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Motivation

Network-structured optimization problems arise in various areas.

I Machine Learning:
I Large training dataset
I Distribute the data between processors
I Minimize empirical loss over the i-th dataset

I Multi-agent coordination

I Sensor network estimation
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Problem Setup
I Undirected graph: G = (V,E)

I G = {1, 2, · · · , n}: Vertex set
I E ⊂ V × V : Edge set

min
x

1

n

n∑
i=1

fi(x) subject tox ∈ X (1)

I fi : Rd → R: convex objective associated with agent i ∈ V
I X : closed and convex set

I Agent i
I maintains its own parameter vector xi.
I has local access to fi.
I directly communicates with its neighbors

j ∈ N(i) = {j ∈ V |(i, j) ∈ E}.
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Basic Tools and Assumptions
I φ : X → R: proximal function

I 1-strongly convex w.r.t. the norm ‖ · ‖

φ(y) ≥ φ(x) + 〈∇φ(x), y − x〉+
1

2
‖y − x‖2 ∀x, y ∈ X

I φ(x) = 1
2‖x‖

2
2 and `2-norm

I φ(x) =
∑d
i=1(xi log xi − xi) and `1-norm

I Proximity operator

Πφ
X (z, α) = arg min

x∈X

{
〈z, x〉+

1

α
φ(x)

}
I fi : L−Lipschitz continuous w.r.t. ‖ · ‖

|fi(x)− fi(y)| ≤ L‖x− y‖, ∀x, y,∈ X
6 / 23



Introduction Dual Averaging Convergence Analysis Simulation Results

Standard Dual Averaging

I Generates a primal-dual sequence {x(t), z(t)}∞t=0 as

Dual Update: z(t+ 1)= z(t) + g(t)

Primal Update: x(t+ 1)= Πφ
X (z(t+ 1), α(t))

I g(t) ∈ ∂f(x(t))

I z(t+ 1): accumulated gradient at x(t)

I {α(t)}∞t=0 : non-increasing step-size sequence
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Distributed Dual Averaging (DDA)
At iteration t, each node i ∈ V

I Computes a sub-gradient gi(t) ∈ ∂fi(xi(t))

I Receives dual variables {zj(t), j ∈ N(i)} from its neighbors

I Performs the updates

Dual Update: zi(t+ 1)=
∑

j∈N(i)

Pjizi(t) + gi(t)

Primal Update: xi(t+ 1)= Πφ
X (zi(t+ 1), α(t))

I Estimates the optimum via the running local average

x̂i(T ) =
1

T

T∑
t=1

xi(t).
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Weighting Matrix

I P ∈ Rn×n+ respects the graph structure, i.e. when i 6= j

Pi j > 0 only if (i, j) ∈ E.

I P is doubly stochastic,

P 1n = 1n and 1TnP = 1Tn .
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Laplacian Matrix
Let

I A ∈ Rn×n be the graph adjacency matrix

Ai j =

{
1 if (i, j) ∈ E
0 otherwise

I D = diag{δ1, · · · , δn}, where δi = |N(i)|.

I L(G) be the Normalized graph Laplacian

L(G) = I −D−1/2AD−1/2

Then, a particular choice for P is

Pn(G) = I − 1

δmax
(D −A) = I − 1

δmax + 1
D1/2LD1/2.

P is doubly stochastic since LD1/21n = 0.
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Theorem 1

For any x∗ ∈ X and for each i ∈ V , we have

f(x̂i(T ))− f(x∗) ≤ OPT + NET (2)

where

OPT =
1

Tα(T )
φ(x∗) +

L2

2T

T∑
t=1

α(t− 1) (3)

and

NET =
L

T

T∑
t=1

α(t)

 2

n

n∑
j=1

‖z̄(t)− zj(t)‖∗ + ‖z̄(t)− zi(t)‖∗

 (4)

with z̄(t) denoting the averaged dual variable

z̄(t) = (1/n)

n∑
i=1

zi(t).
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Sketch of the Proof

I Step 1: z̄(t) evolves in a very simple way:

z̄(t+ 1) =
1

n

n∑
i=1

n∑
j=1

(Pji(zj(t)− z̄(t))) + z̄(t) +
1

n

n∑
j=1

gj(t)

= z̄(t) +
1

n

n∑
j=1

gj(t)

Similar update as in the centralized case

I Step2: Define y(t) = Πφ
X (z̄(t), α(t− 1)). Then

T∑
t=1

f(xi(t))− f(x∗) ≤
T∑
t=1

f(y(t))− f(x∗)

+ L
T∑
t=1

α(t)‖z̄(t)− zi(t)‖∗

which is due to the Lipschitz continuity of the proximity operator.
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Sketch of the Proof (Cont.)

I Step 3: L− Lipschitz continuity of fi implies

n

T∑
t=1

f(y(t))− f(x∗) ≤
T∑
t=1

n∑
i=1

[fi(xi(t))− fi(x∗) + L‖y(t)− xi(t)‖]

I Step 4:

n∑
i=1

fi(xi(t))− fi(x∗) ≤
n∑
i=1

〈gi(t), xi(t)− x∗〉

≤ 1

2

T∑
t=1

α(t− 1)‖g(t)‖2∗ +
1

α(T )
φ(x∗)

I Lipschitz continuity of the proximity operator can be used to bound

‖y(t)− xi(t)‖
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Theorem 2

I Effects of network topology on convergence rates.

Let

I γ(P ) = 1− σ2(P ) be the spectral gap of P ,

I φ(x∗) ≤ R2

I α(t) = R
√
γ(P )/(4L

√
t).

Then

f(x̂i(T ))− f(x∗) ≤ RL√
T
· log(T

√
n)√

γ(P )
(5)

for all i ∈ V .

I Information propagation through the network depends on the
spectral gap.
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Interesting Network Topologies

Figure: 3-Connected cycle Figure: 1-Connected Grid Graph

Figure: Random Geometric Graph Figure: 3-regular Expande
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Convergence Rate

Network Topology f(x̂i(T ))− f(x∗) Comments

k−connected O
(
RL√
T
· n log(T n)

k

)
Poorly Connected

cycles and pathes for small k

k−connected O
(
RL√
T
·
√
n log(T n)

k

)
√
n×
√
n grids

Random Geometric Graph

with connectivity radius O
(
RL√
T
·
√

n
logn log(T n)

)
Bound holds with

r = Ω

(√
log1+ε n/n

)
high probability

Expanders with O
(
RL√
T
· log(T n)

)
Highly Connected

Bounded δmax

δmin

16 / 23



Introduction Dual Averaging Convergence Analysis Simulation Results

Iteration Complexity Analysis

I TG(ε;n): number of iterations to achieve error ε for G

I Theorem 2 implies that

TG(ε; ) = O
(

1

ε2
· 1

1− σ2(Pn(G))

)
. (6)

Single Cycle Graph Two-Dimensional Grid Bounded Degree Expander

O(n2/ε2) O(n/ε2) O(1/ε2)

The bound (6) is sharp:

I Sub-gradient methods achieve ε− accuracy in Ω(1/ε2) iterations.

I Let φ(x) = 1
2‖x‖

2
2.

I For any graph G with n nodes, DDA achieves ε−accuracy if

TG(c;n) = Ω

(
1

1− σ2(Pn(G))

)
.
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Stochastic Communication Links

I Time-varying communication matrix P (t)

I Example 1: Random edge selection in dense networks

I Reduces network congestion

I Example 2: Link failures in real networks

Theorem 3: Let

I {P (t)}∞t=0 be an i.i.d. sequence of doubly stochastic matrices.

I λ2(G) = λ2(E[P (t)TP (t)]).

I α(t) ∝ R
√

1− λ2/(L
√
t).

Then with probability at least 1− (1/T )

f(x̂i(T ))− f(x∗) ≤ cRL√
T
· log(Tn)√

1− λ2(G)
. (7)
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Stochastic Gradient Algorithm

I Gradients corrupted with zero-mean and bounded-variance noise

I Let Ft−1 be the σ−field containing all the information up to time
t− 1, i.e.

gi(1), · · · , gi(t− 1) ∈ Ft−1
xi(1), · · · , xi(t) ∈ Ft−1

for all i ∈ V .

I A stochastic oracle provides gradients estimates satisfying

E[ĝi(t)|Ft−1] ∈ ∂fi(xi(t)) and E
[
‖ĝi(t)‖2∗|Ft−1

]
≤ L2 (8)

I The model includes the additive noise oracle.
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Theorem 4

Assume

I ĝi(t) is provided by the stochastic oracle (‖ĝi(t)‖∗ ≤ L),

I X has finite radius R = supx∈X ‖x− x∗‖.

Then with probability 1− δ we have

f(x̂i(T ))− f(x∗) ≤ OPT + NET + 8LR

√
log 1

δ

T

where

OPT =
1

Tα(T )
φ(x∗) +

8L2

T

T∑
t=1

α(t− 1)

and

NET =
3L2

T
· log(T

√
n)

1− σ2(P )

T∑
t=1

α(t).
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Simulation Setup

I Sum of `1−regression loss functions:

f(x) =
1

n

n∑
i=1

|yi − 〈bi, x〉| =
1

n
‖y −Bx‖1

where (bi, yi) ∈ Rd × R is a training data point.

I f is L−Lipschitz with L = maxi ‖bi‖2.

I X = {x ∈ Rd|‖x‖2 ≤ 5}

I Graph size = n = size of dataset

I Three different graph structures:

I Single cycle
I Two dimensional Grid
I 5−regular expanders
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Simulation Results 1

I Grid graph: n = 225, 400, 625

I Error function:

max
i

[f(x̂i(t))− f(x∗)]

I Convergence time TG(ε;n)
scales with n.
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Simulation Results 2

I TG(ε;n) with ε = 0.1 versus the graph size n

I Three graph structures:
I Panel (a): Single cycle: TG(ε;n) = O(n2)
I Panel (b): Grid Graph: TG(ε;n) = O(n)
I Panel (c): 5-regular Expander: TG(ε;n) = O(1)

I Blue curves: Average of 20 trials

I Dashed curves: Theoretical predictions
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