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CLIME Motivation

Properties

Motivation

@ (; regularized log-determinant (Banerjee et al., 2008):

QGlasso = argmin (2, 33,) — logdet(€2) + A |21} (1)
—

Optimality condition:
- z:n = Ania 2 S 8||§iGlassoH1

~

Q_l

Glasso

Dantzig type problem:
min Q1 s.t. Q7 — 2|00 < Ap, Q € RPXP

o CLIME
min || Q|1 s.t. |1 = 2,200 < Ap, @ € RPXP, (2)
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Motivation
Properties

Properties

Compared with ¢1-MLE (1),
@ No requirement of positive definiteness of 2

@ Columnwise decomposibility: Forall i =1,...,p,
min [|B]1 s.t. |ei — XnBloc < Ap, B € RP. (3)

Lemma 1

Let {0} be the solution set of (2), and let
{B} = {(,31, ..,Bp)}, where B; are solutions to (3) for
i=1,...,p. Then {Q1} ={B}.

@ Improved convergence rate (polynomial-type tails)

@ Improved model selection consistency (polynomial-type tails)
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Motivation
Properties

Proof of Lemma 1

Q1 = (&1,...,08) = argming g |21 5.t 1 = 000 < A
B = (,31, cee ?IBP)I ;8i = argminﬂe]RP H/B”l s.t. |ei - z)nﬁ|<><> < >\n7 Vi

(1) We have
@} > |Bil, VI<i<p @
I8l < (Bl 5
= Be{Q}
(2) If @ ¢ {B}, Ji s.t. &} > |Bil1, then by (4) ||l > [IBllx
=< (5)
Therefore, {B} = {4 }. -
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Motivation
Properties

Properties

loglikelibood

x(=y)

Figure 1 : Plot of the elementwise £o, constrained feasible set (shaded polygon)
and the elementwise ¢; norm objective (dashed diamond near the origin) from CLIME.

The log-likelihood function as in Glasso is represented by the dotted line. (Cai et al.,
2011)
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Convergence Rates Under Norms
Statistical Properties Oth of Int

Parameter Class

Qo € U: Uniformity class of matrices,
U:=U(q,x(p))
P
= Q:Q>_07||Q|L1SMalrgiaé(pzl|wij|q§50(p)a0§q<1
J:

e g=0,U(0,s0(p)) is a class of sy(p)-sparse matrices

@ Wider class of precision matrix than truly sparse matrices, i.e.
so(p) is small when many entries are small.
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Convergence Rates Under Norms
Statistical Properties 0 of Interest
tion Consistency

Tail Class

Two types of tails:

(C1) Exponential-type tails: 3 some constant 0 < 1 < 1/4 such
that log p/n < n and for bounded constant K

EetXi—#)” < K < 0o for all [t| <7, for all i
(C2) Polynomial-type tails: For some ,¢1,6 > 0 and p < ¢cin?,

E|X; — pi| T4 < K forall i

072

o Bounded 0 := max;; 0 = max;; E[(X; — p;)(Xj — p) — o
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Rates Under Norms
Statistical Properties 0 f Interest

on Consistency

Convergence Rate under Norms

@ Symmetrizing operation: € = (@), where Q; = (@}) and
0 = w; = wpl{jog] < @[} + @5/{I@5] > @51}

Theorem 1

Suppose Qo € U(q, so(p)). Assume (C1) or (C2) holds. Let
An = GiM+/log p/n and 7 > 0, then w.h.p.

122 — oll2 < CiiM2~2950(p) (log p/m)~ 9/ (6)
i=1,2 for (C1) and (C2) respectively.

@ /(1-MLE estimator for polynomial-type of tails when g = 0:

A pT/(v )
1€ — o]l = O(s0(p)y/ L

@ Other norms: 7||Q Q2 = (SO(P)( £yi-a/2)
|Q — Qoloe = O/ E2)

n
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nce Rates Under Norms

C
Statistical Properties O pes of Interest

fe
Model Selection Consistency

Convergence Rate of supg, o, E[|Q — Q13

@ Replace ¥, with 3, , = X, + pl to (1) ensure the existence
of E[|£2, — Q0|3 and (2) get a feasible initial value of £2.

Theorem 2

Suppose 2 € U(q, so(p)) and (C1) holds. Let p = +/logp/n,
\n = CoM\/log p/n and 7 sufficiently large. If p = n¢ for some
&> 0, then

~ _ lo =4
sup B, -~ Qolf = 0 (M‘* s (p)? (52 ) G
Qoeld n
e Hold for min <w'°§p,pa> <p< IO% with any « > 0.
o Same order of rate for | - |2 and || - ||2 with the rates under
norms.
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Convergence Rates Under Norms
Statistical Properties Other Types of Interest
Model Selection Consistency

Convergence Rate of Ordered Variables

® Us(a, B) = {2 :max; Y {|wij| : |i —j| > k} < B(k+1)"2,
Q > 0,Vk > 0} for some a >0
@ Better rates can be obtained

Let Q¢ € Uy(ar, B) and X\, = CB+/log p/n with sufficiently large C.
(a) If (C1) or (C2) holds, then w.h.p.,

12— Qoll2 = O (B(10g p/n)/2+2)) (8)
(b) Suppose p > nf,& > 0. If (C1) holds and p = +/log p/n, then

sup E|[Q, — Rl = O (B*(log p/n)*/*V) (9
QoeUy(a,B)

@ so(p) term disappears from the bounds.
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ce Rates Under Norms
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ction Consistency

A General Result

Let Qo € U(q,50(p)) and p > 0. If Ay > ||| 1, (max;; [5 — 0§ + p),

then
€2, — Qoloc = O([|20]|2,An) (10)
122, — Qoll2 = O], Is0(P)As~9). (11)
1 = — _
;Hﬂp — Q|2 = O([|QlI3s0(p)A27). (12)

@ Need to show max; |gj; — af-}| = O(y/log p/n) w.h.p. with
corresponding constant for each result.
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Rates Under Norms
Statistical Properties 0 f Interest
on Consistency

Graphical Model Selection Consistency

@ Threshold = (&) with &y = G /1{|@;] > 70}, for 7, > 4MX,
@ Define: M(Q) = {sign(wj),1 < i,j < p},
S(Q2) = {(i,J) : wij # 0}, Omin = Ming jes(ao) |5

Suppose (C1) or (C2) holds and Qg € U(0, so(p)). If Omin > 275, then
M(Q) = M(Q0) w.h.p.

@ Sign consistency: Recover both sparsity pattern and signs of
nonzero elements

@ Omin > 27,: Ensure nonzero elements are correctly retained

@ If MlLn,p, then 7, = O(y/log p/n)
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Statistical Properties

Comparison CLIME with ¢;-MLE (Ravikumar et al., 2008)

o CLIME: min [|Q)1 s.t. |1 — 2,0 < A, @ € RPXP
® (1-MLE: mingyo {(£2, X,) — log det(€2) + An|€2[|1,0fr}

CLIME {1-MLE
Irrepresentability? No Yes
(n, p) Scale log p = o(n) n> Cs3(p)logp
Sparsity Allow small values Only truly sparse

Conv. Rate (poly) O (so(p)\/W) @] (So(p) pT/(v+1+5/4)/n)

Model Selection Omin > Cy/logp/n Omin > Co/p7/7H148/4 [

1 - -1 —1
[Tses(Tss) My <1—e,a€(0,1, T =05 @0
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Synthetic Data

. . Real Data
Numerical Experiments . i

Numerical Experiments

o CLIME: min |81 s.t. |ei — ZpBloc < AmBERP, i=1,....p
o LP: minzp71Uj5t Vi<j<p, Vi<k<p
—B; < uj, —O'k +H{k=i} <X,
+ﬁj < uj, +Uk _I{k_’}g)\
@ Refit (correct bias): Let S = §(Q), 5¢ = {wij, (1,)) € 5},
Q= argming o (02, X) — log det(£2)
@ Compare with Glasso and SCAD (Fan et al., 2001)
QGlasso = argming, (€2, 3,) — log det(€2) + )\,,||Q||1

Qscap = argming, (€2, X,,) — logdet(Q2) + >4, PSCAD(wU)
Alx| if [x] <A
2— a. X 2 .
where PSP(x) = ¢ — (%) if A < |x| < aA;
(a+1)X? i
B if x| = aA
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Synthetic Data

Real Data

Numerical Experiments

(a) Hard thresholding penalty (b) L, penalty (¢) SCAD penalty

Figure 2 :  Penalty functions and their quadratic approximations. (Fan et al., 2001)

o Model 1. w} = 0.6/

) SN

) Truth ) CLIME ) Glasso ) SCAD

Figure 3 : Heatmaps of the frequency of the zeros identified for each entry of the
precision matrix (when p = 60) out of 100 replications. (Cai et al., 2011)
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Synthetic Data

. . Real D
Numerical Experiments 2l loaiE

Breast Cancer Dataset (Hass et al., 2006)

Classification performance criterion:

TN
TN+FP

_TP
TP+FN

@ Specificity:

@ Sensitivity:

e MCC: TPXTN—FPxFN
" /(TP+FP)(TP+FN)(TN+FP)(TN+FN)

Method Specificity Sensitivity MCC Nonzero entries in €2
Glasso 0.768 (0.009) 0.630 (0.021) 0.366 (0.018) 3923 (2)
Adaptive lasso 0.787 (0.009) 0.622 (0.022) 0.381 (0.018) 1233 (1)
SCAD 0.794 (0.009) 0.634 (0.022) 0.402 (0.020) 674 (1)
CLIME 0.749 (0.005) 0.806 (0.017) 0.506 (0.020) 492 (7)

Figure 4 :  Comparison of classification performance. Glasso, Adaptive lasso, and
SCAD results are taken from Fan et al., 2009.
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Proof of Theorem 6

Let p = 0. Same proof for p > 0.
Assumption: A, > ||Qo]|1, (max;; [T — 0'8-|) < |20 — Zhloo < An/lI0]|1,

(1) 12 — Qo|oe < 40|11, An

0 . .
12 — Qofoo < [R21 — Qoo < |Q0][1, [ Z0(21 — Ro)[oo < 4[]/, An
(i)
(x) |ABlo < [|A]lL,[Bloo
(i) < izn(Ql — Qo)ioo + i(zn — E0)(91 — Q0)|oo < 4>‘n
(ii) (iii)
(i) <20 — Moo + 1 = 10000 < A+ [|Q0]|1,[Zo — oo < 27,
(i) < €4 — Qoll, B0 — oloo
< 14|11, 130 = Zoloo + [1€20][1, 125 — Foloo < 2As
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Proof of Theorem 6

(2) 12 — Qolla < Caso(p)(4l|€2)[1,An) 177, Ca < 2(1+ 2179 + 3179)

122 = Qo> < 2 — Qo|l1, = max; [@; — w?)x
() A2 < VAL AT, A= AT = [[Al2 < [|A]L,
Let hj = &; — w) h = @H{|@j| > 2t,};1 < i < p)T — WP,
h? =h; — h, t, = |Q — Qo|oe < 4] D[, An
= w01 — [h}[1 + [hF]1 < w0 + h}|y + [hF]1 = @1 < &}]1 < w0y
= |hfl; < |hj[s = [hjls < [hj|s + [hf]2 < 2]hj)x
- = |hyjly < 2[hj[; < 2(1+ 279 4 3179) 1195 (p)
(3) 2192 — Qo3 < Gsso(p)(4|]1,An)> 9, G5 < G
() 1Al < pllAllL |A]
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Proof of Other Theorems

Based on Theorem 6, bound max;; [7; — 0| w.h.p.

@ Theorem 1 (a) and 4 (a), i.e. exponential-type tails,
max |5 — 02| <2n2(2+ 7+ 1 te®K?)?\/logp/n,
ij

-7

w.p. >1—4p
@ Theorem 1 (b) and 4 (b), i.e. polynomial-type tails,

max |35 — o3| < /(0 + 1)(5 + 7) log p/,
ij

w.p. >1—0(n7%/8 4+ p=7/2),

@ Theorem 2,3,5 are direct results of Theorem 6,1,4.
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Thank you!
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