuous w.r.t. $\|\cdot\|$

$$|f_i(x) - f_i(y)| \le L ||x - y||, \ \forall x, y, \in \mathcal{X}$$

Standard Dual Averaging

• Generates a primal-dual sequence $\{x(t), z(t)\}_{t=0}^{\infty}$ as

Dual Update: z(t+1)=z(t)+g(t)Primal Update: $x(t+1)=\Pi^{\phi}_{\mathcal{X}}(z(t+1),\alpha(t))$

- ► $g(t) \in \partial f(x(t))$
- z(t+1): accumulated gradient at x(t)
- $\{\alpha(t)\}_{t=0}^{\infty}$: non-increasing step-size sequence

Distributed Dual Averaging (DDA)

At iteration t, each node $i \in V$

- Computes a sub-gradient $g_i(t) \in \partial f_i(x_i(t))$
- ▶ Receives dual variables $\{z_j(t), j \in N(i)\}$ from its neighbors
- Performs the updates

Dual Update: $z_i(t+1) = \sum_{j \in N(i)} P_{ji} z_i(t) + g_i(t)$ Primal Update: $x_i(t+1) = \Pi^{\phi}_{\mathcal{X}}(z_i(t+1), \alpha(t))$

Estimates the optimum via the running local average

$$\hat{x}_i(T) = \frac{1}{T} \sum_{t=1}^T x_i(t).$$

Weighting Matrix

• $P \in \mathbb{R}^{n \times n}_+$ respects the graph structure, i.e. when $i \neq j$

 $P_{ij} > 0$ only if $(i, j) \in E$.

P is doubly stochastic,

 $P \mathbf{1}_n = \mathbf{1}_n \text{ and } \mathbf{1}_n^T P = \mathbf{1}_n^T.$

Laplacian Matrix

Let

• $A \in \mathbb{R}^{n \times n}$ be the graph adjacency matrix

$$A_{i\,j} = \left\{ \begin{array}{ll} 1 & \text{if } (i,j) \in E \\ 0 & \text{otherwise} \end{array} \right.$$

- $D = \text{diag}\{\delta_1, \cdots, \delta_n\}$, where $\delta_i = |N(i)|$.
- $\mathcal{L}(G)$ be the Normalized graph Laplacian

$$\mathcal{L}(G) = I - D^{-1/2} A D^{-1/2}$$

Then, a particular choice for P is

$$P_n(G) = I - \frac{1}{\delta_{\max}}(D - A) = I - \frac{1}{\delta_{\max} + 1}D^{1/2}\mathcal{L}D^{1/2}.$$

P is doubly stochastic since $\mathcal{L}D^{1/2}\mathbf{1}_n = 0$.

Theorem 1

For any
$$x^* \in \mathcal{X}$$
 and for each $i \in V$, we have

$$f(\hat{x}_i(T)) - f(x^*) \leq \mathsf{OPT} + \mathsf{NET}$$
(2)

where

$$\mathsf{OPT} = \frac{1}{T\alpha(T)}\phi(x^*) + \frac{L^2}{2T}\sum_{t=1}^T \alpha(t-1)$$
(3)

and

$$\mathsf{NET} = \frac{L}{T} \sum_{t=1}^{T} \alpha(t) \left[\frac{2}{n} \sum_{j=1}^{n} \|\bar{z}(t) - z_j(t)\|_* + \|\bar{z}(t) - z_i(t)\|_* \right]$$
(4)

with $\bar{z}(t)$ denoting the averaged dual variable

$$\bar{z}(t) = (1/n) \sum_{i=1}^{n} z_i(t).$$

Sketch of the Proof

• Step 1: $\bar{z}(t)$ evolves in a very simple way:

$$\bar{z}(t+1) = \frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \left(P_{ji}(z_j(t) - \bar{z}(t)) \right) + \bar{z}(t) + \frac{1}{n} \sum_{j=1}^{n} g_j(t)$$
$$= \bar{z}(t) + \frac{1}{n} \sum_{j=1}^{n} g_j(t)$$

Similar update as in the centralized case

• Step2: Define
$$y(t) = \prod_{\mathcal{X}}^{\phi}(\bar{z}(t), \alpha(t-1))$$
. Then

$$\sum_{t=1}^{T} f(x_i(t)) - f(x^*) \le \sum_{t=1}^{T} f(y(t)) - f(x^*) + L \sum_{t=1}^{T} \alpha(t) \|\bar{z}(t) - z_i(t)\|_*$$

which is due to the Lipschitz continuity of the proximity operator.

Sketch of the Proof (Cont.)

▶ Step 3: L- Lipschitz continuity of f_i implies

$$n\sum_{t=1}^{T} f(y(t)) - f(x^*) \le \sum_{t=1}^{T} \sum_{i=1}^{n} [f_i(x_i(t)) - f_i(x^*) + L ||y(t) - x_i(t)||]$$

Step 4:

$$\sum_{i=1}^{n} f_i(x_i(t)) - f_i(x^*) \le \sum_{i=1}^{n} \langle g_i(t), x_i(t) - x^* \rangle$$
$$\le \frac{1}{2} \sum_{t=1}^{T} \alpha(t-1) \|g(t)\|_*^2 + \frac{1}{\alpha(T)} \phi(x^*)$$

Lipschitz continuity of the proximity operator can be used to bound

$$\|y(t) - x_i(t)\|$$

Introduction	Dual Averaging	Convergence Analysis	Simulation Results
Theoren ► E	1 2 ffects of network topole	ogy on convergence rates.	
Let	$\gamma(P) = 1 - \sigma_2(P)$ be $\phi(x^*) \leq R^2$ $lpha(t) = R \sqrt{\gamma(P)} / (4L^2)$ n	the spectral gap of P , \sqrt{t}).	
	$f(\hat{x}_i(T)) - f(x_i(T)) - f$	$x^*) \le \frac{RL}{\sqrt{T}} \cdot \frac{\log(T\sqrt{n})}{\sqrt{\gamma(P)}}$	(5)
for a	all $i \in V$.		

 Information propagation through the network depends on the spectral gap.

Interesting Network Topologies

Figure: 3-Connected cycle

Figure: Random Geometric Graph

Figure: 1-Connected Grid Graph

Figure: 3-regular Expande

Convergence Rate

Network Topology	$f(\hat{x}_i(T)) - f(x^*)$	Comments
k-connected	$\mathcal{O}\left(\frac{RL}{\sqrt{T}}\cdot \frac{n\log(Tn)}{k} ight)$	Poorly Connected
cycles and pathes		for small k
k-connected	$\mathcal{O}\left(\frac{RL}{\sqrt{T}}\cdot \frac{\sqrt{n}\log(Tn)}{k}\right)$	
$\sqrt{n} imes \sqrt{n}$ grids		
Random Geometric Graph		
with connectivity radius	$\mathcal{O}\left(\frac{RL}{\sqrt{T}} \cdot \sqrt{\frac{n}{\log n}} \log(Tn)\right)$	Bound holds with
$r = \Omega\left(\sqrt{\log^{1+\epsilon} n/n}\right)$		high probability
Expanders with	$\mathcal{O}\left(\frac{RL}{\sqrt{T}} \cdot \log(Tn)\right)$	Highly Connected
Bounded $\frac{\delta_{\max}}{\delta_{\min}}$		

Iteration Complexity Analysis

- $T_G(\epsilon; n)$: number of iterations to achieve error ϵ for G
- Theorem 2 implies that

$$T_G(\epsilon;) = \mathcal{O}\left(\frac{1}{\epsilon^2} \cdot \frac{1}{1 - \sigma_2(P_n(G))}\right).$$
(6)

Single Cycle Graph	Two-Dimensional Grid	Bounded Degree Expander
$\mathcal{O}(n^2/\epsilon^2)$	$\mathcal{O}(n/\epsilon^2)$	$\mathcal{O}(1/\epsilon^2)$

The bound (6) is sharp:

- Sub-gradient methods achieve ϵ accuracy in $\Omega(1/\epsilon^2)$ iterations.
 - Let $\phi(x) = \frac{1}{2} ||x||_2^2$.
 - ▶ For any graph G with n nodes, DDA achieves ϵ -accuracy if

$$T_G(c;n) = \Omega\left(\frac{1}{1 - \sigma_2(P_n(G))}\right).$$

Stochastic Communication Links

- Time-varying communication matrix P(t)
- Example 1: Random edge selection in dense networks
 - Reduces network congestion
- Example 2: Link failures in real networks

Theorem 3: Let

▶ ${P(t)}_{t=0}^{\infty}$ be an i.i.d. sequence of doubly stochastic matrices.

$$\lambda_2(G) = \lambda_2(\mathbb{E}[P(t)^T P(t)]).$$

•
$$\alpha(t) \propto R\sqrt{1-\lambda_2}/(L\sqrt{t}).$$

Then with probability at least 1 - (1/T)

$$f(\hat{x}_i(T)) - f(x^*) \le c \frac{RL}{\sqrt{T}} \cdot \frac{\log(Tn)}{\sqrt{1 - \lambda_2(G)}}.$$
(7)

Stochastic Gradient Algorithm

- Gradients corrupted with zero-mean and bounded-variance noise
- Let \mathcal{F}_{t-1} be the σ -field containing all the information up to time t-1, i.e.

$$g_i(1), \cdots, g_i(t-1) \in \mathcal{F}_{t-1}$$
$$x_i(1), \cdots, x_i(t) \in \mathcal{F}_{t-1}$$

for all $i \in V$.

A stochastic oracle provides gradients estimates satisfying

 $\mathbb{E}[\hat{g}_i(t)|\mathcal{F}_{t-1}] \in \partial f_i(x_i(t)) \text{ and } \mathbb{E}\left[\|\hat{g}_i(t)\|_*^2|\mathcal{F}_{t-1}\right] \le L^2 \quad | \quad (8)$

The model includes the additive noise oracle.

Theorem 4

Assume

- $\hat{g}_i(t)$ is provided by the stochastic oracle $(\|\hat{g}_i(t)\|_* \leq L)$,
- \mathcal{X} has finite radius $R = \sup_{x \in \mathcal{X}} \|x x^*\|$.

Then with probability $1-\delta$ we have

$$f(\hat{x}_i(T)) - f(x^*) \le \mathsf{OPT} + \mathsf{NET} + 8LR \sqrt{\frac{\log \frac{1}{\delta}}{T}}$$

where

$$\mathsf{OPT} = \frac{1}{T\alpha(T)}\phi(x^*) + \frac{8L^2}{T}\sum_{t=1}^{T}\alpha(t-1)$$

and

$$\mathsf{NET} = \frac{3L^2}{T} \cdot \frac{\log(T\sqrt{n})}{1 - \sigma_2(P)} \sum_{t=1}^T \alpha(t).$$

20 / 23

Simulation Setup

Sum of ℓ_1 -regression loss functions:

$$f(x) = \frac{1}{n} \sum_{i=1}^{n} |y_i - \langle b_i, x \rangle| = \frac{1}{n} ||y - Bx||_1$$

where $(b_i, y_i) \in \mathbb{R}^d \times \mathbb{R}$ is a training data point.

• f is L-Lipschitz with $L = \max_i \|b_i\|_2$.

$$\blacktriangleright \mathcal{X} = \{ x \in \mathbb{R}^d | \|x\|_2 \le 5 \}$$

- Graph size = n = size of dataset
- Three different graph structures:
 - Single cycle
 - Two dimensional Grid
 - ▶ 5−regular expanders

Simulation Results 1

- Grid graph: n = 225, 400, 625
- Error function:

 $\max_{i} [f(\hat{x}_i(t)) - f(x^*)]$

Convergence time T_G(ε; n) scales with n.

Simulation Results 2

• $T_G(\epsilon; n)$ with $\epsilon = 0.1$ versus the graph size n

- Three graph structures:
 - Panel (a): Single cycle: $T_G(\epsilon; n) = \mathcal{O}(n^2)$
 - Panel (b): Grid Graph: $T_G(\epsilon; n) = \mathcal{O}(n)$
 - ▶ Panel (c): 5-regular Expander: $T_G(\epsilon; n) = O(1)$
- Blue curves: Average of 20 trials
- Dashed curves: Theoretical predictions