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Overlapping Group Lasso

min
x∈Rp

f (x) = l(x) + φλ1
λ2

(x) (1)

l(x) is a smooth convex loss function, e.g.
l(x) =

∑n
i=1(yi − aTi x)2

φλ1
λ2

(x) = λ1‖x‖1 + λ2
∑g

i=1 wi‖xGi
‖ is the overlapping group

Lasso penalty

λ1 = 0, λ2 > 0: group Lasso (Yuan et al., 2006)
λ1 > 0, λ2 = 0: Lasso (Tibshirani, 1996)
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“FoGLasso”, F ast overlapping G roup Lasso, based on accelerated
gradient descent (AGD) (Beck et al., 2009).

Approximation (Linearization) of f (x) as

fL,x(y) =

[
l(x) + 〈l ′(x), y − x〉+

L

2
‖y − x‖2

]
+ φλ1

λ2
(y) (2)

A sequence of approximate solutions {xi} by proximal
operator,

xi+1 = arg min
y

fLi ,si (y) = π
λ1/Li
λ2/Li

(si −
1

Li
l ′(si )), (3)

where si = xi + βi (xi − xi−1) and Li can be determined by
line search.
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Algorithm 1: “FoGLasso”

Input: L0 > 0, x0, k
Output: xk+1

1: Initialize x1 = x0, α−1 = 0, α = 1, and L = L0.

2: for i = 1 to k do

3: Set βi =
αi−2−1
αi−1

, si = xi + βi (xi − xi−1)

4: Find the smallest L = 2jLi−1, j = 0, 1, · · · such that
f (xi+1) ≤ fL,si (xi+1) holds, where

xi+1 = π
λ1/Li
λ2/Li

(si − 1
Li

l ′(si ))

5: Set Li = L and αi+1 =
1+
√

1+4α2
i

2

6: end for
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Proximal Operator and Efficient Computation

The proximal operator:

xi+1 = π
λ1/Li
λ2/Li

(si −
1

Li
l ′(si )),

Definition (recall φλ1
λ2

(x) = λ1‖x‖1 + λ2
∑g

i=1 wi‖xGi
‖):

πλ1
λ2

(v) = arg min
x∈Rp

{
gλ1
λ2

(x) ≡ 1

2
‖x− v‖2 + φλ1

λ2
(x)

}
(4)

Many groups are zero (identify xGi
= 0)

gλ1
λ2

(x) is nonsmooth (smooth reformulation)

More proximal operator solver (Dykstra-like, ADMM)
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Key Properties of the Proximal Operator

Lemma 1

Suppose λ1, λ2 ≥ 0 and wi > 0, i = 1, 2, · · · , g. Let x∗ = πλ1
λ2

(v)
and � be point-wise product, then the following holds:

1. if vi > 0, then 0 ≤ x∗i ≤ vi ;

2. if vi < 0, then vi ≤ x∗i ≤ 0;

3. if vi = 0, then x∗i = 0;

4. SGN(v) ⊆SGN(x∗); and

5. πλ1
λ2

(v) =sgn(v)� πλ1
λ2

(|v|).

SGN(t) =


{1}, t > 0
{−1}, t < 0

[−1, 1] , t = 0
, sgn(t) =


1, t > 0
−1, t < 0

0, t = 0
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Key Properties of the Proximal Operator

Theorem 1

Let u =sgn(v)�max(|v| − λ1, 0), and

π0
λ2

(u) = arg min
x∈Rp

{
hλ2(x) ≡ 1

2
‖x− u‖2 + λ2

g∑
i=1

wi‖xGi
‖

}
. (5)

Then, the following holds: πλ1
λ2

(v) = π0
λ2

(u).

Nice! πλ1
λ2

(v) reduces to (5).

Difficulty: groups may overlap.

Many groups are zero (sparse solution solution desired), how
to identify?
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Key Properties of the Proximal Operator

Sufficient condition for a group to be zero:

Lemma 2

Let x∗ = arg minx∈Rp hλ2(x). If the i-th group satisfies
‖uGi
‖ ≤ λ2wi , then x∗Gi

= 0, i.e. the i-th group is zero.

Given Si =
⋃

j 6=i ,x∗Gi
=0(Gj ∩ Gi ), a much weaker condition

(much more zero groups can be identified):

Lemma 3

Let x∗ = arg minx∈Rp hλ2(x). If the i-th group satisfies
‖uGi−Si‖ ≤ λ2wi , then x∗Gi

= 0, i.e. the i-th group is zero.

Iterative procedure to identify the zero groups.
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Reformulation as a Smooth Convex Problem

Focus on reduced problem u � 0. Rewrite π0
λ2

(u) as:

π0
λ2

(u) = arg min
x∈Rp

0�x�u

{
hλ2(x) ≡ 1

2
‖x− u‖2 + λ2

g∑
i=1

wi‖xGi
‖

}
.

Use dual norm of ‖ · ‖, rewrite hλ2(x) as:

hλ2(x) = max
Y∈Ω

1

2
‖x− u‖2 +

g∑
i=1

〈x,Y i 〉, (6)

where Ω =
{

Y ∈ Rp×g : Y i
G c
i

= 0, ‖Y i‖ ≤ λ2wi , i = 1, · · · , g
}

.

Reformulation as a min-max problem:

π0
λ2

(u) = arg min
x∈Rp

0�x�u

max
Y∈Ω

{
ψ(x,Y ) ≡ 1

2
‖x− u‖2 + 〈x,Y e〉

}
(7)
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Reformulation as a Smooth Convex Problem (continue....)

ψ(x,Y ) is convex in x, concave in Y . Methodology for min hλ2(·):

w.r.t. Y , argminY∈Ω{w(Y ) = −ψ(max(u− Y e, 0),Y )}
w.r.t. x, x = max(u− Y e, 0)⇒ construct solution to hλ2(·)

Theorem 2

The function w(Y ) is convex and continuously differentiable with

w ′(Y ) = −max(u− Y e, 0)eT (8)

In addition, w ′(Y ) is Lipschitz continuous with constant g, i.e.,

‖w ′(Y1)− w ′(Y2)‖F ≤ g‖Y1 − Y2‖F ,∀Y1,Y2 ∈ Rp×g . (9)

Use accelerated gradient descent (AGD) method to solve ψ(x,Y ).
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Duality Gap

Theorem 3

Let gapỸ = maxY∈Ω ψ(x̃,Y )−minx∈Rp ,0�x�u ψ(x, Ỹ ) be the
duality gap. Then, the following holds:

gap(Ỹ ) =

g∑
i=1

(λ2wi‖x̃Gi
‖ − 〈x̃Gi

, Ỹ i
Gi
〉). (10)

In addition, we have

w(Ỹ )− w(Y ∗) ≤ gap(Ỹ ), (11)

h(x̃)− h(x∗) ≤ gap(Ỹ ). (12)

Serve as the stopping criteria (e.g. < 10−10).
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Proximal Splitting Methods

Dykstra-like Proximal Splitting Method (Combettes et al.,
2009)

ADMM (Boyd et al., 2011)

Dykstra-like Proximal Splitting Method: convex feasibility problem

find x ∈ {
⋂m

i=1 Ci | Ci is a convex set}

Iterative scheme by cycling through all convex sets

Convergence guarantee under certain conditions

Consider π0
λ2

(u) = arg minx∈Rp
1
2‖x− u‖2 + λ2

∑g
i=1 wi‖xGi

‖ as
the projection of u onto a collection of convex sets {wi‖xGi

‖}.
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Algorithm 2: Dykstra-like Proximal Splitting Methods

1: Set x0 = u,q1,0, · · · ,qg ,0 = x0, n = 0

2: repeat n = n + 1

3: for i = 1 to g do

4: pi ,n = proxλ‖xGi ‖
qi ,n

5: xn+1 =
∑g

i=1 wiqi ,n
6: for i = 1 to g do

7: qi ,n+1 = xn+1 + qi ,n − pi ,n
8: until Convergence

p = proxλ‖xGi ‖
q = argmin

x∈Rp
‖x− q‖2/2 + λ‖xGi

‖

⇒ pGi
=

max(‖qGi
‖ − λ, 0)

‖qGi
‖

qGi
(closed form)
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ADMM

Reformulation with auxiliary variables:

minx,z
1
2‖x− u‖2 + λ

∑g
i=1 wi‖zi‖

s.t. zi = xGi
, i = 1, · · · , g .

Augmented Lagrangian:
Lρ(x, z, y) = 1

2‖x− u‖2 + λ
∑g

i=1 wi‖zi‖
+
∑g

i=1 y
T
i (zi − xGi

) + ρ
2

∑g
i=1 ‖zi − xGi

‖2

ADMM iterations: xk+1 := argminx Lρ(x, zk , yk)
zk+1 := argminx Lρ(x, zk , yk)
yk+1 := argminx Lρ(x, zk , yk)
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ADMM

For x, ∂
∂xLρ(x, zk , yk) = x− u−

∑g
i=1 ỹ

k
i

+ρ
∑g

i=1 ẽi � x− ρ
∑g

i=1 z̃
k
i

⇒ xk+1 =
(
u +

∑g
i=1 ỹ

k
i + ρ

∑g
i=1 z̃

k
i

)
�
(
e + ρ

∑g
i=1 ẽi

)
For z, use subdifferential,

0 ∈ zk+1
i − xk+1

Gi
+ 1

ρy
k
i + λwi

ρ ∂‖z
k+1
i ‖,

where ∂‖zk+1
i ‖ =

{
zk+1
i

‖zk+1
i ‖

‖zk+1
i ‖ 6= 0

{t|t ∈ R|Gi |, ‖t‖ < 1} ‖zk+1
i ‖ = 0

⇒ zk+1
i =

max{‖x̃k+1
Gi
‖−λ̃i ,0}

‖x̃k+1
Gi
‖

x̃k+1
Gi

,

where x̃k+1
Gi

= xk+1
Gi
− 1

ρy
k
i , λ̃i = λwi

ρ
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`q Norm Overlapping Group Lasso

Generalize ψλ1
λ2

(x) and πλ1
λ2

(v) to

ψλ1
q,λ2

(x) = λ1‖x‖1 + λ2

g∑
i=1

wi‖xGi
‖q (13)

πλ1
q,λ2

(v) = arg min
x∈Rp

{
gλ1
q,λ2

(x) ≡ 1

2
‖x− v‖2 + φλ1

q,λ2
(x)

}
(14)

Same properties hold for `q proximal operator: 1/q + 1/q̄ = 1,
Necessary condition: If ‖uGi

‖q̄ ≤ λ2wi , then x∗Gi
= 0.

A weaker condition: If ‖uGi−Si‖q̄ ≤ λ2wi , then x∗Gi
= 0.
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`q Norm Overlapping Group Lasso

Same result holds for the duality gap for smooth
reformulation:

gap(Ỹ ) =
∑g

i=1(λ2wi‖x̃Gi
‖q − 〈x̃Gi

, Ỹ i
Gi
〉).

Feasible region of the dual variable Y :

Ω =
{

Y ∈ Rp×g : Y i
G c
i

= 0, ‖Y i‖q̄ ≤ λ2wi , i = 1, · · · , g
}

Efficient bisection root-finding based `q-norm projection (Liu
et al., 2010)

Presented by Xingguo Li Efficient Methods for Overlapping Group Lasso 18 / 29



Overlapping Group Lasso
Proximal Operator and Efficient Computation

Extensions
Numerical Experiments

`q Norm Overlapping Group Lasso
Capped Norm Overlapping Group Lasso

Capped Norm Overlapping Group Lasso

Consider the problem:

min
x∈Rp

l(x) + λ1‖x‖0 + λ2

g∑
i=1

wi I (‖xGi
‖ 6= 0) (15)

`1-norm regularization introduces bias.

Nonconvex capped norms: closer to `0-norm than `1-norm
(Zhang 2011, Shen et al. 2012): for some small θ1, θ2 > 0,

‖x‖0 ≈
p∑

j=1

min

(
1,
|xj |
θ1

)
g∑

i=1

wi I (‖xGi
‖ 6= 0) ≈

g∑
i=1

wi min

(
1,
|xGi
|

θ2

)
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Capped Norm Overlapping Group Lasso

Decompose
∑p

j=1 min
(

1,
|xj |
θ1

)
and

∑g
i=1 wi min

(
1,
|xGi |
θ2

)
,

approximate the problem 15 as:

min
x∈Rp

l(x) +
λ1

θ1
‖x‖1 +

λ2

θ2

p∑
i=1

‖xGi
‖ − P(x)− D(x) (16)

P(x) =
λ1

θ1

p∑
i=1

max(|xj | − θ1, 0) convex in x

D(x) =
λ2

θ2

p∑
i=1

wi max(‖xGi
‖ − θ2, 0) convex in x

“Difference of two convex functions” (DC) programming
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Algorithm 3: DC Programming for Overlapping Group
Lasso with the Capped Norm

∂
∂xj

P(x)3


λ1
θ1

sgn(xj) |xj | > θ1

0 |xj | ≤ θ1

∂
∂xGi

D(xGi )3


xGi
‖xGi ‖

‖xGi
‖ > θ2

0 ‖xGi
‖ ≤ θ2

Input: θ0, θ1 > 0, x0, k
Output: xk+1

1: Initialize x1 = x0

2: for i = 1 to k do

3: Choose U i ∈ ∂P(xi ) and V i ∈ ∂D(xi )

4: Solve xi+1 = argminx∈Rp l(x) + λ1
θ1
‖x‖1 + λ2

θ2

∑p
i=1 ‖xGi

‖
−〈Uk + V k , x〉 (via “FoGLasso”)

5: end for
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Experiments: Efficiency of Calculating the Proximal
Operator

Figure 1 : Time comparison for computing the proximal operators. The group
number g is fixed in the left figure and the problem size p is fixed in the middle figure.
The right figure illustrates the effectiveness of the preprocessing.
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Sparse Pattern Recovery

Figure 2 : Results of the convex overlapping group Lasso formulation (top row)
and the nonconvex overlapping group Lasso with the capped norm (bottom row).

Presented by Xingguo Li Efficient Methods for Overlapping Group Lasso 23 / 29



Overlapping Group Lasso
Proximal Operator and Efficient Computation

Extensions
Numerical Experiments

Synthetic Data
Gene Expression Data

Sparse Pattern Recovery

Nonconvex formulation outperforms convex formulation.
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Comparison with SLasso, Prox-Grad, and ADMM

Figure 3 : Comparison of SLasso (Jenatton et al. 2009), ADMM (Boyd et al.
2010), Prox-Grad (Chen et al. 2012), and “FoGLasso” in terms of computational time
(in seconds and in the log scale).
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Comparison with Picard-Nesterov

For each particular method, the first row denotes the number
of outer iterations required for convergence, while the second
row represents the total number of inner iterations.

Same complexity of O(pg) for inner iteration.

Presented by Xingguo Li Efficient Methods for Overlapping Group Lasso 26 / 29



Overlapping Group Lasso
Proximal Operator and Efficient Computation

Extensions
Numerical Experiments

Synthetic Data
Gene Expression Data

Computation of the Proximal Operator

Figure 4 : Performance of the computation of the proximal operator in FoGLasso.
The left plot shows the objective function value during the FoGLasso iteration. The
middle plot shows the percentage of the identified zero groups. The right plot shows
the number of inner iterations for achieving the duality gap less than 10−10 when one
solves the proximal operator via the dual reformulation.

Most zero groups are identified after ∼ 100 steps.
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Convergence with Inexact Proximal Operator

Figure 5 : Illustration of the objective function values of the first 50 iterations with
different stopping criteria used for computing the proximal operator.

No dramatic change w.r.t different termination conditions.
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Thank you!
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