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Problem

Overlapping Group Lasso

min £(x) = /(x) + 631 (x) (1)

@ /(x) is a smooth convex loss function, e.g.
I(x) = 3271 (vi —af x)?

° qSi;(x) = M|[x]l1 + X2 D%, willxg,| is the overlapping group
Lasso penalty

e A1 =0,y > 0: group Lasso (Yuan et al., 2006)
e A1 >0,y = 0: Lasso (Tibshirani, 1996)
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“FoGLasso”, Fast overlapping Group Lasso, based on accelerated
gradient descent (AGD) (Beck et al., 2009).

@ Approximation (Linearization) of f(x) as

fi(y) = 10+ (1) y —x) + 5l x| +6y) ()

@ A sequence of approximate solutions {x;} by proximal
operator,

A1/L;

_ 1
Xiv1 = argminfi, s, (y) =m0 (si = -

D). @)

where s; = x; + 3i(x; — x;—1) and L; can be determined by
line search.
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Algorithm 1: “FoGLasso”

Input: Lo > 0,x0, k
Output: x4
1: Initialize x; = xg,a—1 =0, =1, and L = L.

2: for i=1to k do
30 Set fi = 22l s = x; + Bi(xi — Xi_1)
4 Find the smallest L =2/, 4,/ =0,1,--- such that

f(xit1) < frs;(Xi+1) holds, where
A/L;
X1 =m0 (s — £1(s))
Set L; =L and Qjy1 = Iryltda) W
6: end for
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Proximal Operator and Efficient Computation

Proximal Operator and Efficient Computation

The proximal operator:
A/Li
Xi 1 =T\ (s — f/’(s );
Definition (recall i (x) = Allx|ln + X2 D%, willxg |]):

) =srgpin {£200 = Sl viP+ a0} @

e Many groups are zero (identify xg, = 0)
° g/{‘;(x) is nonsmooth (smooth reformulation)

@ More proximal operator solver (Dykstra-like, ADMM)
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Proximal Operator and Efficient Computation

Key Properties of the Proximal Operator

Suppose A1, X0 >0 and w; >0,i=1,2,--- ,g. Let x* = 7@;(\,)
and ® be point-wise product, then the following holds:

1. ifvi >0, then 0 < x < v;;

2. ifv; <0, then v; < xF < 0;
3. ifvi =0, then x; = 0,
4. SGN(v) CSGN(x*),; and
5. ml(v) =sgn(v) © m([v)).
{1}, t>0 1, t>0
SGN(t) = {-1}, t<0 ,sgn(t)=¢ -1, t<O0
[-1,1], t=0 0, t=0
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Proximal Operator and Efficient Computation

Key Properties of the Proximal Operator

Let u =sgn(v) ® max(|v| — A1,0), and
1 g
() = arg min ¢ b, (x) = 5[x —ul® + 2 > willxgll ¢ (5)

Then, the following holds: m!(v) = 7% (u).

. A
o Nice! m}’(v) reduces to (5).
o Difficulty: groups may overlap.
e Many groups are zero (sparse solution solution desired), how
to identify?
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Proximal Operator and Efficient Computation

Key Properties of the Proximal Operator

e Sufficient condition for a group to be zero:

Let x* = argmingegre hy,(X). If the i-th group satisfies
|ug,|| < Aow;, then xi. =0, i.e. the i-th group is zero.

e Given S; = Uj¢i7x*6i:0(CJj N Gj), a much weaker condition
(much more zero groups can be identified):

Lemma 3

Let x* = argmingegre hy,(x). If the i-th group satisfies
|ug,—s:|| < Aow;, then xg. = 0, i.e. the i-th group is zero.

@ lterative procedure to identify the zero groups.
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Proximal Operator and Efficient Computation

Reformulation as a Smooth Convex Problem

Focus on reduced problem u >~ 0. Rewrite 779\2(u) as:

. 1 £
5, (u) = arg min {hxz(x) =5lx- ull> + 22> w:lle,-H} :

0=<x=u i=1
Use dual norm of || - ||, rewrite hy,(x) as:
1 g
— 2 i
h>\2(x) - rpgéinx - UH + z;<x7 Y >7 (6)
=

where Q = {Y ERPXE . YL = 0,||Y]| < Aawj,i=1,--- ,g}_
Reformulation as a min-max problem:
1
7%, (u) = arg min max {¢(x, Y)= EHX —ul> + (x, Ye)} (7)

xERP YeQ
0=<x=<u
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Proximal Operator and Efficient Computation

Reformulation as a Smooth Convex Problem (continue....)

P(x, Y) is convex in x, concave in Y. Methodology for min hy,():
o w.rt. Y, argminycq{w(Y) = —1¢(max(u— Ye,0),Y)}

e w.rt. X, x = max(u — Ye, 0) = construct solution to hy,(-)

Theorem 2

The function w(Y') is convex and continuously differentiable with
w'(Y) = — max(u — Ye,0)e’ (8)
In addition, w'(Y') is Lipschitz continuous with constant g, i.e.,
W' (Y1) = w/(YV2)llF < glIY1 = Ya|F, VY1, Y2 € RP¥E. - (9)

Use accelerated gradient descent (AGD) method to solve 9(x, Y).
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Duality Gap

Let gap\N/ = maxyeq ¥(X, Y) — mingere 0<x=<u ¥(X, \~/) be the
duality gap. Then, the following holds:

g
gap(Y) = _(owillXe |l — (Xg,. YE))- (10)
i=1
In addition, we have
w(Y) — w(Y*) < gap(Y), (11)
h(X) — h(x*) < gap(Y). (12)

Serve as the stopping criteria (e.g. < 10710).
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Proximal Operator and Efficient Computation

Proximal Splitting Methods

@ Dykstra-like Proximal Splitting Method (Combettes et al.,
2009)

e ADMM (Boyd et al., 2011)
Dykstra-like Proximal Splitting Method: convex feasibility problem

find x € {4 Ci | i is a convex set}

@ lterative scheme by cycling through all convex sets

@ Convergence guarantee under certain conditions

Consider 73_(u) = arg minycre Lx —ul? + X2 38, willxg|| as
the projection of u onto a collection of convex sets {w;||xg, ||}
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Proximal Operator and Efficient Computation

roxlmal Spllttlng Methods

Algorithm 2: Dykstra-like Proximal Splitting Methods

Set xo =u,91,0, - ,qg,0 = X0,n =0
repeat n=n+1
for i=1to g do
Pi.n = ProXx|ixe, || 9in
Xp+1 = Z,gzl WiQi n
for i=1to g do
din+1 = Xn+1 + di;n — Pin
until Convergence

O NGO A

P = Proxy|x. |4 = argmin [|x — q||?/2 + Al|xg,]|
! x€RP

max({lag[| = A,0)

= PG =
lag;ll

i

qg, (closed form)
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Proximal Splitting Methods

ADMM

@ Reformulation with auxiliary variables:
mlnxz 2HX - qu + )‘Z =1 WIHZIH
st.zi=xg, i=1--,g.
@ Augmented Lagrangian:

p(x z,y) = 2HX '-'||2 +)‘Z —1 w; ||| )
"‘Z,’:l yi (Zi - XG;) 32;21 lzi — XG;H

o ADMM iterations: x**1 := argmin, L,(x,z*, y¥)
ZF1 = argmin, L,(x,z¥, y¥)
y“tt = argmin, L,(x, 2%, y¥)
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Proximal Operator and Efficient Computation

Proximal Spllttlng Methods

ADMM

o Forx, ZL,(x,z,y*) =x—u— Y%  y* »
tpf & Ox—pyF 7

=X = (u+ L VE YL ) 0 (e+ p X8, &)

@ For z, use subdifferential,

0¢ zf-“rl k“ _|_ )‘W’a\|zk+1||
where 9|26+ = ”ﬁi” IzF ) # 0
(o R e <1}t =0
where x’grl = x’grl %yliji _ %
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¢4 Norm Overlapping Group Lasso

o Generalize w:\\;(x) and wi; (v) to

g
U, (0) = Mllx[ls + 22 Y willxe g (13)
i=1

) =g min {33, (0 = 3llx - vI 4 0, (0} (14)
@ Same properties hold for £ proximal operator: 1/q+1/g =1,

Necessary condition: If [ug,|lg < Aow;, then xz. = 0.
A weaker condition: If [ug,—s, [l < Aaw;, then x = 0.

Presented by Xingguo Li Efficient Methods for Overlapping Group Lasso



£Lq Norm Overlapping Group Lasso
Extensions Capped Norm Overlapping Group Lasso

¢4 Norm Overlapping Group Lasso

@ Same result holds for the duality gap for smooth
reformulation:

gap(Y) = L5, (CawillZg llg — Xa YE)).
Feasible region of the dual variable Y:
Q={Y cRPE: YL = 0,|Yilg < dowi,i =1, g}

Efficient bisection root-finding based £4-norm projection (Liu
et al., 2010)

Presented by Xingguo Li Efficient Methods for Overlapping Group Lasso 18 /29



£q Norm Overlapping Group Lasso
Extensions Capped Norm Overlapping Group Lasso

Capped Norm Overlapping Group Lasso

@ Consider the problem:

g
in/ il : 1
min (X)+)\1HXH0+)\2§W1 (x| # 0) (15)

@ /1-norm regularization introduces bias.

@ Nonconvex capped norms: closer to £g-norm than ¢1-norm
(Zhang 2011, Shen et al. 2012): for some small 61,6, > 0,

p
<N min (1. 1]
[[x[lo ~ Z min (1, 0
j=1
9 X6l
ZW,'/(HXG,-H #0) ~ Zw,mln ( >
i=1

2
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Capped Norm Overlapping Group Lasso

e Decompose ZJ’.’ZI min (1, ‘g—fl|> and >-%_, w;min (1, |);2"‘),
approximate the problem 15 as:

min /(x) + *HXII1+fZIIXGII— —D(x)  (16)

M Z max(|x;| — #1,0) convex in x

Plx) = 5
i=1

p
D(x) = 2\22 w; max(||xg,|| — 62,0) convex in x
i=1

e "Difference of two convex functions” (DC) programming
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Algorithm 3: DC Programming for Overlapping Group
Lasso with the Capped Norm

;,P(x)a{ Ssgn(x;) |xj| > 6 88 D(XG.B{ wey lxall > 62
Rl 0 Ixj| <61 i ' x| < 62
Input: 60p,0; > 0,xq, k
Output: x4

1: Initialize x; = Xg

2: for i=1to k do

3: Choose U’ € OP(x') and V' € OD(x')

4

Solve x/t1

. A A
= argmin,eg /(x) + HlIx[l1 + 32 571 [Ixa |
—(UK + VK x) (via “FoGLasso")

5: end for
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Numerical Experiments

Experiments: Efficiency of Calculating the Proximal
Operator

10° 10' % 10
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Figure 1 :  Time comparison for computing the proximal operators. The group
number g is fixed in the left figure and the problem size p is fixed in the middle figure.
The right figure illustrates the effectiveness of the preprocessing.
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Sparse Pattern Recovery
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Figure 2 : Results of the convex overlapping group Lasso formulation (top row)
and the nonconvex overlapping group Lasso with the capped norm (bottom row).
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Numerical Experiments

Sparse Pattern Recovery

TABLE 1
Cross-Validation Performance of Sparse Pattern Recovery of
the Convex Overlapping Group Lasso Formulation and the
Nonconvex Overlapping Group Lasso Formulation Based on the
Capped Norm on Synthetic Data with Different Problem Sizes

Convex Non-convex
n Entry Rate  Group Rate  Entry Rate  Group Rate
300 0.71 0.60 0.77 0.71
400 0.80 0.61 0.82 0.70

@ Nonconvex formulation outperforms convex formulation.
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Comparison with SLasso, Prox-Grad, and ADMM

Edges with Precision 1e-02

Edges with Precision 1e-04

Edges with Precision 16-06
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Figure 3 :  Comparison of SLasso (Jenatton et al. 2009), ADMM (Boyd et al.
2010), Prox-Grad (Chen et al. 2012), and “FoGLasso” in terms of computational time
(in seconds and in the log scale).
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Comparison with Picard-Nesterov

TABLE 3
Comparison of FoGLasso, Picard-Nesterov, and Picard-Nesterov with Our Proposed Preprocessing Technique
Using Different Numbers (p) of Genes and Various Precision Levels

Precision Level 10-2 10-* 10-6

p 100 200 400 100 200 400 100 200 400
81 189 353 192 371 1299 334 507 1796

FoGLasso

288 401 921 404 590 1912 547 727 2387
78 176 325 181 304 1028 318 504 1431
8271 6.8e4 2.2e5 | 2.6e4 1.0e5 7.8e5 | 5.1e4 13e5 1.le6
78 176 325 181 304 1028 318 504 1431
2683 3.8e4 1.1e5 | 8427 6.4ed 49e5 | 1.9e4 82e4 7.3e5

Picard-Nesterov

Picard-Nesterov-PreProc

@ For each particular method, the first row denotes the number
of outer iterations required for convergence, while the second
row represents the total number of inner iterations.

e Same complexity of O(pg) for inner iteration.
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Computation of the Proximal Operator
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Figure 4 :  Performance of the computation of the proximal operator in FoGLasso.
The left plot shows the objective function value during the FoGLasso iteration. The
middle plot shows the percentage of the identified zero groups. The right plot shows
the number of inner iterations for achieving the duality gap less than 10719 when one
solves the proximal operator via the dual reformulation.

@ Most zero groups are identified after ~ 100 steps.
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Convergence with Inexact Proximal Operator

e <
e < 7
==, <1072
--- <1078

Objective Function Value
N

20 30 40 50
Iteration Number

Figure 5 : lllustration of the objective function values of the first 50 iterations with
different stopping criteria used for computing the proximal operator.

@ No dramatic change w.r.t different termination conditions.
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Thank you!
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