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Estimating large covariance matrices and their inverses

The covariance matrix is a fundamental quantity in
multivariate analysis.

In general, the sample covariance matrix S performs poorly
in high dimensions (p ≥ n).

Shrinkage or regularized estimators are used instead.



Estimating large covariance matrices and their inverses

Desirable properties of the estimator

low computational cost

works well in applications, e.g. classification

exploits variable ordering when appropriate

Two different problems:

A. Estimating Σ

B. Estimating Σ−1



Estimating the covariance matrix Σ

General purpose methods

Shrinking the eigenvalues of S (Haff, 1980; Dey and
Srinivasan, 1985; Ledoit and Wolf, 2003).

Element-wise thresholding of S (Bickel and Levina, 2008;
El Karoui, 2008; Rothman, Levina, and Zhu, 2009; Cai &
Zhou 2010; Cai & Liu, 2011).

lasso-penalized Gaussian likelihood (Lam & Fan, 2009;
Bien & Tibshirani, 2011).

Other sparse and positive definite methods (Rothman,
2012; Xue, Ma, & Zou, 2012; Liu, Wang, & Zhao, 2013).

Σ with reduced effective rank (Bunea & Xiao, 2012).

Approximate factor model with sparse error covariance
(Fan, Liao & Minchev, 2013).



Estimating the inverse covariance matrix Σ−1

General purpose methods

Eigenvalue shrinkage (Ledoit and Wolf, 2003).

Bayesian methods (Wong et al., 2003; Dobra et al, 2004).

Penalized likelihood References given soon.



Exploiting variable ordering

when estimating the covariance matrix Σ

Banding or tapering S (Furrer & Bengtsson, 2007; Bickel &
Levina, 2008; Cai, Zhang, and Zhou, 2010).

Block thresholding (Cai & Yuan, 2012).

Regularized estimation of the modified Cholesky factor of
the covariance matrix (Rothman, Levina, & Zhu, 2010).

when estimating the inverse covariance matrix Σ−1

Regularized estimation of the modified Cholesky factor of
the inverse covariance (Wu & Pourahmadi, 2003; Smith &
Kohn, 2002; Bickel & Levina, 2008; Huang et al., 2006;
Levina, Rothman, & Zhu, 2008).



Estimating Σ−1 in applications

Classification (Bickel & Levina, 2004)

Regression (Witten & Tibshirani, 2009; Cook, Forzani, &
Rothman, 2013)

Multiple output regression (Rothman, Levina, & Zhu,
2010)

Sufficient dimension reduction (Cook, Forzani, & Rothman,
2012)



Estimating Σ−1 and Gaussian graphical models

(X1, . . . , Xp)
′ ∼ Np(0,Σ), Σ ∈ Sp+.

The undirected graph G = (V,E) has

vertex set V = {1, . . . , p} and
edge set E = {(i, j) : (Σ−1)ij 6= 0}.

Selection (Drton & Perlman, 2004; Kalisch & Bühlmann,
2007; Meinshausen and Bühlmann 2006).

Simultaneous estimation and selection (Yuan & Lin, 2007;
Yuan, 2010; Cai, Liu, & Luo, 2011; Ren, Sun, Zhang, &
Zhou, 2013).

Estimation when E is known Dempster, 1972; Buhl, 1993;
Drton et al., 2009; Uhler, 2012).



Part I: On solution existence in penalized
Gaussian likelihood estimation of Σ−1



Unpenalized Gaussian likelihood estimation of Σ−1

S is from an iid sample of size n from Np(µ,Σ), where Σ ∈ Sp+.
The optimization for the MLE of Σ−1 is

Ω̂ = arg min
Ω∈Sp+

{tr(ΩS)− log |Ω|}

Set the gradient at Ω̂ to zero:

S − Ω̂−1 = 0

The solution, when it exists, is Ω̂ = S−1.

Ω̂ exists (with probability one) if and only if n > p
(Dykstra, 1970).



Illustration – No solution when n ≤ p

If n = p = 1, then f(ω) = 0ω − logω.
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Penalized Gaussian likelihood estimation of Σ−1

We will study

Ω̂λ,q(M) = arg min
Ω∈Sp+

tr(ΩS)− log |Ω|+ λ

q

∑
i,j

mij |ωij |q
 ,

q = 1 is the lasso penalty, q = 2 is the ridge penalty

M is user-specified, symmetric with non-negative entries.

The mij ’s allow the user to incorporate prior information,
e.g. it is known that (Σ−1)21 = (Σ−1)12 6= 0 so set
m21 = m12 = 0.

Other examples Mall, Moff , and mij = 1(|i− j| > k).

We study when solutions exist and develop a new
algorithm for the ridge penalty (q = 2).



Lasso penalized likelihood estimation of Σ−1

The case when q = 1 is

Ω̂λ,1(M) = arg min
Ω∈Sp+

tr(ΩS)− log |Ω|+ λ
∑
i,j

mij |ωij |


Ω̂λ,1(Moff) Yuan & Lin (2007), Rothman et al. (2008), Lam
& Fan (2009), and Ravikumar et al. (2008).

Ω̂λ,1(Mall) Banerjee et al. (2008), Friedman et al. (2008).

Algorithms to compute Ω̂λ,1(M) for some M Yuan
(2008)/Friedman et al. (2008), Lu (2008), and Hsieh,
Dhillon, Ravikumar, & A. Banerjee (2012).



Review of work on solution existence

Banerjee et al. (2008) showed that Ω̂λ,1(Mall) exists if
λ > 0.

Ravikumar et al. (2008) showed that Ω̂λ,1(Moff) exists if
λ > 0 and S ◦ I ∈ Sp+.

Lu (2008) showed that Ω̂λ,1(M) exists if S + λM ◦ I ∈ Sp+.



Lasso-penalized likelihood solution existence

Ω̂λ,1(M) = arg min
Ω∈Sp+

tr(ΩS)− log |Ω|+ λ
∑
i,j

mij |ωij |


Theorem. The solution Ω̂λ,1(M) exists if and only if
A1,λ(M) = {Σ ∈ Sp+ : |σij − sij | ≤ mijλ} is not empty.

A1,λ(M) is the feasible set in the dual problem (Hsieh, Dhillon,
Ravikumar, & A. Banerjee, 2012), but our proof technique is
more general.

Corollary. Ω̂λ,1(M) exists if at least one of the following holds:

1 λ > 0 and minjmjj > 0;
2 λ > 0, S ◦ I ∈ Sp+ and mini 6=jmij > 0;
3 S ∈ Sp+;
4 soft(S, λM) ∈ Sp+.



Entry agreement between Ω̂λ,1(M)−1 and S

Define U = {(i, j) : mij = 0}.

Remark. When Ω̂λ,1(M) exists,

{Ω̂λ,1(M)−1}ij = sij for (i, j) ∈ U .

Justification. The zero subgradient equation is

S − Ω̂−1 + λM ◦G = 0.



Ridge penalized likelihood estimation of Σ−1

Ω̂λ,2(M) = arg min
Ω∈Sp+

tr(ΩS)− log |Ω|+ 0.5λ
∑
i,j

mijω
2
ij


Why use the ridge penalty?

Rothman et al. (2008) developed an algorithm to compute
Ω̂λ,2(Moff).

Witten and Tibshirani (2009) developed a closed-form
solution to compute Ω̂λ,2(Mall).



Ridge-penalized likelihood solution existence

Ω̂λ,2(M) = arg min
Ω∈Sp+

tr(ΩS)− log |Ω|+ 0.5λ
∑
i,j

mijω
2
ij


Recall that U = {(i, j) : mij = 0}.

Theorem. Suppose λ > 0. The solution Ω̂λ,2(M) exists if and
only if A2(M) = {Σ ∈ Sp+ : σij = sij when (i, j) ∈ U} is not
empty.

Remark. The MLE of the Gaussian graphical model with edge
set U exits if and only if A2(M) is not empty (Buhl, 1993;
Uhler, 2012)



Chordal graph example

From the theorem Ω̂λ,2(M) exists if and only if the MLE of the
Gaussian graphical model with edge set U = {(i, j) : mij = 0}
exists.

Example. mij = 1(|i− j| > k). Then U is an edge-set for a
Chordal graph with maximum clique size k + 1. So Ω̂λ,2(M)
exists if and only if n ≥ k + 2.

This follows from

Theorem[Buhl, 1993; Uhler, 2012]. Suppose that U is the edge
set for a Chordal graph with maximum clique size q. The MLE
of the zero mean Gaussian graphical model with edge set U
exists if and only if n ≥ q.



Entry agreement between Ω̂λ,2(M)−1 and S

Recall U = {(i, j) : mij = 0}.

Remark. When Ω̂λ,2(M) exists,

{Ω̂λ,2(M)−1}ij = sij for (i, j) ∈ U .

Justification. The zero gradient equation is

S − Ω̃−1 + λM ◦ Ω̃ = 0.



Ridge and lasso connections

Recall that U = {(i, j) : mij = 0}

A1,λ(M) = {Σ ∈ Sp+ : |σij − sij | ≤ mijλ}
A2(M) = {Σ ∈ Sp+ : σij = sij when (i, j) ∈ U}

A1,λ(M) ⊂ A2(M).

If Ω̂λ,1(M) exists, then Ω̂λ̃,2(M) exists for all λ̃ > 0.

If Ω̂λ,2(M) exists for some λ > 0, then it exists for all
λ > 0, and there exists a λ̄ sufficiently large so that
Ω̂λ̄,1(M) exists.



Part II: new algorithm for the ridge penalty



The SPICE algorithm to compute the Ridge solution

Rothman, Bickel, Levina, & Zhu (2008)’s iterative algorithm to
minimize

tr(ΩS)− log |Ω|+ λ

q

∑
i 6=j
|ωij |q

Each iteration minimizes

tr(ΩS)− log |Ω|+ λ

2

∑
i 6=j

mijω
2
ij .

Re-parameterize using Cholesky factorization: Ω = T ′T .
Minimize with cyclical coordinate descent.

Computational complexity O(p3).



Accelerated MM algorithm to compute the Ridge
solution (our proposal)

Minimizes the objective function f ,

f(Ω) = tr(ΩS)− log |Ω|+ 0.5λ
∑
i,j

mijω
2
ij .

At the kth iteration, the next iterate Ωk+1 is the minimizer
of a majorizing function to f at Ωk.

Every few iterations a minorizing function to f at Ωk is
minimized. This minimizer is accepted if it improves
objective function value.

Computational complexity O(p3).



Majorizing f at Ωk part 1

Decompose the penalty:∑
i,j

mijω
2
ij = max

i,j
mij

∑
i,j

ω2
ij −

∑
i,j

(max
i,j

mij −mij)ω
2
ij .

Replace the second term with a linear approximation at our
current iterate Ωk to get the majorizer.



Majorizing f at Ωk part 2

The minimizer of the majorizer to f at Ωk is

Ωk+1 = arg min
Ω∈Sp+

tr(ΩS̃)− log |Ω|+ 0.5λ̃
∑
i,j

ω2
ij

 ,

where S̃ = S − λΩk ◦ [maxi,jmij −mij ] and
λ̃ = λmaxi,jmij .

Closed-form solution derived by Witten and Tibshirani
(2009).



Acceleration by minorizing f at Ωk

Get the minorizer by replacing the entire penalty∑
i,jmijω

2
ij with a linear approximation at our current

iterate Ωk.

The minimizer of the minorizer (when it exists) is

Ω̃k+1 = (S + λΩk ◦M)−1

Accept Ω̃k+1 if f(Ω̃k+1) < f(Ωk).



Illustration



Algorithm convergence

Theorem. Suppose that acceleration attempts are stopped
after a finite number of iterations and the algorithm is
initialized at Ω0 ∈ Sp+. If the global minimizer Ω̂λ,2(M) exits,
then

lim
k→∞

‖Ωk − Ω̂λ,2(M)‖ = 0.

Also, if the algorithm converges, then it converges to the global
minimizer.



Simulation: our algorithm vs the SPICE algorithm

In each replication,
1 randomly generated Σ0:

eigenvectors were the right singular vectors of Z ∈ Rp×p,
where the zij were drawn independently from N(0, 1);
eigenvalues drawn independently from the uniform
distribution on (1, 100).

2 generated S from an iid sample of size n = 50 from
Np(0,Σ0)

Compared our MM algorithm to SPICE when computing
Ω̂λ,2(Moff).



Results for n = 50 & p = 100

Ω̂λ,2(Moff)
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Results for n = 50 & p = 200

Ω̂λ,2(Moff)
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Tuning parameter selection

J-fold cross validation maximizing validation likelihood

Randomly partition the n observations into J subsets of
equal size.

Compute

λ̂ = arg min
λ∈L

J∑
j=1

{
tr
(

Ω̂
(−j)
λ S(j)

)
− log

∣∣∣Ω̂(−j)
λ

∣∣∣} ,
S(j) is computed from observations inside the jth subset
(centered by training sample means)

Ω̂
(−j)
λ is the inverse covariance estimate computed from the

observations outside the jth subset
L is some user defined finite subset of R+, e.g.
{10−8, 10−7.5, . . . , 108}.



Classification example

Task: discriminate between metal and rocks using sonar data.

The data were taken from the UCI machine learning data
repository.

Sonar was used to produce energy measurements at p = 60
frequency bands for rock and metal cylinder examples.

There were 111 metal cases and 97 rock cases.

Quadratic discriminant analysis, with regularized
covariance estimators was applied.

Performed leave-one-out cross validation to compare
classification performance.



Results: QDA on the sonar data

The number of classification errors made in leave-one-out cross
validation on 208 examples.

Moff Mall

L1 standardized 33 34
L1 33 35
ridge standardized 33 37
ridge 31 42

These methods outperform using S−1, which had 50 errors, and
using (S ◦ I)−1, which had 68 errors.



Thank you

This talk is based on:

Rothman, A. J. and Forzani, L. (2013) Properties of
optimizations used in penalized Gaussian likelihood inverse
covariance matrix estimation. Submitted

An R package will be available soon


