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Problem Overview

High-dimensional sparse models

y = Xβ∗+w , y ∈ Rn,X ∈ Rn×p,w ∼ (0, σ2In×n), p >> n

Assumption of exact sparsity

S(β∗) := {j ∈ {1, ...., p}|β∗j 6= 0}, |S | ≤ s

Problem reduces to: Find β̂ close to β∗ such that ‖β‖0 ≤ s

Convex relaxation: Use `1-norm

Basis pursuit: β̂ ∈ arg min
β∈Rp

‖β‖1 such that Xβ = y

Lasso: β̂ ∈ arg min
β∈Rp
{‖y − Xβ‖22 + λ‖β‖1}

Under what conditions on matrix X can we recover β̂?
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Restricted Nullspace condition

Define any set S ⊂ {1, ...., p}

Notations: n - number of observations, p - number of covariates,
,k - sparsity level

For some constant α ≥ 1, define the set

C (S ;α) := {θ ∈ Rp | ‖θSc‖1 ≤ α‖θS‖1}

Restricted Nullspace condition

For a given sparsity index k ≤ p, the matrix X satisfies the restricted
nullspace (RN) condition of order k if null(X ) ∩ C (S ; 1) = {0} for all
subsets of cardinality k

A sufficient and necessary condition for exact recovery in the
noisless setting
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Restricted Isometry Property

For a matrix X define for every integer 1 ≤ s ≤ |S |, where
S ⊂ {1, ..., p}, define the s-restricted isometry constants δs to be
the smallest quantity such that XS obeys

(1− δs)‖β‖22 ≤ ‖XSβ‖22 ≤ (1 + δs)‖β‖22

for all subsets S ⊂ {1, ..., p} of cardinality at most s, and all real
coefficients (βj)j∈S

RIP requires 1+δ
1−δ = λmax (XS )

λmin(XS )
= κ to be close to 1

XTX/n should be close to identity matrix → covariates cannot be
strongly correlated

Random matrices with i.i.d sub-Gaussian entries satisfy this property
w.h.p with n almost linearly scaling with k
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Restricted Eigenvalue condition

Restricted Eigenvalue Condition

A p × p sample covariance matrix XTX/n satisfies the restricted
eigenvalue (RE) condition over S with parameters
(α, γ) ∈ [1,∞)× (0,∞) if

1

n
θTXTXθ =

1

n
‖Xθ‖22 ≥ γ2‖θ‖22 ∀θ ∈ C (S ;α)

Weaker than the RIP condition

XTX/n satisfies RE condition of order k if above condition is
satisfied for all subsets S , |S | = k

If X satisfies RE condition then ‖β̂ − β∗‖2 = O(
√

k log p/n)

Does X ∈ Rn×p,Xi ∼ N(0,Σ) satisfy the RE condition for any Σ?

Garvesh Raskutti, Martin Wainwright, Bin Yu Restricted Eigenvalue Properties for Correlated Gaussian Designs



Main Results

Linear model yi = XT
i β + wi ,Xi ∼ N(0,Σ)

Define: ρ2(Σ) = max
j=1,..,p

Σjj

Theorem 1

For any Gaussian random design X ∈ Rn×p with i.i.d. N(0,Σ) rows,
there are universal positive constants c , c ′ such that

‖Xv‖2√
n
≥ 1

4
‖Σ1/2v‖2 − 9ρ(Σ)

√
log p

n
‖v‖1, for all v ∈ Rp

with probability atleast 1− c ′exp(−cn)

Insight into eigenstructure of sample covariance matrix Σ̂ = XTX/n
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Main results

Corollary 1 (Restricted eigenvalue property)

Suppose that Σ satisfies the RE condition of order k with parameters
(α, γ). Then for universal positive constants c , c ′, c ′′, if the sample size
satisfies

n > c ′′
ρ2(Σ)(1 + α)2

γ2
k log p

then the matrix Σ̂ = XTX/n satisfies the RE condition with parameters
(α, γ8 ) with probability at least 1− c ′exp(−cn).

Proof: Use ‖v‖1 = ‖vS‖1 + ‖vSc‖1 ≤ (1 + α)
√
k‖v‖2 and

‖Σ1/2v‖2 ≥ γ‖v‖2 and substitute in Theorem 1, we get

9(1 + α)ρ(Σ)
√

k log p
n ≤ γ/8

The sample size scales as Ω(k log p) as long as ρ(Σ) is bounded
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Proof outline

The result bounds ‖Xv‖2 in terms of ‖Σ1/2v‖ and ‖v‖1 for all v
w.h.p

Step 1: Consider set: V (r) := {v ∈ Rp | ‖Σ1/2v‖2 = 1, ‖v‖1 ≤ r}

Condition holds trivially when Σ1/2v = 0

For any vector v ∈ Rp consider ṽ = v/‖Σ1/2v‖. Condition is scale
invariant. Hence holds for v if it holds for ṽ .

Step 2: Define random variable:

M(r ,X ) := 1− inf
v∈V (r)

‖Xv‖2√
n

= sup
v∈V (r)

{
1− ‖Xv‖2√

n

}

Step 2a: Upper bound E[M(r ,X )]

Step 2b: Establish concertration around the mean

Step 3: Peeling argument to show that analysis holds with high
probability and uniformly for all r
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Step 2a: Bounding the expectation

Lemma 1

For any radius r > 0 such that V(r) is non-empty, we have

E[M(r ,X )] ≤ 1

4
+ 3ρ(Σ)

√
log p

n
r

Define the Gaussian random variable Yu,v := uTXv

− inf
v∈V (r)

‖Xv‖2 = − inf
v∈V (r)

sup
u∈Sn−1

uTXv = sup
v∈V (r)

inf
u∈Sn−1

uTXv

Upper bound 1 + E[ sup
v∈V (r)

inf
u∈Sn−1

Yu,v ]
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Step 2a: Bounding the expectation

Gordon’s inequality

Suppose that {Yu,v , (u, v) ∈ U × V } and {Zu,v , (u, v) ∈ U × V } are two
zero-mean Gaussian processes on U × V . Let σ(.) denote the standard
deviation of its argument. Suppose these two processes satisfy the
inequality

σ(Yu,v−Yu′,v ′) ≤ σ(Zu,v−Zu′,v ′), for all pairs (u, v) and (u′, v ′) ∈ U×V

where equality holds when v = v ′. Then we are guaranteed that

E[sup
v∈V

inf
u∈U

Yu,v ] ≤ E[sup
v∈V

inf
u∈U

Zu,v ]

Find a Zu,v such that the above condition is satisfied and
computing E[sup

v∈V
inf
u∈U

Zu,v ] is easy

Garvesh Raskutti, Martin Wainwright, Bin Yu Restricted Eigenvalue Properties for Correlated Gaussian Designs



Step 2a: Bounding the expectation

X can be expressed as X = WΣ1/2, where W ∈ Rn×p is a matrix
with i.i.d. N(0, 1) entries. Therefore Yu,v = uTWΣ1/2v = uTWṽ

Define ṽ = Σ1/2v

Compute σ2(Yu,v − Yu′,ṽ ′)

σ2(Yu,ṽ−Yu′,ṽ ′) := E(
n∑

i=1

p∑
j=1

Wi,j(ui ṽj−u′i ṽ ′j))2 = |‖uṽT−(u′)(ṽ ′)T |‖2F

Define Zu,v = ~gTu + ~hTΣ1/2v = ~gTu + ~hT ṽ , where ~g ∼ N(0, In×n),
~h ∼ N(0, Ip×p)

Compute σ2(Zu,v − Zu′,v ′)

σ2(Zu,v − Zu′,v ′) = ‖u − u′‖22 + ‖v − v ′‖22

Condition in Gordon’s inequality is satisfied
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Step 2a: Bounding the expectation

Applying Gordon’s inequality

E[ sup
v∈V (r)

inf
u∈Sn−1

uTXv ] ≤ E[ inf
u∈Sn−1

~gTu] + E[ sup
v∈V (r)

~hTΣ1/2v ]

= −E[‖~g‖2] + E[ sup
v∈V (r)

~hTΣ1/2v ]

By definition of V(r)

sup
v∈V (r)

|~hTΣ1/2v | ≤ sup
v∈V (r)

‖v‖1‖Σ1/2~h‖∞ ≤ r‖Σ1/2~h‖∞

Each element (Σ1/2~h)j is zero-mean Gaussian with variance Σjj .
According to known results on Gaussian maxima

E[‖Σ1/2~h‖∞] ≤ 3
√
ρ2(Σ) log p, where ρ2(Σ) = maxjΣjj

E[‖~g‖2] ≥ 3
4

√
n for all n ≥ 10 by standard χ2 tail bounds

Putting together the pieces gives us the required result
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Step 2b: Concentration around the mean

Lemma 2

For any r such that V(r) is non-empty, we have

P
[

M(r ,X ) ≥ 3t(r)

2

]
≤ 2exp(−nt2(r)/8)

where

t(r) :=
1

4
+ 3rρ(Σ)

√
log p

n

Following from previous result suffices to show that

P[|M(r ,X )− E[M(r ,X )]| ≥ t(r)/2] ≤ 2exp(−nt2(r)/8)
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Step 2b: Concentration around the mean

A function F : Rm → R is Lipschitz with constant L if
|F (x)− F (y)| ≤ L‖x − y‖2 ∀x , y ∈ Rm

Theorem

Let w ∼ N(0, Im×m) be an m-dimensional Gaussian random variable.
Then for any L-Lipschitz function F, we have

P [|F (w)− E[F (w)]| ≥ t] ≤ 2exp(− t2

2L2
), ∀t ≥ 0

The tail bound above will follow if we show the Lipschitz constant L
is less than 1√

n
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Step 2b: Concentration around the mean

Define h(W ) = sup
v∈V (r)

(1− ‖WΣ1/2v‖2/
√
n)

Proof:

√
n[h(W )− h(W ′)] = sup

v∈V (r)

−‖WΣ1/2v‖2 − sup
v∈V (r)

‖W ′Σ1/2v‖2

= −‖WΣ1/2v̂‖2 − sup
v∈V (r)

(−‖W ′Σ1/2v‖)

≤ ‖W ′Σ1/2v̂‖2 − ‖WΣ1/2v̂‖2
≤ sup

v∈V (r)

(‖(W −W ′)Σ1/2v‖2)

≤ ‖ sup
v∈V (r)

(‖Σ1/2v‖2)}|‖(W −W ′‖|2

≤ ‖ sup
v∈V (r)

(‖Σ1/2v‖2)}|‖(W −W ′‖|F

= |‖W −W ′|‖F
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Step 3: Peeling argument

V (r) defined such that ‖v‖1 ≤ r . Need to prove Theorem 1 for all r

Argument at a high level is as follows

Theorem holds for all v in set V (r)

Consider the event

T := {∃v ∈ Rp s.t. ‖Σ1/2v‖ = 1 and (1−‖Xv‖2/
√
n) ≥ 3t(‖v‖1)/2}

Bound P(T ) by a union bound over all suitably defined subsets V (r)

Peeling argument yields the bound P[T c ] ≥ 1− cexp(−c ′n) for
some constants c , c ′

Garvesh Raskutti, Martin Wainwright, Bin Yu Restricted Eigenvalue Properties for Correlated Gaussian Designs



Step 3: Peeling argument

Define: An objective function f (v ;X ), v ∈ Rp, X is a random
vector h is any function h : Rp → R

Lemma 3

Suppose that g(r) ≥ µ for all r ≥ 0, and that there exists some constant
c > 0 such that for all r > 0, we have the tail bound

P[ sup
v∈A,h(v)≤r

f (v ;X ) ≥ g(r)] ≤ 2exp(−cang2(r))

for an > 0. Define event E := {∃v ∈ A such that f (v ;X ) ≥ 2g(h(v))}
Then P[E ] ≤ 2exp(−4canµ2)

1−exp(−4canµ2)

In this case: f (v ,X ) = 1− ‖Xv‖2/
√
n, h(v) = ‖v‖1,

g(r) = 3t(r)/2, an = n, A = {v ∈ Rp |‖Σ1/2v‖2 = 1}, and µ = 3/8
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Applications: Toeplitz matrices

Toeplitz matrix structure
a b c d e
f a b c d
g f a b c
h g f a b
i h g f a


Consider Σ has Toeplitz structure with Σjj = a|i−j| for some
a ∈ [0, 1). Common in autoregressive processes

Minimum eigenvalue λmin(Σ) = 1− a > 0, independent of p

Condition number κ = λmax(ΣSS)/λmin(ΣSS) grows as parameter a
increases towards 1

RE property satisfied with high probability but RIP violated once
a < 1 is sufficiently large
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Applications: Spiked identity model

Spiked identity model

Σ := (1−a)Ip×p+a~1 ~1T , a ∈ [0, 1) and ~1 ∈ Rp is the vector of all ones

Minimum eigenvalue: λmin(Σ) = 1− a, ρ2(Σ) = 1

According to Corollary 1: Sample covariance matrix Σ̂ = XTX/n
will satisfy RE property with high probability when n = Ω(k log p)

For any |S | = k consider ΣSS

λmax(ΣSS)

λmin(ΣSS)
=

1 + a(k − 1)

1− a

Condition number diverges as k increases
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Highly degenerate covariance matrices

Σ is not full rank

Generate a degenerate covariance matrix

Sample n times from a N(0,Σ) distribution

Sample covariance matrix Σ̂ = XTX/n, n < p

Therefore Σ̂ is rank degenerate

According to Corollary 1 Σ̂ satisfies RE property of order k with
high probability

Now sample n times from N ∼ (0, Σ̂).

According to Corollary 1 resampled empirical covariance will also
have RE property

Example relevant for a bootstrap-type calculation for assessing
errors of the Lasso
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Conclusions

One of the first papers to consider correlated Gaussian matrices

Result uses Gordon’s inequality applicable to only Gaussian design
matrices
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