A Constrained ℓ_1 Minimization Approach to Sparse Precision Matrix Estimation

Presented by Xingguo Li

CSCI 8980, UMN

Authors : Tony Cai, Weidong Liu, and Xi Luo

April 14, 2014

Outline

- CLIME
- Statistical Properties
 - Convergence Rates under Norms, *i.e.* $\|\cdot\|_2, \|\cdot\|_F^2$ and $|\cdot|_\infty$
 - Convergence Rates of Expectation & Ordered Variables
 - Model Selection Consistency
 - Comparison with $\ell_1\text{-}\mathsf{MLE}$
- Numerical Experiments

Motivation

• ℓ_1 regularized log-determinant (Banerjee *et al.*, 2008): $\widehat{\Omega}_{Glasso} := \operatorname*{argmin}_{\Omega \succ 0} \{ \langle \Omega, \Sigma_n \rangle - \log \det(\Omega) + \lambda_n \|\Omega\|_1 \}$ (1)

Motivation

Optimality condition:

$$\widehat{\mathbf{\Omega}}_{\mathsf{Glasso}}^{-1} - \mathbf{\Sigma}_{\mathit{n}} = \lambda_{\mathit{n}} \widehat{\mathsf{Z}}, \ \widehat{\mathsf{Z}} \in \partial \| \widehat{\mathbf{\Omega}}_{\mathsf{Glasso}} \|_{1}$$

Dantzig type problem:

$$\min \|\boldsymbol{\Omega}\|_1 \ s.t. \ |\boldsymbol{\Omega}^{-1} - \boldsymbol{\Sigma}_n|_{\infty} \leq \lambda_n, \boldsymbol{\Omega} \in \mathbb{R}^{p \times p}$$

CLIME

$$\min \|\Omega\|_1 \ s.t. \ |\mathbf{I} - \boldsymbol{\Sigma}_n \Omega|_{\infty} \leq \lambda_n, \Omega \in \mathbb{R}^{p \times p}, \qquad (2)$$

< ∃ →

Motivation Properties

Properties

Compared with $\ell_1\text{-}\mathsf{MLE}$ (1),

I

- No requirement of positive definiteness of Ω
- Columnwise decomposibility: For all i = 1, ..., p,

$$\min \|\boldsymbol{\beta}\|_1 \ s.t. \ |\mathbf{e}_i - \boldsymbol{\Sigma}_n \boldsymbol{\beta}|_{\infty} \le \lambda_n, \boldsymbol{\beta} \in \mathbb{R}^p.$$
(3)

• □ ▶ • • □ ▶ • • □ ▶

Lemma 1

Let
$$\{\widehat{\Omega}_1\}$$
 be the solution set of (2), and let
 $\{\widehat{\mathbf{B}}\} := \{(\widehat{\beta}_1, \dots, \widehat{\beta}_p)\}$, where $\widehat{\beta}_i$ are solutions to (3) for
 $i = 1, \dots, p$. Then $\{\widehat{\Omega}_1\} = \{\widehat{\mathbf{B}}\}$.

- Improved convergence rate (polynomial-type tails)
- Improved model selection consistency (polynomial-type tails)

Motivation Properties

Proof of Lemma 1

Remind:

$$\widehat{\Omega}_{1} = (\widehat{\omega}_{1}^{1}, \dots, \widehat{\omega}_{p}^{1}) = \operatorname{argmin}_{\Omega \in \mathbb{R}^{p \times p}} \|\Omega\|_{1} \ s.t. \ |\mathbf{I} - \Sigma_{n}\Omega|_{\infty} \leq \lambda_{n}$$

$$\widehat{\mathbf{B}} = (\widehat{\beta}_{1}, \dots, \widehat{\beta}_{p}), \ \widehat{\beta}_{i} = \operatorname{argmin}_{\beta \in \mathbb{R}^{p}} \|\beta\|_{1} \ s.t. \ |\mathbf{e}_{i} - \Sigma_{n}\beta|_{\infty} \leq \lambda_{n}, \ \forall i$$
(1) We have

$$\begin{aligned} |\widehat{\omega}_{i}^{1}|_{1} &\geq |\widehat{\beta}_{i}|_{1}, \ \forall 1 \leq i \leq p \end{aligned} \tag{4} \\ \|\widehat{\Omega}_{1}\|_{1} &\leq \|\widehat{\mathbf{B}}\|_{1}, \\ &\Rightarrow \widehat{\mathbf{B}} \in \{\widehat{\Omega}_{1}\} \end{aligned}$$

(2) If $\widehat{\Omega}_1 \notin \{\widehat{\mathbf{B}}\}$, $\exists i \text{ s.t. } |\widehat{\omega}_i^1|_1 > |\widehat{\beta}_i|_1$, then by (4) $\|\widehat{\Omega}_1\|_1 > \|\widehat{\mathbf{B}}\|_1$ $\Rightarrow \leftarrow (5)$

Therefore, $\{\widehat{\mathbf{B}}\}=\{\widehat{\mathbf{\Omega}}_1\}.$

Motivation Properties

Properties

Figure 1 : Plot of the elementwise ℓ_{∞} constrained feasible set (shaded polygon) and the elementwise ℓ_1 norm objective (dashed diamond near the origin) from CLIME. The log-likelihood function as in Glasso is represented by the dotted line. (Cai *et al.*, 2011)

Convergence Rates Under Norms Other Types of Interest Model Selection Consistency

Parameter Class

 $\Omega_0 \in \mathcal{U} {:}$ Uniformity class of matrices,

$$egin{aligned} \mathcal{U} &:= \mathcal{U}(q, x_0(p)) \ &= \left\{ \mathbf{\Omega}: \mathbf{\Omega} \succ \mathbf{0}, \|\mathbf{\Omega}\|_{L_1} \leq M, \max_{1 \leq i \leq p} \sum_{j=1}^p |w_{ij}|^q \leq s_0(p), 0 \leq q < 1
ight\} \end{aligned}$$

• q = 0, $\mathcal{U}(0, s_0(p))$ is a class of $s_0(p)$ -sparse matrices

Wider class of precision matrix than truly sparse matrices, *i.e.* s₀(p) is small when many entries are small.

Convergence Rates Under Norms Other Types of Interest Model Selection Consistency

Tail Class

Two types of tails:

(C1) Exponential-type tails: \exists some constant $0 < \eta < 1/4$ such that $\log p/n \le \eta$ and for bounded constant K

$$\mathbb{E}e^{t(X_i-\mu_i)^2} \leq \mathcal{K} < \infty ~~$$
 for all $|t| \leq \eta,~$ for all i

(C2) Polynomial-type tails: For some $\gamma, c_1, \delta > 0$ and $p \leq c_1 n^{\gamma}$,

$$\mathbb{E}|X_i - \mu_i|^{4\gamma + 4 + \delta} \le K$$
 for all i

• Bounded $\theta := \max_{ij} \theta_{ij} = \max_{i,j} \mathbb{E}[(X_i - \mu_i)(X_j - \mu_j) - \sigma_{ij}^0]^2$

- 4 同 6 4 日 6 4 日 6

Convergence Rates Under Norms Other Types of Interest Model Selection Consistency

Convergence Rate under Norms

• Symmetrizing operation: $\widehat{\Omega} = (\widehat{\omega}_{ij})$, where $\widehat{\Omega}_1 = (\widehat{\omega}_{ij}^1)$ and $\widehat{\omega}_{ij} = \widehat{\omega}_{ji} = \widehat{\omega}_{ij}^1 I\{|\widehat{\omega}_{ij}^1| \le |\widehat{\omega}_{ji}^1|\} + \widehat{\omega}_{ji}^1 I\{|\widehat{\omega}_{ij}^1| > |\widehat{\omega}_{ji}^1|\}$

Theorem 1

Suppose
$$\Omega_0 \in \mathcal{U}(q, s_0(p))$$
. Assume (C1) or (C2) holds. Let
 $\lambda_n = C_{0i} M \sqrt{\log p/n}$ and $\tau > 0$, then w.h.p.
 $\|\widehat{\Omega} - \Omega_0\|_2 \le C_{1i} M^{2-2q} s_0(p) (\log p/n)^{(1-q)/2}$ (6)
 $i = 1, 2$ for (C1) and (C2) respectively.

• ℓ_1 -MLE estimator for polynomial-type of tails when q = 0:

$$\|\widehat{\Omega} - \Omega_0\|_2 = \mathcal{O}(s_0(p)\sqrt{\frac{p^{\tau/(\gamma+1+\delta/4)}}{n}})$$

• Other norms: $\frac{1}{p}\|\widehat{\Omega} - \Omega_0\|_F^2 = \mathcal{O}(s_0(p)(\frac{\log p}{n})^{1-q/2})$
 $|\widehat{\Omega} - \Omega_0|_{\infty} = \mathcal{O}(\sqrt{\frac{\log p}{n}})$

Convergence Rates Under Norms Other Types of Interest Model Selection Consistency

Convergence Rate of $\sup_{\mathbf{\Omega}_0\in\mathcal{U}}\mathbb{E}\|\widehat{\mathbf{\Omega}}-\mathbf{\Omega}_0\|_2^2$

• Replace Σ_n with $\Sigma_{n,\rho} = \Sigma_n + \rho \mathbf{I}$ to (1) ensure the existence of $\mathbb{E} \| \widehat{\Omega}_{\rho} - \Omega_0 \|_2^2$ and (2) get a feasible initial value of $\widehat{\Omega}$.

Theorem 2

Suppose $\Omega_0 \in \mathcal{U}(q, s_0(p))$ and (C1) holds. Let $\rho = \sqrt{\log p/n}$, $\lambda_n = C_0 M \sqrt{\log p/n}$ and τ sufficiently large. If $p = n^{\xi}$ for some $\xi > 0$, then $\sup_{\Omega_0 \in \mathcal{U}} \mathbb{E} \|\widehat{\Omega}_{\rho} - \Omega_0\|_2^2 = \mathcal{O}\left(M^{4-4q}s_0(p)^2 \left(\frac{\log p}{n}\right)^{1-q}\right).$ (7)

- Hold for min $\left(\sqrt{\frac{\log p}{n}}, p^{-\alpha}\right) \le \rho \le \sqrt{\frac{\log p}{n}}$ with any $\alpha > 0$.
- Same order of rate for | · |²_∞ and || · ||²_F with the rates under norms.

Convergence Rates Under Norms Other Types of Interest Model Selection Consistency

Convergence Rate of Ordered Variables

•
$$\mathcal{U}_o(\alpha, B) = \{ \mathbf{\Omega} : \max_j \sum_i \{ |\omega_{ij}| : |i - j| \ge k \} \le B(k + 1)^{-\alpha},$$

 $\mathbf{\Omega} \succ 0, \forall k \ge 0 \}$ for some $\alpha > 0$

Better rates can be obtained

Theorem 3

Let $\Omega_0 \in \mathcal{U}_o(\alpha, B)$ and $\lambda_n = CB\sqrt{\log p/n}$ with sufficiently large C.

(a) If (C1) or (C2) holds, then w.h.p.,

$$\|\widehat{\Omega} - \Omega_0\|_2 = \mathcal{O}\left(B^2(\log p/n)^{\alpha/(2\alpha+2)}\right) \qquad (8)$$
(b) Suppose $p \ge n^{\xi}, \xi > 0$. If (C1) holds and $\rho = \sqrt{\log p/n}$, then

$$\sup_{\Omega_0 \in \mathcal{U}_0(\alpha, B)} \mathbb{E}\|\widehat{\Omega}_{\rho} - \Omega_0\|_2^2 = \mathcal{O}\left(B^4(\log p/n)^{\alpha/(\alpha+1)}\right) \qquad (9)$$

• $s_0(p)$ term disappears from the bounds.

Convergence Rates Under Norms Other Types of Interest Model Selection Consistency

A General Result

Theorem 6

Let $\Omega_0 \in \mathcal{U}(q, s_0(p))$ and $\rho > 0$. If $\lambda_n \ge \|\Omega_0\|_{L_1}(\max_{ij} |\widehat{\sigma}_{ij} - \sigma_{ij}^0| + \rho)$, then

$$\widehat{\mathbf{\Omega}}_{\rho} - \mathbf{\Omega}_{0}|_{\infty} = \mathcal{O}(\|\mathbf{\Omega}_{0}\|_{L_{1}}\lambda_{n}),$$
(10)

$$\|\widehat{\Omega}_{\rho} - \Omega_0\|_2 = \mathcal{O}(\|\Omega_0\|_{L_1}^{1-q} s_0(p)\lambda_n^{1-q}),$$
(11)

$$\frac{1}{p} \|\widehat{\Omega}_{\rho} - \Omega_{0}\|_{F}^{2} = \mathcal{O}(\|\Omega_{0}\|_{L_{1}}^{2-q} s_{0}(p)\lambda_{n}^{2-q}).$$
(12)

• Need to show $\max_{ij} |\hat{\sigma}_{ij} - \sigma_{ij}^0| = \mathcal{O}(\sqrt{\log p/n})$ w.h.p. with corresponding constant for each result.

< ∃ >

Convergence Rates Under Norms Other Types of Interest Model Selection Consistency

Graphical Model Selection Consistency

• Threshold $\widetilde{\Omega} = (\widetilde{\omega}_{ij})$ with $\widetilde{\omega}_{ij} = \widehat{\omega}_{ij}I\{|\widehat{\omega}_{ij}| \ge \tau_n\}$, for $\tau_n \ge 4M\lambda_n$

• Define:
$$\mathcal{M}(\Omega) = \{ \operatorname{sign}(\omega_{ij}), 1 \leq i, j \leq p \},\$$

 $S(\Omega) = \{(i,j) : \omega_{ij} \neq 0 \}, \ \theta_{\min} = \min_{(i,j) \in S(\Omega_0)} |\omega_{ij}^0|$

Theorem 7

Suppose (C1) or (C2) holds and $\Omega_0 \in \mathcal{U}(0, s_0(p))$. If $\theta_{\min} > 2\tau_n$, then $\mathcal{M}(\widetilde{\Omega}) = \mathcal{M}(\Omega_0)$ w.h.p.

- Sign consistency: Recover both sparsity pattern and signs of nonzero elements
- $\theta_{\min} > 2\tau_n$: Ensure nonzero elements are correctly retained

• If
$$M \perp n, p$$
, then $\tau_n = \mathcal{O}(\sqrt{\log p/n})$

Convergence Rates Under Norms Other Types of Interest Model Selection Consistency

Comparison CLIME with ℓ_1 -MLE (Ravikumar *et al.*, 2008)

- CLIME: min $\|\Omega\|_1 \ s.t. \ |\mathbf{I} \Sigma_n \Omega|_{\infty} \le \lambda_n, \Omega \in \mathbb{R}^{p \times p}$
- ℓ_1 -MLE: $\min_{\Theta \succ 0} \{ \langle \Omega, \Sigma_n \rangle \log \det(\Omega) + \lambda_n \|\Omega\|_{1, off} \}$

	CLIME	CLIME ℓ_1 -MLE	
Irrepresentability ¹	No	Yes	
(n, p) Scale	$\log p = o(n)$	$n > Cs_0^2(p)\log p$	
Sparsity	Allow small values	Only truly sparse	
Conv. Rate (poly)	$\mathcal{O}\left(s_0(p)\sqrt{\log p/n}\right)$	$\mathcal{O}\left(s_0(p)\sqrt{p^{ au/(\gamma+1+\delta/4)}/n} ight)$	
Model Selection	$\theta_{\min} \geq C \sqrt{\log p/n}$	$ heta_{\min} \geq C \sqrt{p^{ au/\gamma+1+\delta/4}/n}$	

$$\frac{1}{\|\Gamma_{5^{c}S}(\Gamma_{SS})^{-1}\|_{L_{1}} \leq 1 - \alpha, \ \alpha \in (0, 1], \ \Gamma = \Omega_{0}^{-1} \otimes \Omega_{0}^{-1} \qquad (\Box \models \langle \overrightarrow{\sigma} \models \langle \overrightarrow{z} \models , \langle \overrightarrow{z} \models \neg \sub z} \end{vmatrix} } \right }$$

Synthetic Data Real Data

Numerical Experiments

- CLIME: min $\|\beta\|_1 \ s.t. \ |\mathbf{e}_i \Sigma_n \beta|_{\infty} \leq \lambda_n, \beta \in \mathbb{R}^p, \ i = 1, \dots, p$
- LP: $\min \sum_{j=1}^{p} u_j \ s.t. \ \forall 1 \le j \le p, \ \forall 1 \le k \le p$ $-\beta_j \le u_j, \ -\widehat{\sigma}_k^T + I\{k=i\} \le \lambda_n$ $+\beta_j \le u_j, \ +\widehat{\sigma}_k^T - I\{k=i\} \le \lambda_n$
- Refit (correct bias): Let $\widehat{S} = S(\widetilde{\Omega})$, $\widehat{S}^c = \{\omega_{ij}, (i, j) \in \widehat{S}^c\}$, $\check{\Omega} = \operatorname{argmin}_{\Omega_{\widehat{S}^c}=0} \langle \Omega, \Sigma \rangle - \log \det(\Omega)$
- Compare with Glasso and SCAD (Fan *et al.*, 2001) $\widehat{\Omega}_{Glasso} := \operatorname{argmin}_{\Theta \succ 0} \langle \Omega, \Sigma_n \rangle - \log \det(\Omega) + \lambda_n \|\Omega\|_1$ $\widehat{\Omega}_{SCAD} := \operatorname{argmin}_{\Theta \succ 0} \langle \Omega, \Sigma_n \rangle - \log \det(\Omega) + \sum_{i=1}^p \sum_{j=1}^p P_{\lambda_n, a}^{SCAD}(\omega_{ij})$ where $P_{\lambda, a}^{SCAD}(x) = \begin{cases} \lambda |x| & \text{if } |x| \leq \lambda; \\ -\left(\frac{|x|^2 - 2a\lambda |x| + \lambda^2}{2(a-1)}\right) & \text{if } \lambda \leq |x| \leq a\lambda; \\ \frac{(a+1)\lambda^2}{2} & \text{if } |x| \geq a\lambda \end{cases}$

A I > A I > A

Figure 3 : Heatmaps of the frequency of the zeros identified for each entry of the precision matrix (when p = 60) out of 100 replications. (Cai *et al.*, 2011)

Real Data

Breast Cancer Dataset (Hass *et al.*, 2006)

Classification performance criterion:

- Specificity: TN
- Sensitivity: $\frac{TP}{TP+FN}$
- MCC: $\frac{TP \times TN FP \times FN}{\sqrt{(TP + FP)(TP + FN)(TN + FP)(TN + FN)}}$

Method	Specificity	Sensitivity	MCC	Nonzero entries in $\hat{\Omega}$
Glasso	0.768 (0.009)	0.630 (0.021)	0.366 (0.018)	3923 (2)
Adaptive lasso	0.787 (0.009)	0.622 (0.022)	0.381 (0.018)	1233 (1)
SCAD	0.794 (0.009)	0.634 (0.022)	0.402 (0.020)	674 (1)
CLIME	0.749 (0.005)	0.806 (0.017)	0.506 (0.020)	492 (7)

Figure 4 : Comparison of classification performance. Glasso, Adaptive lasso, and SCAD results are taken from Fan et al., 2009.

- 4 同 2 4 回 2 4 U

Proof of Theorem 6

Let
$$\rho = 0$$
. Same proof for $\rho > 0$.
Assumption: $\lambda_n \ge \|\Omega_0\|_{L_1}(\max_{ij} |\widehat{\sigma}_{ij} - \sigma_{ij}^0|) \Leftrightarrow |\Sigma_0 - \Sigma_n|_\infty \le \lambda_n / \|\Omega_0\|_{L_1}$
(1) $\frac{|\widehat{\Omega} - \Omega_0|_\infty}{|\widehat{\Omega} - \Omega_0|_\infty} \le 4 \|\Omega_0\|_{L_1} \lambda_n$
 $|\widehat{\Omega} - \Omega_0|_\infty \le |\widehat{\Omega}_1 - \Omega_0|_\infty \le \|\Omega_0\|_{L_1} |\Sigma_0(\widehat{\Omega}_1 - \Omega_0)|_\infty \le 4 \|\Omega_0\|_{L_1} \lambda_n$
(i)
(*) $|\mathbf{AB}|_\infty \le \|\mathbf{A}\|_{L_1} |\mathbf{B}|_\infty$
(i) $\le |\Sigma_n(\widehat{\Omega}_1 - \Omega_0)|_\infty + |(\Sigma_n - \Sigma_0)(\widehat{\Omega}_1 - \Omega_0)|_\infty \le 4\lambda_n$
(ii) $\le |\Sigma_n\widehat{\Omega}_1 - \mathbf{I}|_\infty + |\mathbf{I} - \Sigma_n\Omega_0|_\infty \le \lambda_n + \|\Omega_0\|_{L_1} |\Sigma_0 - \Sigma_n|_\infty \le 2\lambda_n$
(iii) $\le \|\widehat{\Omega}_1 - \Omega_0\|_{L_1} |\Sigma_n - \Sigma_0|_\infty$
 $\le \|\widehat{\Omega}_1\|_{L_1} |\Sigma_n - \Sigma_0|_\infty + \|\Omega_0\|_{L_1} |\Sigma_n - \Sigma_0|_\infty \le 2\lambda_n$

æ

<ロ> <同> <同> < 回> < 回>

Proof of Theorem 6

$$(2) \ \frac{\|\widehat{\Omega} - \Omega_{0}\|_{2}}{\|\widehat{\Omega} - \Omega_{0}\|_{2}} \leq C_{4}s_{0}(p)(4\|\Omega_{0}\|_{L_{1}}\lambda_{n})^{1-q}, \ C_{4} \leq 2(1 + 2^{1-q} + 3^{1-q}) \\ \|\widehat{\Omega} - \Omega_{0}\|_{2} \leq \|\widehat{\Omega} - \Omega_{0}\|_{L_{1}} = \max_{j}|\widehat{\omega}_{j} - \omega_{j}^{0}|_{1} \\ (*) \ \|\mathbf{A}\|_{2} \leq \sqrt{\|\mathbf{A}\|_{L_{1}}\|\mathbf{A}\|_{\infty}}, \ \mathbf{A} = \mathbf{A}^{T} \Rightarrow \|\mathbf{A}\|_{2} \leq \|\mathbf{A}\|_{L_{1}} \\ \text{Let } \mathbf{h}_{j} = \widehat{\omega}_{j} - \omega_{j}^{0}, \ \mathbf{h}_{j}^{1} = (\widehat{\omega}_{ij}\mathbf{I}\{|\widehat{\omega}_{ij}| \geq 2t_{n}\}; 1 \leq i \leq p)^{T} - \omega_{j}^{0}, \\ \mathbf{h}_{j}^{2} = \mathbf{h}_{j} - \mathbf{h}_{j}^{1}, \ t_{n} = |\widehat{\Omega} - \Omega_{0}|_{\infty} \leq 4\|\Omega_{0}\|_{L_{1}}\lambda_{n} \\ \Rightarrow |\omega_{j}^{0}|_{1} - |\mathbf{h}_{j}^{1}|_{1} + |\mathbf{h}_{j}^{2}|_{1} \leq |\omega_{j}^{0} + \mathbf{h}_{j}^{1}|_{1} + |\mathbf{h}_{j}^{2}|_{1} = |\widehat{\omega}_{j}|_{1} \leq |\widehat{\omega}_{j}^{1}|_{1} \leq |\omega_{j}^{0}|_{1} \\ \Rightarrow |\mathbf{h}_{j}^{2}|_{1} \leq |\mathbf{h}_{j}^{1}|_{1} \Rightarrow |\mathbf{h}_{j}|_{1} \leq |\mathbf{h}_{j}^{1}|_{1} + |\mathbf{h}_{j}^{2}|_{1} \leq 2|\mathbf{h}_{j}^{1}|_{1} \\ \cdots \Rightarrow |\mathbf{h}_{j}|_{1} \leq 2|\mathbf{h}_{j}^{1}|_{1} \leq 2(1 + 2^{1-q} + 3^{1-q})t_{n}^{1-q}s_{0}(p) \\ (3) \ \frac{1}{p}\|\widehat{\Omega} - \Omega_{0}\|_{F}^{2} \leq C_{5}s_{0}(p)(4\|\Omega_{0}\|_{L_{1}}\lambda_{n})^{2-q}, \ C_{5} \leq C_{4} \\ (*) \ \|\mathbf{A}\|_{F}^{2} \leq p\|\mathbf{A}\|_{L_{1}}|\mathbf{A}|_{\infty} \end{aligned}$$

<ロ> <同> <同> < 回> < 回>

æ

Proof of Other Theorems

Based on Theorem 6, bound $\max_{ij} |\widehat{\sigma}_{ij} - \sigma_{ij}^0|$ w.h.p.

• Theorem 1 (a) and 4 (a), *i.e.* exponential-type tails,

$$\max_{ij} |\widehat{\sigma}_{ij} - \sigma_{ij}^0| \leq 2\eta^{-2}(2 + \tau + \eta^{-1}e^2K^2)^2\sqrt{\log p/n},$$

w.p. $\geq 1 - 4p^{-\tau}$.

• Theorem 1 (b) and 4 (b), *i.e.* polynomial-type tails,

$$\max_{ij} |\widehat{\sigma}_{ij} - \sigma^0_{ij}| \leq \sqrt{(\theta+1)(5+\tau)\log p/n},$$

w.p. $\geq 1 - O(n^{-\delta/8} + p^{-\tau/2}).$

• Theorem 2,3,5 are direct results of Theorem 6,1,4.

Thank you!

æ

< 1 →

< ∃ > < ∃ >