A Unified Framework for High-Dimensional Analysis of M-Estimators with Decomposable Regularizers

Sahand N. Negahban, Pradeep Ravikumar, Martin J. Wainwright and Bin Yu

Reviewer: Neil Dhingra

M-Estimators

Objective: Recover true θ^{*} via M-estimator,

$$
\hat{\theta}=\arg \min \mathcal{L}(\theta)+\lambda_{n} \mathcal{R}(\theta)
$$

M-Estimators

Objective: Recover true θ^{*} via M-estimator,

$$
\hat{\theta}=\arg \min \mathcal{L}(\theta)+\lambda_{n} \mathcal{R}(\theta)
$$

Loss function $\mathcal{L}(\theta)$ is convex and differentiable

M-Estimators

Objective: Recover true θ^{*} via M-estimator,

$$
\hat{\theta}=\arg \min \mathcal{L}(\theta)+\lambda_{n} \mathcal{R}(\theta)
$$

Loss function $\mathcal{L}(\theta)$ is convex and differentiable Regularizer $\mathcal{R}(\theta)$ is decomposable and a norm

M-Estimators

Objective: Recover true θ^{*} via M-estimator,

$$
\hat{\theta}=\arg \min \mathcal{L}(\theta)+\lambda_{n} \mathcal{R}(\theta)
$$

Loss function $\mathcal{L}(\theta)$ is convex and differentiable
Regularizer $\mathcal{R}(\theta)$ is decomposable and a norm

Examples

- LASSO: $\mathcal{L}=\|y-X \theta\|_{2}^{2}, \mathcal{R}=\|\theta\|_{1}$
- Low-Rank Matrix Approximation: $\mathcal{L}=\|A-\Theta\|_{F}^{2}, \mathcal{R}=\|\Theta\|_{*}$
(1) analytically solvable

Model and Perturbation Subspaces

Partition space of possible θ into

- Model subspace $\mathcal{M} \in \overline{\mathcal{M}}$
- Perturbation subspace $\overline{\mathcal{M}}^{\perp}$

Model and Perturbation Subspaces

Partition space of possible θ into

- Model subspace $\mathcal{M} \in \overline{\mathcal{M}}$
- Perturbation subspace $\overline{\mathcal{M}}^{\perp}$

The true θ^{*} should lie mostly in \mathcal{M}

Model and Perturbation Subspaces

Partition space of possible θ into

- Model subspace $\mathcal{M} \in \overline{\mathcal{M}}$
- Perturbation subspace $\overline{\mathcal{M}}^{\perp}$

The true θ^{*} should lie mostly in \mathcal{M}

Examples
LASSO - \mathcal{M} is support of a sparse θ^{*}
Low Rank Matrices - \mathcal{M} is matrices whose singular vectors span same space as those of Θ^{*}

Decomposability

\mathcal{R} is decomposable with respect to $\left(\mathcal{M}, \overline{\mathcal{M}}^{\perp}\right)$ if

$$
\begin{aligned}
\mathcal{R}(\theta+\gamma) & =\mathcal{R}(\theta)+\mathcal{R}(\gamma) \\
\forall \theta & \in \mathcal{M} \\
\gamma & \in \overline{\mathcal{M}}^{\perp}
\end{aligned}
$$

Decomposability

\mathcal{R} is decomposable with respect to $\left(\mathcal{M}, \overline{\mathcal{M}}^{\perp}\right)$ if

$$
\begin{aligned}
\mathcal{R}(\theta+\gamma) & =\mathcal{R}(\theta)+\mathcal{R}(\gamma) \\
\forall \theta & \in \mathcal{M} \\
\gamma & \in \overline{\mathcal{M}}^{\perp}
\end{aligned}
$$

ℓ_{1} and nuclear norms are decomposable
Combinations of these norms also decomposable

Lemma 1

If $\lambda_{n} \geq \mathcal{R}^{*}\left(\nabla \mathcal{L}\left(\theta^{*}\right)\right)$, the estimation error will lie in a certain region

$$
\hat{\theta}-\theta^{*} \in \mathbb{C}\left(\mathcal{M}, \overline{\mathcal{M}}^{\perp} ; \theta^{*}\right)
$$

If $\theta^{*} \in \mathcal{M}$

$$
\mathbb{C}\left(\mathcal{M}, \overline{\mathcal{M}}^{\perp} ; \theta^{*}\right):=\left\{\Delta \mid \mathcal{R}\left(\Delta_{\overline{\mathcal{M}}^{\perp}}\right) \leq 3 \mathcal{R}\left(\Delta_{\overline{\mathcal{M}}}\right)\right\}
$$

(a)

(b)

Lemma 1

If $\lambda_{n} \geq \mathcal{R}^{*}\left(\nabla \mathcal{L}\left(\theta^{*}\right)\right)$, the estimation error will lie in a certain region

$$
\hat{\theta}-\theta^{*} \in \mathbb{C}\left(\mathcal{M}, \overline{\mathcal{M}}^{\perp} ; \theta^{*}\right)
$$

If $\theta^{*} \notin \mathcal{M}$

$$
\mathbb{C}\left(\mathcal{M}, \overline{\mathcal{M}}^{\perp} ; \theta^{*}\right):=\left\{\Delta \mid \mathcal{R}\left(\Delta_{\overline{\mathcal{M}}^{\perp}}\right) \leq 3 \mathcal{R}\left(\Delta_{\overline{\mathcal{M}}}\right)+4 \mathcal{R}\left(\theta_{\mathcal{M}^{\perp}}^{*}\right)\right\}
$$

(b)

Restricted Strong Convexity

Strength of \mathcal{L} convexity important

(b)

Restricted Strong Convexity

Strength of \mathcal{L} convexity important

(b)

Only need strong convexity WITHIN \mathbb{C}

$$
\begin{gathered}
\mathcal{L}\left(\theta^{*}+\Delta\right)-\left(\mathcal{L}\left(\theta^{*}\right)+\left\langle\nabla \mathcal{L}\left(\theta^{*}\right), \Delta\right\rangle\right) \geq \mathcal{K}_{\mathcal{L}}\|\Delta\|^{2}-\tau_{\mathcal{L}}^{2}\left(\theta^{*}\right) \\
\forall \Delta \in \mathbb{C}\left(\mathcal{M}, \overline{\mathcal{M}}^{\perp} ; \theta^{*}\right)
\end{gathered}
$$

(a)

(b)

Subspace Compatibility Constant

$$
\Psi(\mathcal{M}):=\sup _{u \in \mathcal{M} \backslash\{0\}} \frac{\mathcal{R}(u)}{\|u\|}
$$

Subspace Compatibility Constant

$$
\Psi(\mathcal{M}):=\sup _{u \in \mathcal{M} \backslash\{0\}} \frac{\mathcal{R}(u)}{\|u\|}
$$

Example:

$$
\begin{aligned}
u & \in \mathbb{R}^{p} \\
\mathcal{R}(u) & =\|u\|_{1} \\
\|u\| & =\|u\|_{2} \\
\Psi(\mathcal{M}) & =\sqrt{p}
\end{aligned}
$$

Theorem 1

When $\lambda_{n} \geq 2 \mathcal{R}^{*}\left(\nabla \mathcal{L}\left(\theta^{*}\right)\right)$,

$$
\left\|\hat{\theta}_{\lambda_{n}}-\theta^{*}\right\|^{2} \leq 9 \frac{\lambda_{n}^{2}}{\mathcal{K}_{\mathcal{L}}^{2}} \Psi^{2}(\overline{\mathcal{M}})+\frac{\lambda_{n}}{\mathcal{K}_{\mathcal{L}}}\left(2 \tau_{\mathcal{L}}^{2}\left(\theta^{*}\right)+4 \mathcal{R}\left(\theta_{\overline{\mathcal{M}}^{\perp}}^{*}\right)\right)
$$

Depends on subspace, strength of convexity, and regularization parameter

Theorem 1

When $\lambda_{n} \geq 2 \mathcal{R}^{*}\left(\nabla \mathcal{L}\left(\theta^{*}\right)\right)$,

$$
\left\|\hat{\theta}_{\lambda_{n}}-\theta^{*}\right\|^{2} \leq 9 \frac{\lambda_{n}^{2}}{\mathcal{K}_{\mathcal{L}}^{2}} \Psi^{2}(\overline{\mathcal{M}})+\frac{\lambda_{n}}{\mathcal{K}_{\mathcal{L}}}\left(2 \tau_{\mathcal{L}}^{2}\left(\theta^{*}\right)+4 \mathcal{R}\left(\theta_{\overline{\mathcal{M}}^{\perp}}^{*}\right)\right)
$$

Depends on subspace, strength of convexity, and regularization parameter

Corollary 1: $\theta^{*} \in \mathcal{M}$

$$
\begin{aligned}
\left\|\hat{\theta}_{\lambda_{n}}-\theta^{*}\right\| & \leq 3 \frac{\lambda_{n}}{\mathcal{K}_{\mathcal{L}}} \Psi(\overline{\mathcal{M}}) \\
\mathcal{R}\left(\hat{\theta}_{\lambda_{n}}-\theta^{*}\right) & \leq 12 \frac{\lambda_{n}}{\mathcal{K}_{\mathcal{L}}} \Psi^{2}(\overline{\mathcal{M}})
\end{aligned}
$$

Conclusions

Decomposable Regularizer

- error vector lies in a cone or a star

Conclusions

Decomposable Regularizer

- error vector lies in a cone or a star

Restricted Strong Convexity yields error bound

- strength of restricted convexity
- chosen subspace
- how well it captures θ^{*}
- subspace compatibility constant

Questions?

