The Convex Geometry of Linear Inverse Problems.

Farideh Fazayeli

CSCI 8990 ML at Large Scale and High Dimensions

Mar 3, 2014

・ロト ・四ト ・ヨト ・ ヨ

V. Chandrasekaran, B. Recht, P. A. Parrilo, and A. S. Willsky "The Convex Geometry of Linear Inverse Problems." Foundations of Computational Mathematics, 12, 805-849, 2012.

イロン 不同 とくほう 不良 とう

3

羉

2 Unified Convex optimization Framework

3 Recovery Condition

Number of required measurements for unique true recovery

Computational Issues

ヘロア 人間 アメヨア 人口 ア

ъ

 $\mathbf{y} = \phi \mathbf{x} \quad \phi \in \mathbb{R}^{m \times n}$

・ロト ・ 理 ト ・ ヨ ト ・

3

- Given $y \Rightarrow$ recover x.
- Limited Linear Measurements: ill posed problem
- Infinite solution, which one to choose?
- Examples
 - Sparse vectors: signal processing, statistics
 - Low-rank matrices: control, statistics, collaborative filtering
 - Sums of a few permutation matrices: ranked elections, multiobject tracking
 - Low-rank tensors: computer vision, neuroscience
 - Orthogonal matrices: machine learning

$$\min_{\mathbf{x}} \| x \|_1$$

s.t. $\mathbf{y} = \phi \mathbf{x}$

ヘロア 人間 アメヨア 人口 ア

- Minimizing nuclear norm, yields low rank solution
- Both are convex problem, can be solved efficiently
- Can be generalized?

• Simple Models from atomic set A

Atomic norm induced by convex hull of A

$$\| x \|_{A} = \inf\{t > 0 : x \in t \operatorname{conv}(A)\} \\ \| x \|_{A} = \inf\left\{\sum_{i} c_{i} : x = \sum_{i=1}^{r} c_{i} \mathbf{a}_{i}, c_{i} \ge 0, \mathbf{a}_{i} \in A\right\}$$

Farideh Fazayeli

ヘロン 人間 とくほど 人間と

3

靐

Geometric view - Sparsity

1-sparse vectors of Euclidean norm 1 Convex Hull: ℓ_1 norm

$$\|\mathbf{x}\|_{1} = \sum_{\substack{i=1\\ z \to z}}^{n} |x_{i}|$$

Geometric view - Low rank

 2×2 rank 1 symmetric matrices (normalized)

Convex Hull: nuclear norm

$$\parallel \mathbf{X} \parallel_* = \sum_i \sigma_i(X)$$

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

ъ

靐

- Ranking context 0
- Object tracking context •

в

羉

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

0

matrices

- - Consider true x* concise w.r.t to atomic set A
 - Given linear measurement $\mathbf{y} = \phi \mathbf{x}^*$, solve

$$\hat{\mathbf{x}} = \arg\min_{\mathbf{x}} \| x \|_{A}$$

s.t.
$$\mathbf{y} = \phi \mathbf{x}$$

Recovery condition?

・ロト ・ 理 ト ・ ヨ ト ・

3

• When does $\hat{\mathbf{x}} = \mathbf{x}^*$?

イロト イポト イヨト イヨト

3

Ж

• When does $\hat{\mathbf{x}} = \mathbf{x}^*$?

イロト 不得 とくほと くほとう

3

馮

• When does $\hat{\mathbf{x}} = \mathbf{x}^*$?

Farideh Fazayeli

イロト イポト イヨト イヨト

3

ж

• When does $\hat{\mathbf{x}} = \mathbf{x}^*$?

• When does $\hat{x} = x^*$?

Farideh Fazaveli

イロト 不得 とくほと くほとう

3

д

• Tangent Cone at x:

$$T_A(\mathbf{x}) = \{\mathbf{z} - \mathbf{x} : \parallel z \parallel_A \le \parallel x \parallel_A\}$$

• Set of descent directions of $\| \cdot \|_A$ at point **x**.

Proposition 2.1

$$\hat{\mathbf{x}} = \mathbf{x}^* \iff null(\phi) \cap T_A(\mathbf{x}^*) = \{0\}$$

• Why Atomic Norm?

Farideh Fazayeli

イロト イポト イヨト イヨト

3

羉

 Outline
 Introduction
 Framework
 Recovery Condition
 Computational Issues
 Noisy Scenario

Recovery from Generic Measurements

- Number of measurements n for exact recovery?
- Gaussian Width:

$$w(S) := \mathbb{E}_{\mathbf{g}} \left[\sup_{\mathbf{z} \in S \cap \mathcal{B}(0,1)} \mathbf{g}^T \mathbf{z} \right]$$

•
$$\mathbf{g} \sim \mathcal{N}(0, I)$$

• $\mathcal{B}(0, 1)$: Unit Euclidean ball.

Corollary 3.3

$$\blacktriangleright \mathbf{y} = \phi \mathbf{x}^*$$

- $\phi : \mathbb{R}^p \to \mathbb{R}^n$ i.i.d. zero-mean Gaussian entries
- $\hat{\mathbf{x}} = \mathbf{x}^*$ W.H.P. if

$$n \ge w(T_A(\mathbf{x}^*))^2 + 1$$

Gordon 1988

靐

- λ_n : expected length of a *n*-dimensional Gaussian vector
- $\frac{n}{\sqrt{n+1}} \le \lambda_n \le \sqrt{n}$
- Ω: Closed subset of unit sphere S^{p-1}
- $\phi : \mathbb{R}^p \leftarrow \mathbb{R}^n$: random map with i.i.d Gaussian entries

$$\mathbb{E}\left[\min_{\mathbf{z}\in\Omega} \| \phi \mathbf{z} \|_2\right] \geq \lambda_n - w(\Omega)$$

Gordon1988

靐

- $\mathbf{g} \sim \mathcal{N}(0, I)$
- f be Lipschitz constant L

$$P(f(\mathbf{g}) \ge \mathbb{E}[f] - t) \ge 1 - \exp(-\frac{t^2}{2L^2})$$

min_{z∈Ω} || φz ||₂ is 1-Lipschitz
 E [min_{z∈Ω} || φz ||₂] ≥ λ_n − w(Ω)

$$P(\min_{\mathbf{z}\in\Omega} \| \phi \mathbf{z} \|_{2} \ge \epsilon) \ge 1 - \exp(-\frac{1}{2}(\lambda_{n} - w(\Omega) - \sqrt{n}\epsilon)^{2})$$
$$\ge 0$$

4

イロン イボン イヨン イヨン 三日

ж

• Set $\epsilon = 0 \Rightarrow \lambda_n \ge w(\Omega)$ • $w(\Omega) \le \lambda_n \le \sqrt{n}$

Farideh Fazayeli

Gaussian width of a cone via the distance to the dual cone
Polar cone of C :

$$\mathcal{C}^* = \{\mathbf{x} \in \mathbb{R}^p : \langle \mathbf{x}, \mathbf{z}
angle \leq 0 \;\; orall \mathbf{z} \in \mathcal{C} \}$$

Proposition 3.6

- ► $\mathbf{g} \sim \mathcal{N}(0, I)$
- dist: Euclidean distance of a point to a set

$$w(\mathcal{C}) \leq \mathbb{E}_{\mathbf{g}} \left[\text{dist}(\mathbf{g}, \mathcal{C}^*) \right]$$
$$w(\mathcal{C})^2 \leq \mathbb{E}_{\mathbf{g}} \left[\text{dist}(\mathbf{g}, \mathcal{C}^*)^2 \right]$$

ъ

イロト イポト イヨト イヨト

Outline	Introduction	Recovery Condition	Computational Issues	
Droof				
PIOOI				

- Gaussian Width: $w(\mathcal{C} \cap \mathbb{S}^{p-1}) \leq \mathbb{E}_{\mathbf{g}} \left[\sup_{\mathbf{z} \in \mathcal{C} \cap \mathcal{B}(0,1)} \mathbf{g}^T \mathbf{z} \right]$
- Inside the expected value is the optimal solution to

$$\max_{z} \mathbf{g}^{T} \mathbf{z} \quad \text{s.t.} \quad \mathbf{z} \in \mathcal{C}, \quad \parallel z \parallel^{2} \leq 1$$

Introducing the Lagrangian:

$$\mathcal{L}(\mathbf{z}, \mathbf{u}, \gamma) = \mathbf{g}^T \mathbf{z} + \gamma (1 - \mathbf{z}^T \mathbf{z}) - \mathbf{u}^T \mathbf{z}$$

• minimize w.r.t ${f z}$ and γ

$$\mathbf{z} = \frac{1}{2\gamma}(\mathbf{g} - \mathbf{u})$$
 $\gamma = \frac{1}{2} \parallel \mathbf{g} - \mathbf{u} \parallel$

Dual Problem:

$$\min \| \mathbf{g} - \mathbf{u} \| \quad \text{s.t} \quad \mathbf{u} \in \mathcal{C}^*$$

Farideh Fazayel

- Lemma 3.7: $\mathcal{C} \subset \mathbb{R}^p$, $w(\mathcal{C})^2 + w(\mathcal{C}^*)^2 \leq p$
- proof:
- $\bullet \ \mathbf{g} = \sqcap_{\mathcal{C}}(\mathbf{g}) + \sqcap_{\mathcal{C}^*}(\mathbf{g}) \quad \text{where} \ \left< \sqcap_{\mathcal{C}}(\mathbf{g}), \sqcap_{\mathcal{C}^*}(\mathbf{g}) \right> = 0$
- dist $(\mathbf{g}, \mathcal{C}) = \parallel \sqcap_{\mathcal{C}^*} (\mathbf{g}) \parallel$

$$w(\mathcal{C})^2 \leq \mathbb{E}_{\mathbf{g}}[\operatorname{dist}(\mathbf{g}, \mathcal{C}^*)^2] \\ = \mathbb{E}_{\mathbf{g}}[\|\mathbf{g}\|^2 - \| \sqcap_{\mathcal{C}^*}(\mathbf{g})\|^2] = p - \mathbb{E}_{\mathbf{g}}[\operatorname{dist}(\mathbf{g}, \mathcal{C})^2] \\ \leq p - w(\mathcal{C}^*)^2$$

• Corollary 3.8: Self dual cone $C = -C^*$

$$w(\mathcal{C})^2 \le \frac{p}{2}$$

Farideh Fazayeli

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

ж

• Hypercube:

$$w(T_A(\mathbf{x}^*))^2 \le \frac{p}{2}$$

• *s*-sparse vector $\mathbf{x}^* \in \mathbb{R}^p$:

$$w(T_A(\mathbf{x}^*))^2 \le 2s\log(\frac{p}{s}) + \frac{5}{4}s$$

• Low-rank matrices $\in \mathbb{R}^{m_1 \times m_2}$, rank *r*

$$w(T_A(\mathbf{x}^*))^2 \le 3r(m_1 + m_2 - r)$$

・ロン ・ 日 ・ ・ 日 ・ ・ 日 ・

в

ж

Farideh Fazaveli

Theorem 3.9

• $C \subseteq \mathbb{R}^p$: close, convex, solid cone

•
$$C^*$$
: has volume of $\theta \in [0, 1]$

$$w(\mathcal{C}) \leq 3\sqrt{\log\frac{4}{\theta}}$$

Corollary 3.14

For a symmetric polytope with *m* vertices

$$n \ge O(\log m)$$

イロト イポト イヨト イヨト

Э

羉

- Atomic set A are Algebraic variety
- Well-approximated in a constructive manner by
 - linear matrix inequality constraints
- Semidefinite representations are intractable?
 - Hierarchy of tractable semidefinite relaxations

ヘロア 人間 アメヨア 人口 ア

X

Outline Introduction Framework Recovery Condition Computational Issues Noisy Scenario

Complexity vs Number of Measurements

Intractable to compute norm induced by cut Polytope:

$$\mathcal{P} = \operatorname{conv} \{ \mathbf{z}^T \mathbf{z} : \mathbf{z} \in \{-1, +1\}^m \}$$

- MAX-CUT problem
- Semidefinite relaxation:

 $\mathcal{P}_1 = \{\mathcal{M}: \mathcal{M} \text{ Symmetric}, \ \mathcal{M} \succcurlyeq 0, \mathcal{M}_{ii} = 1\}$

- Trivial hypercube relaxation: $\mathcal{P}_2 = \{\mathcal{M} : \mathcal{M} \text{ Symmetric}, \ \mathcal{M}_{ii} = 1, \ |\mathcal{M}_{ij}| < 1 \ \forall i \neq j\}$
- Using $\mathcal{P} : n = O(m)$
- Using $\mathcal{P}_1 : n = O(m)$
- Using $\mathcal{P}_2: n = O(\frac{m^2 m}{4})$

25.

- Providing a unified convex optimization framework for Inverse problem
- Recovery condition
 - Noiseless scenario
 - Noisy scenario
- Number of measurements for true unique recovery
- Tradeoff: complexity and number of measurements

ヘロア 人間 アメヨア 人口 ア

ъ

Outline		Recovery Condition	

Questions?

イロト 不得入 不良入 不良入 一度。

の x C 【本