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@ Introduction
@ Various conditions on design matrix

o Restricted Nullspace condition
o Restricted Isometry Property

o Restricted Eigenvalue Condition
@ Main results

@ Proof of result

Application examples
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Problem Overview

@ High-dimensional sparse models

y = XB*+w, y ER" X € R™P.w ~ (0,02lxn), p >>n

Assumption of exact sparsity

S(B%) = efl, . p}B #0}, [S|<s

Problem reduces to: Find j close to 3* such that ||]lo < s

Convex relaxation: Use £1-norm

Basis pursuit: 3 € arg [gmﬂg IBli  suchthat X8 =y
ERP

Lasso: € arg min {ly ~ XBI3 + A5}

Under what conditions on matrix X can we recover 37
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Restricted Nullspace condition

o Define any set S C {1, ..., p}

@ Notations: n - number of observations, p - number of covariates,
,k - sparsity level

@ For some constant o« > 1, define the set

C(S;a) ={0 € R” | ||fsc|1 < |fs]|1}

Restricted Nullspace condition

For a given sparsity index k < p, the matrix X satisfies the restricted
nullspace (RN) condition of order k if null(X) N C(S;1) = {0} for all
subsets of cardinality k

o A sufficient and necessary condition for exact recovery in the
noisless setting
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Restricted Isometry Property

@ For a matrix X define for every integer 1 < s < |S|, where
S c {1,..., p}, define the s-restricted isometry constants Js to be
the smallest quantity such that Xs obeys

(1= 8)118I < [IXsBl5 < (1 +65) 18113

for all subsets S C {1, ..., p} of cardinality at most s, and all real
coefficients (5;)jes

o RIP requires 12 ’/\\mfx((;j)) = K to be close to 1

e XTX/n should be close to identity matrix — covariates cannot be
strongly correlated

@ Random matrices with i.i.d sub-Gaussian entries satisfy this property
w.h.p with n almost linearly scaling with k
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Restricted Eigenvalue condition

Restricted Eigenvalue Condition

A p x p sample covariance matrix X" X /n satisfies the restricted
eigenvalue (RE) condition over S with parameters
(a,7) € [1,00) x (0, 00) if

1 1
EeTxTxa = ;Hxang > ~%|0)3 VO € C(S; )

Weaker than the RIP condition

e XTX/n satisfies RE condition of order k if above condition is
satisfied for all subsets S, |S| = k

If X satisfies RE condition then ||3 — 8*[» = O(y/klog p/n)
@ Does X € R"™P X; ~ N(0,X) satisfy the RE condition for any X?
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Main Results

o Linear model y; = X." 8+ w;, X; ~ N(0, ¥)
o Define: p?(¥) = max ¥
ik

LR

Theorem 1

For any Gaussian random design X € R"*P with i.i.d. N(0,X) rows,
there are universal positive constants c, c’ such that

IIXVIlz
NG

with probability atleast 1 — c’exp(—cn)

\|zl/2 ||v||1, for all v € RP

e Insight into eigenstructure of sample covariance matrix 3. = XTX/n
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Main results

Corollary 1 (Restricted eigenvalue property)

Suppose that X satisfies the RE condition of order k with parameters
(a,y). Then for universal positive constants c,c’, c”, if the sample size

satisfies Sy )
S Cllwk log p
v

n

then the matrix > = X7 X /n satisfies the RE condition with parameters
(a, §) with probability at least 1 — c’exp(—cn).

@ Proof: Use ||v|1 = ||vs|l1 + |[vse]l1 < (1 + a)vVk]|v|2 and
|£2/2v|l2 > v||v||2 and substitute in Theorem 1, we get

9L+ a)p(X)y/ L < /8

@ The sample size scales as Q(k log p) as long as p(X) is bounded
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Proof outline

o The result bounds || Xv/2 in terms of || Z*/2v|| and ||v||; for all v
w.h.p

o Step 1: Consider set: V(r) :={v € RP | |Z}2v|, = 1,]|v|1 < r}

o Condition holds trivially when £/2v =0

o For any vector v € RP consider v = v/||X%/?v||. Condition is scale
invariant. Hence holds for v if it holds for .

@ Step 2: Define random variable:

o Xl [Xvll2
M(r,X):=1— inf = 1—
(r7 ) VGIT/(r) \/ﬁ v:l\i?r) \/E

e Step 2a: Upper bound E[M(r, X)]

o Step 2b: Establish concertration around the mean

@ Step 3: Peeling argument to show that analysis holds with high
probability and uniformly for all r
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Step 2a: Bounding the expectation

For any radius r > 0 such that V/(r) is non-empty, we have

EIM(r, X)) < § +3p(%)y/ B2

o Define the Gaussian random variable Y, , := u” Xv

° — |nf ||XVH2—— inf  sup u'Xv= sup inf uTXv
vev vev(r) uesn—1 veVv(r) uesSn—1

o Upper bound 1+ E[ sup inf Y,,]
veVv(r) uES st
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Step 2a: Bounding the expectation

Gordon'’s inequality
Suppose that {Y, ,(u,v) € Ux V} and {Z,,,(u,v) € U x V} are two
zero-mean Gaussian processes on U x V. Let o(.) denote the standard

deviation of its argument. Suppose these two processes satisfy the
inequality

o(Yuy—Yuw) <0(Zyy—2y ), forall pairs (u,v) and (u',v') € UxV
where equality holds when v = v'. Then we are guaranteed that

E[sup |nf Yuv] < E[sup |nf Zv]
veV ue veV ue

e Find a Z,, such that the above condition is satisfied and

computing E[sup |nf Z,] is easy
vev ue
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Step 2a: Bounding the expectation

@ X can be expressed as X = WY2 where W € R"P is a matrix
with i.i.d. N(0,1) entries. Therefore Y, , = u” WE/2v = uT W¥

o Define ¥ = X1/2vy

o Compute o°(Yy,, — Y, 7)

n p

P(Yuo=Yy 2) = EQ Y Wijuig—ujv'j))? = [|luvT—(u") (V) TII[E

i=1 j=1

e Define Z,, = ghu+ hTS1/2, = ghu+ hT ¥, where g~ N0, Ixn),
h ~ N(O, Ipxp)

o Compute 0%(Z,,, — Zy )
UZ(ZU-,V - Zu/,V’) = [ju— “/”% + v — V/H%
@ Condition in Gordon's inequality is satisfied
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Step 2a: Bounding the expectation

@ Applying Gordon's inequality

E[ sup inf uTXv]<IE[ mf & Tul + E[ sup hTTY/2v]
veV(r)ues ™t veVv(r)

= —E[|&]2] + E[ sup h7x'/2V]
veVv(r)

By definition of V(r)

sup |hT21/2V| < sup |v|1 Hzl/zhHoo < er1/2hH
veVv(r) veVv(r)

@ Each element (Zl/2h)j is zero-mean Gaussian with variance X ;.
According to known results on Gaussian maxima

E[|£Y2h]| o] < 3v/p2(Z) log p, where p?(£) = max;¥;;
i

E[|[g|2] > 2+/n for all n > 10 by standard x? tail bounds

Putting together the pieces gives us the required result
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Step 2b: Concentration around the mean

For any r such that V(r) is non-empty, we have

3t(r)
2

t(r) == % + 3@:)“"’%

o Following from previous result suffices to show that

M) > 240] < 2exp(-nt2)/9)

where

P[IM(r, X) = E[M(r, X)]| > t(r)/2] < 2exp(—nt2(r)/8)
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Step 2b: Concentration around the mean

@ A function F: R™ — R is Lipschitz with constant L if
[F(x) = F(Y)I < Llix = yl2 Vx,y € R™

Let w ~ N(O, Imxm) be an m-dimensional Gaussian random variable.
Then for any L-Lipschitz function F, we have

2

P{|F(w) — BIF(w)]| > ] < 2exp(—5), ¥t >0

@ The tail bound above will follow if we show the Lipschitz constant L
is less than ﬁ
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Step 2b: Concentration around the mean

o Define h(W)

Vnlh(W) — h(W')]

sup (1 —||[WEV2v|2//n)
)

= sup —|[WE2v|, — sup [W'EYv],
veVv(r) veVv(r)

= W20 — sup (—|W'EV2v])

veVv(r)

IN

W20, — [WEY20],

sup ([|(W — W)EY2v],)
veV(r)

AN

IN

I sup ([IZ2v]2)HII(W — Wil
veV(r)

< || sup (IIZ2vll)HI(W — Wll|e
veV(r)

=W - Wk
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Step 3: Peeling argument

e V/(r) defined such that ||v||s < r. Need to prove Theorem 1 for all r
@ Argument at a high level is as follows

e Theorem holds for all v in set V/(r)

o Consider the event
T:={3veR’ st H):1/2v|| =1 and (1—||Xv|l2/v/n) > 3t(|Iv|1)/2}
e Bound P(T) by a union bound over all suitably defined subsets V/(r)

@ Peeling argument yields the bound P[T¢] > 1 — cexp(—c’n) for
some constants ¢, ¢’
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Step 3: Peeling argument

@ Define: An objective function f(v; X), v € RP, X is a random
vector h is any function h: RP — R

Lemma 3

Suppose that g(r) > p for all r > 0, and that there exists some constant
¢ > 0 such that for all r > 0, we have the tail bound

P[ sup f(v;X) > g(r)] <2exp(—cang?(r))
vEA,h(v)<r
for a, > 0. Define event E := {3v € A such that f(v; X) > 2g(h(v))}
Then P[E] < -220(-4cans’)

1—exp(—4canp?)

@ In this case: f(v,X) =1—|Xv|]2/+/n, h(v) = |v]|1,
g(r) =3t(r)/2, a,=n, A= {v € RP ||X}2?v|; = 1}, and u = 3/8
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Applications: Toeplitz matrices

@ Toeplitz matrix structure

- >0k Ko
>0 N o
R o T 0
L T 0 Q
L TN Qo

o Consider X has Toeplitz structure with >;; = al’Jl for some
a € [0,1). Common in autoregressive processes

e Minimum eigenvalue Ay,in(X) =1 — a > 0, independent of p

e Condition number & = Apax(Zss)/Amin(Zss) grows as parameter a
increases towards 1

@ RE property satisfied with high probability but RIP violated once
a < 1 is sufficiently large
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Applications: Spiked identity model

Spiked identity model
Y= (l—a)lpxp+afl?, a€[0,1) and T € RP is the vector of all ones

@ Minimum eigenvalue: Apin(X) =1—a, p?(X) =1

@ According to Corollary 1: Sample covariance matrix Y = XTX/n
will satisfy RE property with high probability when n = Q(k log p)

(]

For any |S| = k consider Xss

Amax(Zss) o 1+ak—1)

)\min(zSS) 1-a

e Condition number diverges as k increases
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Highly degenerate covariance matrices

@ X is not full rank
o Generate a degenerate covariance matrix

e Sample n times from a N(0, X) distribution
o Sample covariance matrix s = XTX/n, n<p
o Therefore 3 is rank degenerate

o According to Corollary 1 Y satisfies RE property of order k with
high probability

o Now sample n times from N ~ (0,3).

@ According to Corollary 1 resampled empirical covariance will also
have RE property

@ Example relevant for a bootstrap-type calculation for assessing
errors of the Lasso
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Conclusions

@ One of the first papers to consider correlated Gaussian matrices

@ Result uses Gordon's inequality applicable to only Gaussian design
matrices
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