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Ising Model

I Undirected graph G = (V ,E ). V = {1, 2, · · · , p}.
I X = (X1, · · · ,Xp), where Xs corresponds to vertex s ∈ V .

I Xs ∈ {−1, 1} for each s ∈ V . φst(xs , xt) = θ∗stxsxt
I Pθ∗(x) = 1

Z(θ∗)
exp(

∑
(s,t)∈E θ

∗
stxsxt)

I θ∗ is
(
p
2

)
dimensional vector.

I Z (θ∗) is normalizing factor.

I Edge sign vector: E ∗ := sign(θ∗st) if (s, t) ∈ E , 0 ow.
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I X n
1 = {x (1), x (2), · · · , x (n)}, iid samples.

I x (i) ∈ {−1, 1}p

I Pθ∗(x (i)r |x (i)\r ) =
exp(2xr

∑
t∈V\r θ

∗
rtxt)

exp(2xr
∑

t∈V\r θ
∗
rtxt)+1

I minθ\r∈Rp−1{l(θ;X n
1 ) + λ(n,p,d)||θ\r ||1}

I l(θ;X n
1 ) := − 1

n

∑n
i=1 logPθ(x (i)r |x (i)\r )

I θ∗\r := {θ∗ru; u ∈ V \ r}
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Connection with Logistic regression

min
θ\r∈Rp−1

{1

n

n∑
i=1

f (θ; x (i))−
∑

u∈V \r

θruµ̂ru + λn||θ\r ||1}

I f (θ; x) := log{exp(
∑

t∈V \r θrtxt) + exp(−
∑

t∈V \r θrtxt)}
I µ̂ru := 1

n

∑n
i=1 x

(i)
r x

(i)
u

I N±(r) := {sign(θ∗rt)t|t ∈ N (r)}
I N (r) := {t ∈ V |(r , t) ∈ E}
I N̂±(r) := {sign(θ̂ru)u|u ∈ V \ r , θ̂su 6= 0}
I Objective fn not strictly convex, but θ̂n\r is unique.
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List of Assumptions

I Fisher Information matrix: Q∗r := Eθ∗{∆2 logPθ∗[Xr |X\r ]}
I Q∗r := Eθ∗[η(X ; θ∗)X\rX

T
\r ]

I η(u; θ) :=
4 exp(2ur

∑
t∈V\r θrtut)

(exp(2ur
∑

t∈V\r θrtut)+1)2

I S := {(r , t)|t ∈ N (r)} (r is understood)

I Q∗SS := Q∗[S ] ∈ Rd×d

I Dependency: Λmin(Q∗SS) ≥ Cmin > 0 and,
Λmax(Eθ∗[X\rX

T
\r ]) ≤ Dmax

I Incoherence: |||Q∗ScS(Q∗SS)−1|||∞ ≤ 1− α
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Main Result

I λn ≥ 16(2−α)
α

√
log p
n

I L,K > 0 independent of (n.p, d), such that n > Ld3 log p

I wp at least 1− 2 exp(−Kλ2nn), the following holds:

I For each node r ∈ V , the l1 regularized logistic regression
given X n

1 , has a unique solution, uniquely specifies N̂±(r).

I N̂±(r) correctly excludes all edges not in true
Neighborhood. Moreover, it correctly includes all edges
(r , t), for which |θ∗r ,t | ≥ 10

Cmin

√
dλn
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Consistency

I Consider {E ∗p(n)} and parameters {θ∗(n,p,d)}.
I Dependency and Incoherence assumption holds element.

I (n, p(n), d(n)) satisfies the conditions above.

I {λn} satisfies conditions above and λ2nn→∞
I min(r ,t)∈E∗n |θ

∗
(n,p,d)(r , t)| ≥ 10

Cmin

√
dλ for large n.

I Then P[Êp(n) = E ∗p(n)]→ 1 as n→∞
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Proof Approach

1. Sample Fisher Information matrix:
Qn := Ê [η(X , θ∗)X\rX

T
\r ] = 1

n

∑n
i=1 η(x (i); θ∗)x

(i)
\r (x

(i)
\r )T

2. Show that under Dependency and Incoherence on sample
Fisher Information matrix, the growth condition on
(n, p, d) and choice of λn are sufficient to ensure the
recovery with high probability.

3. Under the specified growth condition, with incoherence
and dependence assumptions on the population Fisher
Information Matrix Q∗ guarantees that similar results
hold for sample version Qn.
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Primal Dual Witness for Graph Recovery

I primal dual pair: (θ̂, ẑ) satisfies zero sub gradient
condition: ∆l(θ̂) + λnẑ = 0

I ẑ ∈ Rp−1 must satisfy ẑrt = sign(θ̂rt) if θ̂i 6= 0 and
|ẑrt | ≤ 1 otherwise.

I We want that this primal dual pair to correctly specify the
signed neighborhood of node r :

I sign(ẑrt) = sign(θ∗rt) ∀(r , t) ∈ S := {(r , t) ∈ E}
I θ̂ru = 0 for all (r , u) ∈ SC := E \ S
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Uniqueness of the Optimal solution

I Suppose that there exist an optimal primal solution θ̂ with
associated optimal dual vector ẑ such that ||ẑSC ||∞ < 1.
Then any optimal primal solution θ̃ must have θ̃SC = 0.
Moreover, if the Hessian sub-matrix [∆2l(θ̂)]SS is strictly
positive definite, then θ̂ is the unique optimal solution.
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Construction of PDW (θ̂, ẑ)

1. θ̂s = arg min(θ,0)∈Rp−1{l(θ;X n
1 ) + λn||θS ||1}

2. SET ẑS = sign(θ̂S)

3. SET θ̂SC = 0

4. Get ẑSC from zero sub gradient condition.

5. Show with the stated (n, p, d) the remaining conditions
are satisfied with high probability.
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Proof part One: Sample Fisher Matrix

I ”Good Event”:
M(X n

1 ) := {X n
1 ∈ {−1,+1}n×p|Qnsatisfies A1 and A2}

I If the event M(X n
1 ) holds, the sample seize satisfies

n > Ld2 log(p), and the regularization parameter is

chosen such that λn ≥ 16(2−α)
α

log p
n

. Then wp at least
1− 2 exp(−Kλ2nn)→ 1 the following holds:

I For each r ∈ V , the l1-regularized logistic regression has a
unique solution, and so uniquely specifies N̂±(r)

I For each r ∈ V , the estimated signed neighborhood
vector N̂±(r) correctly excludes all edges not in the true
neighborhood and correctly includes all edges with
|θrt | ≥ 10

Cmin

√
dλn
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Sample Fisher Matrix (Cont’d)

I ∆l(θ̂;X n
1 )−∆l(θ∗;X n

1 ) = W n − λnẑ
I W n := −∆l(θ∗;X n

1 ) =

− 1
n

∑n
i=1 x

(i)
\r {x

(i)
r −

exp(
∑

t∈V\r θ
∗
rtx

(i)
t )−exp(−

∑
t∈V\r θ

∗
rtx

(i)
t )

exp(
∑

t∈V\r θ
∗
rtx

(i)
t )+exp(−

∑
t∈V\r θ

∗
rtx

(i)
t )
}

I Co-ordinate wise mean value theorem

I ∆2l(θ∗;X n
1 )[θ̂ − θ∗] = W n − λnẑ + Rn

I Rn
j = [∆2l(θ̄(j);X n

1 )−∆2l(θ∗;X n
1 )]Tj (θ̂ − θ∗)

I θ̄(j) is a parameter vector on the line between θ∗ and θ̂,
and [.]Tj is j’th row.
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Sample Fisher Matrix (Cont’d)

I P(2−α
λn
||W n||∞ ≥ α

4
) ≤ 2 exp(− α2λ2n

128(2−α)2n + log(p))

I Converges to zero at rate exp(−cλ2nn) as long as

λn ≥ 16(2−α)
α

√
log p
n

I If λnd ≤
C2
min

10Dmax
and ||W n||∞ ≤ λn

4
, then,

I ||θ̂S − θS ||2 ≤ 5
Cmin

√
dλn

I If λnd ≤
C2
min

10Dmax

α
2−α and ||W n||∞ ≤ λn

4
, then,

I
||Rn||∞
λn
≤ 25Dmax

C2
min

λnd ≤ α
4(2−α)
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Sample Fisher Matrix (Cont’d)
I Choose λn = 162−α

α

√
log p
n

.

I By previous results, ||W n||∞ ≤ λ/4 with probability → 1
I We need n to find upper bound of λnd

I Take n > 1002D2
max

C4
min

(2−α)4
α4 d2 log p

λnd = 16
2− α
α

√
log p

n
d

≤ 16C 2
min

100Dmax

α

2− α

<
C 2
min

10Dmax

Hence, all conditions of previous slide are satisfied.
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Sample Fisher Matrix (Cont’d)
I Qn

SCS [θ̂ − θ∗] = W n
SC − λnẑSC + Rn

SC

I Qn
SS [θ̂ − θ∗] = W n

S − λnẑS + Rn
S

I Qn
SCS(Qn

SS)−1[W n
S − λnẑS + Rn

S ] = W n
SC − λnẑSC + Rn

SC

I λnẑSC =
[W n

SC−Rn
SC ]−Qn

SCS(Qn
SS)−1[W n

S −Rn
S ]+λnQ

n
SCS(Qn

SS)−1ẑS

||ẑSC ||∞ ≤ |||Qn
SCS(Qn

SS)−1|||∞
[
||W n

S ||∞
λn

+
||Rn

S ||∞
λn

+ 1

]
+
||Rn

SC ||∞
λn

+
||W n

SC ||∞
λn

≤ (1− α) + (2− α)

[
||Rn

SC ||∞
λn

+
||W n

SC ||∞
λn

]
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Sample Fisher Matrix (Cont’d)

I We use the bounds on the rest of the terms.

I ||ẑSC ||∞ ≤ (1− α) + α/4 + α/4 = 1− α/2 (wp → 1)

I Sign recovery: ||θS − θ∗S ||∞ ≤
θ∗min

2

2

θ∗min

||θS − θ∗S ||∞ ≤
2

θ∗min

||θS − θ∗S ||2

≤ 2

θ∗min

5

Cmin

√
dλn

≤ 1 (for θ∗min >
10

Cmin

√
dλn)
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Uniform Convergence of Sample Information

Matrix

I Lemma5: Suppose that dependence condition holds for
the population matrix Q∗ and Eθ∗[XX

T ]. For any δ > 0
and some fixed constants A and B,

P

[
Λmax

[
1

n

n∑
i=1

x
(i)
\r (x

(i)
\r )T

]
≥ Dmax + δ

]

≤ 2 exp(−Aδ
2n

d2
+ B log(d))

P[Λmin(Qn
SS) ≤ Cmin − δ] ≤ 2 exp(−Aδ

2n

d2
+ B log(d))
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Uniform Convergence of Sample Information

Matrix

I Lemma6: If the population covariance satisfies a mutual
incoherence condition with parameter α ∈ (0, 1], as in
assumption, then the sample matrix satisfies an analogous
version, with high probability in the sense that:

P[|||Qn
SCS(Qn

SS)−1|||∞ ≥ 1− α

2
] ≤ exp(−K n

d3
+ log(p))
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Proof Idea

I Qn(θ)− Q(θ) can be written as an iid sum of the form

Zjk = 1
n

∑n
i=1 Z

(i)
jk , where each Z

(i)
jk is zero mean and

bounded. By Azuma-Hoeffding bound,

I P[(Zjk)2 ≥ ε2] = P
[
| 1
n

∑n
i=1 Z

(i)
jk | ≥ ε

]
≤ 2 exp(− ε2n

32
)

I Λmin(Qn
SS) ≥ Cmin − |||QSS − Qn

SS |||2
I |||QSS − Qn

SS |||2 ≤ (
∑d

j=1

∑d
k=1(Zjk)2)1/2
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Simulation

Control parameter β(n, p, d) = n/[10d log(p)], Edge
disagreement: E [|{(s, t)|Êst 6= E ∗st}|]



22/21

l1 Regularized Logistic Regression (for Ising Model)

l1 Regularized Logistic Regression

Reference

High Dimensional Ising Model Selection Using l1 Regularized
Logistic Regression, by Pradeep Ravikumar, Martin
Wainwright and John Lafferty. Annals of Statistics, 2010, (38)
(1287-1319)


