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Problem Overview

High-dimensional sparse models

y = Xβ∗ + w , y ∈ Rn,X ∈ <n×p,w ∼ (0, σ2In×n), p >> n

Assumption of exact sparsity

S(β∗) := {j ∈ {1, ...., p}|β∗j 6= 0}

Problem reduces to: Find β̂ close to β∗ such that ‖β‖0 ≤ s

Convex relaxation: Use `1-norm along with different estimators

Basis pursuit: β̂ ∈ arg min
β∈<p

‖β‖1 such that Xβ = y

Lasso: β̂ ∈ arg min
β∈<p

{‖y − Xβ‖2
2 + λ‖β‖1}

Under what conditions on matrix X can we recover β̂?
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Notations

e1, ...., ep are the canonical basis of Rp

For a set J ⊂ {1, ..., p} denote EJ = span{ej : j ∈ J}

For a set V ⊂ Rp, conv(V) - convex hull of V and absconv(V) - asbolute

convex hull of V

Bp
2 - unit Euclidean ball, Sp−1 − Unitsphere

For a vector u ∈ Rp, T0 denotes the location of the s0 largest coefficients

of u in absolute values, uT0 - subvector of u confined to index locations

given by set T0

C (s0, k0) := {x ∈ Rp|∃I ∈ [1, p], |I | = s0 s.t. ‖xI c ‖1 ≤ k0‖xI‖1‖, k0 = 1

for Dantzig and k0 = 3 for Lasso

Aq×p satisfies RE (s0, k0,A) condition with parameter K (s0, k0,A) if for

any v 6= 0

1

K (s0, k0,A)
:= min

J⊂{1,....p},|J|≤s0

min ‖vJc ‖1 ≤ k0‖vJ‖1
‖Av‖2

‖vJ‖2
> 0

Mark Rudelson and Shuheng Zhou Reconstruction From Anisotropic Random Measurements



Main Result - Reduction Principle

Define: X = ΨA

Reduction principle condition

Let 1/5 > δ > 0. Let 0 < s0 < p and k0 > 0. Let A be a q × p matrix such
that RE(s0, 3k0,A) holds for 0 < K(s0, 3k0,A) <∞. Set

d = s0 + s0 max
j
‖Aej‖2

2 ×
16K 2(s0, 3k0,A)(3k0)2(3k0 + 1)

δ2

Let E = ∪|J|=dEJ for d < p and E denotes Rp otherwise. Let Ψ̃ be a matrix s.t.

∀x ∈ AE (1− δ)‖x‖2 ≤ ‖Ψ̃x‖2 ≤ (1 + δ)‖x‖2

Theorem 3

Under the reduction principle condition RE(s0, k0, Ψ̃A) condition holds with

0 < K(s0, k0, Ψ̃A) ≤ K(s0, k0,A)/(1− 5δ)
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Reduction Principle - Theorem 10 and proof of Theorem 3

Theorem 10

Under the reduction principle condition for any x ∈ A(C (s0, k0) ∩ Sq−1

(1− 5δ) ≤ ‖Ψ̃x‖2 ≤ (1 + 3δ)

Proof:

RE (s0, k0,A) condition holds for A. Therefore for any u ∈ C (s0, k0)

‖Au‖2 ≥
‖uT0‖2

K (s0, k0,A)
> 0

If condition of Theorem 10 is satisfied

‖Ψ̃Au‖2 ≥ (1− 5δ)‖Au‖2 ≥ (1− 5δ)
‖uT0‖2

K (s0, k0,A)
> 0
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Reduction Principle - Convex Hull of Sparse Vectors

Lemma 14

Let 1 > δ > 0. Let 0 < s0 < p and k0 > 0. Let A be a q × p matrix such that

RE (s0, k0,A) condition holds for 0 < K (s0, k0,A) <∞. Define

d = d(k0,A) = s0 + s0 max
j
‖Aej‖2

2 ×
16K 2(s0, k0,A)k2

0 (k0 + 1)

δ2

Then

A(C (s0, k0)) ∩ Sq−1 ⊂ (1− δ)−1conv
(
∪|J|≤dAEJ ∩ Sq−1

)
Lemma 14 is vacuously true for d > p

Consider a set V

V := {x = xT0 +xT c
0
∈ xT0 +k0‖xT0‖1absconv(ej |j ∈ T c

0 )|x ∈ C (s0, k0)∩Sp−1}

Define function F (v) for any v ∈ Rp such that ‖Av‖2 6= 0

F (v) =
Av
‖Av‖2

Then AC (s0, k0) ∩ Sq−1 = F (C (s0, k0)\{0}) = F (V )
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Reduction Principle - Convex Hull of Sparse Vectors

By duality, Lemma 14 can be derived from the fact that the supremum of

any linear functional over l.h.s does not exceed the supremum over the

r.h.s

To prove that: For any θ ∈ Sq−1, ∃z ′ ∈ Rp\{0} s.t. |supp(z ′)| ≤ d and

F (z ′) is well defined and satisfies

z = max
v∈V
〈F (v), θ〉 ≤ (1− δ)−1〈F (z ′), θ〉

There exists I ⊂ {1, ...., p} such that |I | = s0, and for some εj ∈ {1,−1}

z = zI + ‖zI‖1k0

∑
j∈I c

αjεjej

where αj ∈ [0, 1) for all i ∈ I c

Set αp+1 = 1−
∑

j∈I c αj and ep+1 = ~0

y := ‖zI‖1k0

∑
j∈I c∪{p+1}

αjεjej
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Reduction Principle - Convex Hull of Sparse Vectors

Lemma 11 - Maurey’s emprirical approximation argument

Let u1,....,uM ∈ Rq. Let y ∈ conv(u1, ...., uM). Then, there exists a set

L ⊂ {1, 2, ...,M} such that

|L| ≤ m =
4maxj∈{1,...,M}‖uj‖2

2

ε2

and a vector y ′ ∈ conv(uj , j ∈ L) such that

‖y ′ − y‖2 ≤ ε

Following from the previous slide denote

M := {j ∈ I c ∪ {p + 1} : αj > 0} and let ε > 0 to be defined later

uj = k0‖zI‖1εjAej for j ∈ M

Construct a set J ′ ⊂ M satisfying

‖J ′‖ ≤ m :=
4 maxj∈I c k

2
0‖zI‖2

1‖Aej‖2
2

ε2
≤

4k2
0 s0 maxj∈I c ‖Aej‖2

2

ε2

and a vector y ′ = k0‖zI‖1
∑

j∈J′ βjεjAej , βj ∈ [0, 1] and
∑

j∈J′ βj = 1
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Reduction Principle - Convex Hull of Sparse Vectors

Set z ′ = zI + y ′ and ‖Az − Az ′‖2 ≤ ε. By construction Az ′ ∈ AEJ

Consider the vector

z + λ(z ′ − z) = zI + k0‖zI‖1

∑
j∈I c∪{p+1}

[(1− λ)αj + λβj ]εjej

where
∑

j∈I c∪{p+1}[(1− λ)αj + λβj ] = 1 and ∃δ0 > 0 s.t.

∀j ∈ I c ∪ {p + 1}, (1− λ)αj + λβj ∈ [0, 1]if |λ| < δ0

Therefore z + λ(z ′ − z) ∈ V whenever |λ| < δ0

Consider a function φ : (−δ0, δ0)→ R

φ(λ) := 〈F (z + λ(z ′ − z)), θ〉 =
〈Az + λ(Az ′ − Az), θ〉
‖Az + λ(Az ′ − Az)‖2

φ(λ) attains the local maxima at 0
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Reduction Principle - Convex Hull of Sparse Vectors

Lemma 13

Let u, θ, x ∈ Rq be vectors such

1) ‖θ‖2 = 1

2) 〈x , θ〉 6= 0

3) Vector u is not parallel to x .

Define φ : R→ R by

φ(λ) =
〈x + λu, θ〉
‖x + λu‖2

Assume φ(λ) has a local maximum at 0; then

〈x + u, θ〉
〈x , θ〉 ≥ 1− ‖u‖2

‖x‖2

Applying the above lemma after setting ε = δ
2
√

1+k0K(s0,k0,a)
and after

simplifications
〈F (z ′), θ〉
〈F (z), θ〉 ≥ 1− δ

and

m ≤ s0 max
j∈I c
‖Aej‖2

2

(
16K 2(s0, k0,A)k2

0 (k0 + 1)

δ2

)
Mark Rudelson and Shuheng Zhou Reconstruction From Anisotropic Random Measurements



Reduction Principle - Proof

The upper bound follows naturally from Lemma 14. For any vector

x ∈ A(C (s0, 3k0)) ∩ Sq−1

‖Ψ̃x‖2 ≤ (1 + δ)(1− δ)−1 ≤ 1 + 3δ, for δ < 1/3

For the lower bound:

Assume x ∈ C(s0, k0) ∩ Sp−1 and x = xI + xI c

Construct a vector d-sparse vector y = xI + u, such that
‖u‖1 = ‖yI c‖1 = ‖xI c‖1, y ∈ C(S0, k0) and ‖Ax − Ay‖2 ≤ ε

If ε is chosen such that y is d-sparse then
∥∥∥ Ψ̃Ay
‖Ay‖

∥∥∥ ≥ 1− δ

Choose v such that y = 1
2
(x + v), v ∈ C(s0, k0)

Comparison of upper estimate for v with the lower estimate of y
will yield the result on x as∥∥∥∥∥ Ψ̃Ax

‖Ax‖ 2

∥∥∥∥∥
2

≥ 1− 5δ for δ < 1/5
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Random matrix decompositions

Apply reduction principle to different classes of random design matrices

Analysis reduces to checking the almost isometry property holds for all

vectors from some low-dimensional subspaces

Consider random matrix Ψ whose rows are independent isotropic vectors
with sub-Gaussian marginals

A random vector Y ∈ Rp is called isotropic if for every y ∈ Rp

E|〈Y , y〉|2 = ‖y‖2
2

Y is ψ2 with constant α if for every y ∈ Rp

‖〈Y , y〉‖ψ2 := inf{t : Eexp(〈Y , y〉2/t2) ≤ 2} ≤ α‖y‖2

Random vector Y with i.i.d N(0, 1) random coordinates is an isotropic

random vector

Any sub-Gaussian design matrix X can be expressed as X = ΨΣ1/2

For any random vector Y , Ψ = Σ−1/2Y is an isotropic random vector
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RE for Sub-Gaussian Random Designs

Sub-Gaussian condition

Set 0 < δ < 1, k0 > 0, and 0 < s0 < p. Let A be a q × p matrix satisfying the

RE (s0, 3k0,A) condition. Let d be as defined earlier, and let m = min(d , p).

Let Ψ be a n × q matrix whose rows are independent isotropic ψ2 random

vectors in Rq with constant α. Suppose the sample size satisfies

n ≥ 2000mα4

δ2
log
(

60ep
mδ

)
Theorem 6

Under the condition above with probability at least 1− 2exp(−δ2n/2000α4),

the RE
(
s0, k0,

1√
n

ΨA
)

condition holds for matrix 1√
n

ΨA with

0 < K

(
s0, k0,

1√
n

ΨA

)
≤ K (s0, k0,A)

1− δ
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RE for Sub-Gaussian Random Designs

Theorem 16

Under the sub-gaussian condition above with probability at least

1− 2exp(δ2n/2000α4), for all v ∈ C (s0, k0) s.t. v 6= 0, we have

(1− δ) ≤ 1√
n

‖ΨAv‖2

‖Av‖2
≤ 1 + δ

Theorem 17

Set 0 < δ < 1. Let A be a q × p matrix, and let Ψ be an n × q matrix whose

rows are independent ψ2 random vectors in Rq with constant α. For m ≤ p,

n ≥ 80mα4

τ2
log
(

12ep
mτ

)
Then with prob. atleast 1− 2exp(−τ2n/80α4), for all m-sparse vectors u in Rp

(1− τ)‖Au‖2 ≤
1√
n
‖ΨAu‖2 ≤ (1 + τ)‖Au‖2

Theorem 6 follows from Theorem 16 and Theorem 16 follows from

Theorem 17 by Theorem 10
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RE for Sub-Gaussian Random Designs

Lemma 20

Given m ≥ 1 and ε > 0. There exists an ε− net Π ⊂ Bm
2 of Bm

2 with respect

to the Euclidean metric such that Bm
2 ⊂ (1− ε)−1conv(Π) and

|Π| ≤ (1 + 2/ε)m. Similarly there exists an ε− net of the sphere Sm−1,

Π′ ⊂ Sm−1 such that |Π′| ≤ (1 + 2/ε)m

For a set J ⊂ {1, ...., p}, denote EJ = span{ej : j ∈ J}, and set FJ = AEJ

Covering number for set FJ ∩ Sq−1: |ΠJ | ≤ (1 + 2/ε)m

If Π = ∪|J|=mΠJ

|Π| = (3/ε)m

(
p
m

)
≤
(

3ep
mε

)m
= exp

(
m log

(
3ep
mε

))
For y ∈ Sq−1 ∪ FJ , let π(y) be one of the closest point in the ε-cover ΠJ .

Then
y − π(y)

‖y − π(y)‖2
∈ FJ ∪ Sq−1, where ‖y − π(y)‖2 ≤ ε
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RE for Sub-Gaussian Random Designs

Lemma 21

Let Y1, ....,Yn be independent random variables such that EY 2
j = 1 and

‖YJ‖ ≤ α for all j = 1, ...., n. Then for any θ ∈ (0, 1)

P

∣∣∣∣∣∣ 1n
n∑

j=1

Y 2
j − 1

∣∣∣∣∣∣ > θ

 ≤ 2exp

(
− θ2n

10α4

)

Let Γ = n−1/2Ψ and let x ∈ Sq−1

P
(∣∣∣‖Γx‖2

2 − 1
∣∣∣ > θ

)
= P

(∣∣∣∣∣ 1n
n∑

i=1

〈Ψ, x〉2 − 1

∣∣∣∣∣ > θ

)
≤ 2exp

(
− nθ2

10α4

)
Union bound implies

P
(
∃x ∈ Πs.t.

∣∣∣‖Γx‖2
2

∣∣∣ > θ
)
≤ 2|Π|exp

(
− nθ2

10α4

)
Bound over entire Sq−1 ∩ FJ is obtained by approximation

(1− 2θ)‖Au‖2 ≤ ‖ΓAu‖2 ≤ (1 + 2θ)‖Au‖2

Taking τ = θ/2 proves Theorem 17
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RE for Random Matrices with Bounded Entries

Condition for random matrices with bounded entries

Let 0 < δ < 1 and 0 < s0 < p. Let Y ∈ Rp be a random vector such that

‖Y ‖∞ ≤ M a.s. and denote Σ = EYY T . Let X be an n × p matrix, whose

rows X1, ....,Xn are independent copies of Y . Let Σ satisfy RE (s0, 3k0,Σ
1/2)

condition. Set as before with A replaced by Σ1/2. Assume that d ≤ p and

ρ = ρmin(d ,Σ1/2) > 0. If for some absolute constant C

n ≥ CM2d log p

ρδ2
log3

(
CM2d log p

ρδ2

)

Theorem 8

If the above condition holds then with probability atleast

1− exp(−δρn/(6M2d)), RE (s0, k0,X ) condition holds for matrix 1√
n
X with

0 < K

(
s0, k0,

1√
n
X

)
≤ K (s0, k0,Σ

1/2)

1− δ
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RE for Random Matrices with Bounded Entries

Theorem 22

Under the conditions mentioned in the previous slide with probability as least

1− exp(−δρn/(6M2d)), all vectors u ∈ C (s0, k0) satisfy

(1− δ)‖u‖2 ≤
‖Xu‖2√

n
≤ (1 + δ)‖u‖2

Theorem 23

Under the above condition with probability at least 1− 2exp
(
− ερn

6M2m

)
, all

m-sparse vectors u satisfy

1− δ 1√
n

∥∥∥∥ Xu

‖Σ1/2u‖2

∥∥∥∥
2

≤ 1 + δ

Consider F = ∪|J|=mΣ1/2EJ ∩ Sp−1, y ∈ F

Estimate ∆ := E sup
y∈F

∣∣∣1− 1
n

∑n
j=1〈Ψj , y〉2

∣∣∣
Use Talagrand’s measure concentration theorem for empirical processes to

derive large deviation estimate
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Concluding remarks

The reduction principle can be used for any matrix X = ΨA. Examples

include random vectors with heavy-tailed marginals, random vectors with

log-concave densities

For sub-Gaussian design matrices the theorem does not involve any

condition on ρmax (s0,A) nor any of the global parameters of the A and Ψ

matrix

The estimate of Theorem 23 contains the minimal sparse singluar value ρ,

which cannot be avoided
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Thank you


