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Problem Overview

@ High-dimensional sparse models

y=XB* +w, yER" X €RP W~ (0,02 hxn),p>>n

Assumption of exact sparsity
S(87) = 1{j €{1,.....p}B; #0}

o Problem reduces to: Find /3 close to 3* such that ||3]o < s

o Convex relaxation: Use ¢1-norm along with different estimators

Basis pursuit: 3 € arg min ||8]l1  such that XB =y
BeRP

Lasso: 3 € i — XBI3+ X
asso: 3 € arg. min {lly — XBl2 + AllBll}

@ Under what conditions on matrix X can we recover 37
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® e1,...., € are the canonical basis of RP
o Foraset JC{1,...,p} denote E; = span{e; : j € J}

e For aset V C RP, conv(V) - convex hull of V and absconv(V) - asbolute
convex hull of V

e Bf - unit Euclidean ball, SP=1 _ Unitsphere

@ For a vector u € RP, Ty denotes the location of the sy largest coefficients
of u in absolute values, u7, - subvector of u confined to index locations
given by set Ty

o C(sp, ko) ={xeRPI3I €[1,p],|l| =s0 st ||xic|l1 < kollxi]l1
for Dantzig and kg = 3 for Lasso

[, k=1

o Agxp satisfies RE(sp, ko, A) condition with parameter K(sg, kg, A) if for
any v #0
[Av]]2

1
— = min min ||vyell1 < kol|vyll1+—= >0
Kl koo A) ~ scqn, T s ™ 0l = Foll ol
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Main Result - Reduction Principle

o Define: X =VA

Reduction principle condition

Let1/5 >8> 0. Let 0 < sp < p and ko > 0. Let A be a g X p matrix such
that RE(so, 3ko, A) holds for 0 < K(so, 3ko, A) < co. Set

16K?(s0, 3ko, A)(3ko)?(3ko + 1)
62

d = sp + so max || Agj|3 x
J

Let E = U)j—qE, for d < p and E denotes R” otherwise. Let U be a matrix s.t.

W€ AE (1 —0)lxllz < [Fxll2 < (1 + 8)lixlz

Under the reduction principle condition RE(so, ko, \TJA) condition holds with

0 < K(s0, ko, WA) < K(s0, ko, A)/(1 — 56)
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Reduction Principle - Theorem 10 and proof of Theorem 3

Theorem 10

Under the reduction principle condition for any x € A(C(so, ko) N S971

(1-58) < [|Wx]l2 < (1 +30)

Proof:

o RE(sp, ko, A) condition holds for A. Therefore for any u € C(sp, ko)

||AUH2 > 7 HUTOHZ >0

(s0, ko, A)
@ If condition of Theorem 10 is satisfied

) lury 2
> _ > — Tl LA\
19 Aull2 = (1= 59)]|Aull2 = (1 = 50) g Tp 225 > 0
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Reduction Principle - Convex Hull of Sparse Vectors

Let1>6>0. Let0 < sp < p and kg > 0. Let A be a g X p matrix such that
RE(so, ko, A) condition holds for 0 < K(sp, ko, A) < co. Define

16K (50, ko, A)K3 (ko + 1)
52

d = d(ko, A) = 5o + s max | Aes[3 x
J

Then

A(C(50, ko)) N ST (1 — 8) Lconv (uljlgdAEJ N 5‘7*1)

e Lemma 14 is vacuously true for d > p
e Consider a set V
= {X = XTO—|—XTOC S XT0+k0||xT0||1absconv(ej|j € TOC)|X € C(So, ko)ﬂsp_l}

@ Define function F(v) for any v € RP such that ||Av|j2 # 0

Av
)= Tl

o Then AC(s0, ko) N S971 = F(C(s0, ko)\{0}) = F(V)



Reduction Principle - Convex Hull of Sparse Vectors

o By duality, Lemma 14 can be derived from the fact that the supremum of
any linear functional over |.h.s does not exceed the supremum over the
r.h.s

o To prove that: For any § € S971 32/ € RP\{0} s.t. |supp(z’)| < d and
F(Z') is well defined and satisfies

z=max(F(v).0) < (1 8)"(F(2).6)

@ There exists | C {1,...., p} such that |/| = sp, and for some ¢; € {1, -1}

z=2z+ |zllik Y ajee
Jj€ElI*

where a; € [0,1) for all i € [€

® Setapy=1-3.ajand e = 0

)
y=lzlik D ajee
jelcu{p+1}
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Reduction Principle - Convex Hull of Sparse Vectors

Lemma 11 - Maurey's emprirical approximation argument

Let uy,....,up € RI. Let y € conv(uy, ..., up). Then, there exists a set
L c{1,2,..., M} such that

2
dmaxjc iy, mylluillz
2

L)< m=
€

and a vector y' € conv(uj,j € L) such that

ly' —yll2 < e

o Following from the previous slide denote
M:={jel°U{p+1}:aj >0} and let € > 0 to be defined later

o uj = kOHZIHlejAej forje M

o Construct a set J' C M satisfying

2 2 2 2 2
_ Amaxere kollzillzllAeillz o 4koso maxjere [|Agll

1)< m: ; < 62

€

and a vector y' = ko||z||1 > jer BiejAe, B €[0,1] and 3-, , B =1
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Reduction Principle - Convex Hull of Sparse Vectors

o Set z/ =z, +y’ and ||Az — AZ'||» < e. By construction Az’ € AE;

@ Consider the vector

24+ M2 = 2) = 21+ kol|z/ |1 Z [(1 = XNaj + ABjleje;
j€reu{p+1}

where ZjEICU{p+1}[(1 —Aaj +AGj] =1and 359 > 0 s.t.
vielcu{p+1},(1— Naj + AB; € [0,1]if A < dg

Therefore z + A\(z' — z) € V whenever |A| < &y

Consider a function ¢ : (—dp,dp) — R

(Az + M(AZ — Az2),0)

B(N) = (F(z+ XNz’ - 2)),0) = Az + XAz — Az)||»

@ ¢(A) attains the local maxima at 0
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Reduction Principle - Convex Hull of Sparse Vectors

Lemma 13

Let u,0,x € R? be vectors such
1) 116]l2 =1
2) (x,0) £0
3) Vector u is not parallel to x.
Define ¢ : R — R by
(x + Au, 0)
S R

Assume ¢(\) has a local maximum at O; then

(ctu0) o lull
08 = Ix

: : _ )
@ Applying the above lemma after setting ¢ = VIR K (0 ko3) and after

simplifications
(F(z).0) _
Fa.0 =1 °

and

2 2
m S ) max||AejH% <16K (507k03’24)k0(k0+1))
jEI© 13

Mark Rudelson and Shuheng Zhou Reconstruction From Anisotropic Random Measurements



Reduction Principle - Proof

@ The upper bound follows naturally from Lemma 14. For any vector
x € A(C(sp,3ko)) N S92

[Wx|la < (1+06)(1—8)"* <1436, for 6 <1/3

@ For the lower bound:

o Assume x € C(so, ko) N SP! and x = x; + xic

o Construct a vector d-sparse vector y = x; + u, such that
ulls = llyiells = [Ix<l1, ¥ € C(So, ko) and [|[Ax — Ayll2 <€

1Ayl

o Choose v such that y = 2(x + v), v € C(so, ko)

o If € is chosen such that y is d-sparse then ‘ %H >1-6

o Comparison of upper estimate for v with the lower estimate of y
will yield the result on x as

YA S 1 s5fors<1/5
[[Ax]|,

2
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Random matrix decompositions

@ Apply reduction principle to different classes of random design matrices

@ Analysis reduces to checking the almost isometry property holds for all
vectors from some low-dimensional subspaces

o Consider random matrix W whose rows are independent isotropic vectors
with sub-Gaussian marginals

o A random vector Y € RP is called isotropic if for every y € RP
2 2
E[(Y, )" = llyll2
o Y is ¢ with constant « if for every y € R”?

1Y, ) llv, = inf{t : Eexp({Y,y)?/t") < 2} < ally]2

@ Random vector Y with i.i.d N(0,1) random coordinates is an isotropic

random vector
@ Any sub-Gaussian design matrix X can be expressed as X = yyl/2

o For any random vector Y, W = ¥ 12y is an isotropic random vector
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RE for Sub-Gaussian Random Designs

Sub-Gaussian condition

Set0<d <1, kg>0,and0 < sy <p. Let A be a q X p matrix satisfying the
RE (so,3ko, A) condition. Let d be as defined earlier, and let m = min(d, p).
Let W be a n x q matrix whose rows are independent isotropic 1» random
vectors in R with constant . Suppose the sample size satisfies

2000ma* 60ep
>
=% '°g( mé )

Under the condition above with probability at least 1 — 2exp(—62n/2000a*),
the RE (so, ko, #\UA) condition holds for matrix LH\IIA with

>
0<K (507 ko, %WA) < W
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RE for Sub-Gaussian Random Designs

Under the sub-gaussian condition above with probability at least
1 — 2exp(82n/20000), for all v € C(sp, ko) s.t. v # 0, we have

1 VAV,
1— < 02 1
=9 < Z A, St+°

Theorem 17

Set 0 < d < 1. Let A be a q X p matrix, and let W be an n X q matrix whose
rows are independent 15 random vectors in R? with constant a. For m < p,

n>

80ma* 12ep
5 log (—)
mTt

Then with prob. atleast 1 — 2exp(—72n/80a*), for all m-sparse vectors u in RP

1
(1= 7)[|Aull2 < WIIW\UHz < (1 +7)[|Aull2

@ Theorem 6 follows from Theorem 16 and Theorem 16 follows from

Theorem 17 by Theorem 10
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RE for Sub-Gaussian Random Designs

Given m > 1 and € > 0. There exists an € — net [1 C By' of By" with respect
to the Euclidean metric such that BY' C (1 — ¢)~Lconv(I) and

IN| < (14 2/€)™. Similarly there exists an € — net of the sphere S™1,

N c S™ 1 such that || < (1 +2/€)™

For a set J C {1,...., p}, denote E; = span{e; : j € J}, and set F; = AE,

o Covering number for set F; N S971: M| < (1+2/¢)™

If M= U|J|:mI'IJ

| = (3/6)'"(,’,’7> < (22)" = exp (miog (32))

For y € S U F, let (y) be one of the closest point in the e-cover I1,.
Then

y —7(y)
ly — m(¥)ll2
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RE for Sub-Gaussian Random Designs

Let Yi,...., Yn be independent random variables such that IEYJ-2 =1 and
IY| <« forallj=1,...,n. Then for any 6 € (0,1)

1w 6°n
2
P ;EIYJ -1/ >0 §2exp<—10a4>
j=

o Let T =n"Y2y and let x € 91

IP’(‘HFxH%—l‘ > a) :IP’(

@ Union bound implies

n

1 2
- D WX -1

i=1

2
> 9) < 2exp (— 1%i4>

2
2 né
.t. < —
P (ax € Ns.t ‘\|rx||2’ > 9) < 2|ﬂ|exp( 10&4)

e Bound over entire S971 N F, is obtained by approximation
(1—20)[|Aufl2 < [[FTAull2 < (1 + 20)[|Aull2

Taking 7 = 6/2 proves Theorem 17



RE for Random Matrices with Bounded Entries

Condition for random matrices with bounded entries

Let0<d<1land0<sy<p. Let Y € RP be a random vector such that
|Ylloo < M as. and denote ¥ =EYYT. Let X be an n x p matrix, whose
rows Xi, ...., Xn are independent copies of Y. Let X satisfy RE(sp, 3ko, ):1/2)
condition. Set as before with A replaced by ¥1/2. Assume that d < p and

0 = pmin(d, ):1/2) > 0. If for some absolute constant C

CM?dlogp . 3 [ CM?dlogp
>
n> 202 log 202

If the above condition holds then with probability atleast
1 — exp(—dpn/(6M?d)), RE(so, ko, X) condition holds for matrix \%X with

1-9§

1/2
0<K<so,ko,%X> < I‘<(507k07Z )

Mark Rudelson and Shuheng Zhou Reconstruction From Anisotropic Random Measurements



RE for Random Matrices with Bounded Entries

Theorem 22

Under the conditions mentioned in the previous slide with probability as least
1 — exp(—8pn/(6M?d)), all vectors u € C(so, ko) satisfy

X
(1= 9)lul < A2 < 1+ 8yl
Theorem 23
Under the above condition with probability at least 1 — 2exp (— 6;/’,’2",”), all

m-sparse vectors u satisfy

1
16—
Jn

Xu

— | <1496
1Z2/2ull2

2

@ Consider F = UIJ\=mzl/2EJ NP1 yeF

; — 150 A2
o Estimate A:= Esup |1 — 7327 (V) y) ‘
yEF
@ Use Talagrand's measure concentration theorem for empirical processes to
derive large deviation estimate



Concluding remarks

@ The reduction principle can be used for any matrix X = WA. Examples
include random vectors with heavy-tailed marginals, random vectors with
log-concave densities

o For sub-Gaussian design matrices the theorem does not involve any

condition on pmax(so, A) nor any of the global parameters of the A and W
matrix

@ The estimate of Theorem 23 contains the minimal sparse singluar value p,
which cannot be avoided
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Thank you



