I1 Regularized Logistic Regression (for Ising Model)

*I*₁ Regularized Logistic Regression (for Ising Model)

Reviewer: Abhirup Mallik

Ising Model

- Undirected graph G = (V, E). $V = \{1, 2, \dots, p\}$.
- $X = (X_1, \cdots, X_p)$, where X_s corresponds to vertex $s \in V$.
- $X_s \in \{-1,1\}$ for each $s \in V$. $\phi_{st}(x_s, x_t) = \theta_{st}^* x_s x_t$
- $\blacktriangleright P_{\theta^*}(x) = \frac{1}{Z(\theta^*)} \exp(\sum_{(s,t) \in E} \theta^*_{st} x_s x_t)$
- θ^* is $\binom{p}{2}$ dimensional vector.
- $Z(\theta^*)$ is normalizing factor.
- Edge sign vector: $E^* := sign(\theta_{st}^*)$ if $(s, t) \in E$, 0 ow.

*I*₁ Regularized Logistic Regression (for Ising Model) └─ *I*₁ Regularized Logistic Regression

*I*₁Regularized Logistic Regression

Connection with Logistic regression

$$\min_{\theta_{\backslash r} \in \mathbb{R}^{p-1}} \{ \frac{1}{n} \sum_{i=1}^{n} f(\theta; x^{(i)}) - \sum_{u \in V \backslash r} \theta_{ru} \hat{\mu}_{ru} + \lambda_{n} ||\theta_{\backslash r}||_{1} \}$$

 $\blacktriangleright f(\theta; x) := \log\{\exp(\sum_{t \in V \setminus r} \theta_{rt} x_t) + \exp(-\sum_{t \in V \setminus r} \theta_{rt} x_t)\}$

•
$$\hat{\mu}_{ru} := \frac{1}{n} \sum_{i=1}^{n} x_r^{(i)} x_u^{(i)}$$

• $\mathcal{N}_{\pm}(r) := \{ sign(\theta_{rt}^*)t | t \in \mathcal{N}(r) \}$

$$\blacktriangleright \mathcal{N}(r) := \{t \in V | (r, t) \in E\}$$

$$\blacktriangleright \hat{\mathcal{N}}_{\pm}(r) := \{ sign(\hat{\theta}_{ru})u | u \in V \setminus r, \hat{\theta}_{su} \neq 0 \}$$

• Objective fn not strictly convex, but $\hat{\theta}_{\backslash r}^n$ is unique.

List of Assumptions

• Fisher Information matrix: $Q_r^* := E_{\theta^*} \{ \Delta^2 \log \mathcal{P}_{\theta^*}[X_r | X_{\backslash r}] \}$

$$\bullet \ Q_r^* := E_{\theta^*}[\eta(X;\theta^*)X_{\backslash r}X_{\backslash r}^T]$$

•
$$S := \{(r, t) | t \in \mathcal{N}(r)\}$$
 (r is understood)

•
$$Q_{SS}^* := Q^*[S] \in \mathbb{R}^{d \times d}$$

- ► Dependency: $\Lambda_{\min}(Q_{SS}^*) \ge C_{\min} > 0$ and, $\Lambda_{\max}(E_{\theta^*}[X_{\setminus r}X_{\setminus r}^T]) \le D_{\max}$
- ▶ Incoherence: $|||Q^*_{S^cS}(Q^*_{SS})^{-1}|||_{\infty} \leq 1 \alpha$

*l*₁ Regularized Logistic Regression (for Ising Model)

Main Result

$$\lambda_n \ge \frac{16(2-\alpha)}{\alpha} \sqrt{\frac{\log p}{n}}$$

• L, K > 0 independent of (n.p, d), such that $n > Ld^3 \log p$

• wp at least $1 - 2 \exp(-K\lambda_n^2 n)$, the following holds:

- For each node r ∈ V, the l₁ regularized logistic regression given X₁ⁿ, has a unique solution, uniquely specifies N̂_±(r).

Consistency

- Consider $\{E_{p(n)}^*\}$ and parameters $\{\theta_{(n,p,d)}^*\}$.
- Dependency and Incoherence assumption holds element.
- (n, p(n), d(n)) satisfies the conditions above.
- $\{\lambda_n\}$ satisfies conditions above and $\lambda_n^2 n \to \infty$
- ▶ $\min_{(r,t)\in E_n^*} |\theta^*_{(n,p,d)}(r,t)| \ge \frac{10}{C_{\min}}\sqrt{d}\lambda$ for large n.

▶ Then
$$P[\hat{E}_{p(n)} = E^*_{p(n)}] \rightarrow 1$$
 as $n \rightarrow \infty$

Proof Approach

- 1. Sample Fisher Information matrix: $Q^{n} := \hat{E}[\eta(X, \theta^{*})X_{\backslash r}X_{\backslash r}^{T}] = \frac{1}{n}\sum_{i=1}^{n}\eta(x^{(i)}; \theta^{*})x_{\backslash r}^{(i)}(x_{\backslash r}^{(i)})^{T}$
- 2. Show that under Dependency and Incoherence on sample Fisher Information matrix, the growth condition on (n, p, d) and choice of λ_n are sufficient to ensure the recovery with high probability.
- 3. Under the specified growth condition, with incoherence and dependence assumptions on the population Fisher Information Matrix Q^* guarantees that similar results hold for sample version Q^n .

Primal Dual Witness for Graph Recovery

- primal dual pair: (θ̂, ẑ) satisfies zero sub gradient condition: Δ*I*(θ̂) + λ_n ẑ = 0
- ▶ $\hat{z} \in \mathbb{R}^{p-1}$ must satisfy $\hat{z}_{rt} = sign(\hat{\theta}_{rt})$ if $\hat{\theta}_i \neq 0$ and $|\hat{z}_{rt}| \leq 1$ otherwise.
- We want that this primal dual pair to correctly specify the signed neighborhood of node r :
- ► $sign(\hat{z}_{rt}) = sign(\theta_{rt}^*) \ \forall (r, t) \in S := \{(r, t) \in E\}$
- $\hat{\theta}_{ru} = 0$ for all $(r, u) \in S^{C} := E \setminus S$

Uniqueness of the Optimal solution

Suppose that there exist an optimal primal solution θ̂ with associated optimal dual vector ẑ such that ||ẑ_Sc||_∞ < 1. Then any optimal primal solution θ̂ must have θ̂_Sc = 0. Moreover, if the Hessian sub-matrix [Δ²*I*(θ̂)]_{SS} is strictly positive definite, then θ̂ is the unique optimal solution.

Construction of PDW $(\hat{\theta}, \hat{z})$

- 1. $\hat{\theta}_s = \arg\min_{(\theta,0)\in\mathbb{R}^{p-1}}\{I(\theta;\mathcal{X}_1^n) + \lambda_n ||\theta_S||_1\}$
- 2. SET $\hat{z}_S = sign(\hat{\theta}_S)$
- 3. SET $\hat{\theta}_{S^c} = 0$
- 4. Get \hat{z}_{S^c} from zero sub gradient condition.
- 5. Show with the stated (n, p, d) the remaining conditions are satisfied with high probability.

*l*₁ Regularized Logistic Regression (for Ising Model)

Proof part One: Sample Fisher Matrix

▶ "Good Event":

$$\mathcal{M}(\mathcal{X}_1^n) := \{\mathcal{X}_1^n \in \{-1, +1\}^{n \times p} | Q^n \text{satisfies A1 and A2} \}$$

- ▶ If the event $\mathcal{M}(\mathcal{X}_1^n)$ holds, the sample seize satisfies $n > Ld^2 \log(p)$, and the regularization parameter is chosen such that $\lambda_n \ge \frac{16(2-\alpha)\log p}{\alpha}$. Then wp at least $1 2\exp(-K\lambda_n^2 n) \to 1$ the following holds:
- For each r ∈ V, the l₁-regularized logistic regression has a unique solution, and so uniquely specifies Â_±(r)
- ► For each $r \in V$, the estimated signed neighborhood vector $\hat{\mathcal{N}}_{\pm}(r)$ correctly excludes all edges not in the true neighborhood and correctly includes all edges with $|\theta_{rt}| \geq \frac{10}{C_{\min}}\sqrt{d}\lambda_n$

Sample Fisher Matrix (Cont'd)

$$\Delta I(\hat{\theta}; \mathcal{X}_1^n) - \Delta I(\theta^*; \mathcal{X}_1^n) = W^n - \lambda_n \hat{z}$$

$$W^n := -\Delta I(\theta^*; \mathcal{X}_1^n) =$$

$$-\frac{1}{n} \sum_{i=1}^n x_{\backslash r}^{(i)} \{ x_r^{(i)} - \frac{\exp(\sum_{t \in V \backslash r} \theta_{rt}^* x_t^{(i)}) - \exp(-\sum_{t \in V \backslash r} \theta_{rt}^* x_t^{(i)})}{\exp(\sum_{t \in V \backslash r} \theta_{rt}^* x_t^{(i)}) + \exp(-\sum_{t \in V \backslash r} \theta_{rt}^* x_t^{(i)})} \}$$

Co-ordinate wise mean value theorem

$$\Delta^2 I(\theta^*; \mathcal{X}_1^n)[\hat{\theta} - \theta^*] = W^n - \lambda_n \hat{z} + R^n$$

$$R_j^n = [\Delta^2 I(\bar{\theta}^{(j)}; \mathcal{X}_1^n) - \Delta^2 I(\theta^*; \mathcal{X}_1^n)]_j^T(\hat{\theta} - \theta^*)$$

θ^(j) is a parameter vector on the line between θ^{*} and θ̂, and [.]^T_i is j'th row.

Sample Fisher Matrix (Cont'd)

$$> P(\frac{2-\alpha}{\lambda_n}||W^n||_{\infty} \geq \frac{\alpha}{4}) \leq 2\exp(-\frac{\alpha^2\lambda_n^2}{128(2-\alpha)^2}n + \log(p))$$

• Converges to zero at rate $\exp(-c\lambda_n^2 n)$ as long as $\lambda_n \ge \frac{16(2-\alpha)}{\alpha} \sqrt{\frac{\log p}{n}}$

• If
$$\lambda_n d \leq \frac{C_{\min}^2}{10D_{\max}}$$
 and $||W^n||_{\infty} \leq \frac{\lambda_n}{4}$, then,

$$||\hat{\theta}_{S} - \theta_{S}||_{2} \leq \frac{5}{C_{\min}}\sqrt{d\lambda_{n}}$$

• If
$$\lambda_n d \leq \frac{C_{\min}^2}{10D_{\max}2-\alpha}$$
 and $||W^n||_{\infty} \leq \frac{\lambda_n}{4}$, then,

 I_1 Regularized Logistic Regression (for Ising Model)

└- I1 Regularized Logistic Regression

Sample Fisher Matrix (Cont'd)

• Choose
$$\lambda_n = 16 \frac{2-\alpha}{\alpha} \sqrt{\frac{\log p}{n}}$$

- By previous results, $||W^n||_\infty \leq \lambda/4$ with probability ightarrow 1
- We need n to find upper bound of $\lambda_n d$

• Take
$$n > \frac{100^2 D_{\text{max}}^2}{C_{\text{min}}^4} \frac{(2-\alpha)^4}{\alpha^4} d^2 \log p$$

$$egin{aligned} \lambda_n d &= 16rac{2-lpha}{lpha}\sqrt{rac{\log p}{n}} d \ &\leq rac{16C_{\min}^2}{100D_{\max}}rac{lpha}{2-lpha} \ &< rac{C_{\min}^2}{10D_{\max}} \end{aligned}$$

Hence, all conditions of previous slide are satisfied.

 I_1 Regularized Logistic Regression (for Ising Model)

└─ I1 Regularized Logistic Regression

Sample Fisher Matrix (Cont'd)

$$\blacktriangleright Q_{S^CS}^n[\hat{\theta} - \theta^*] = W_{S^C}^n - \lambda_n \hat{z} S^C + R_{S^C}^n$$

$$\blacktriangleright Q_{SS}^n[\hat{\theta} - \theta^*] = W_S^n - \lambda_n \hat{z}_S + R_S^n$$

•
$$Q_{S^{C}S}^{n}(Q_{SS}^{n})^{-1}[W_{S}^{n}-\lambda_{n}\hat{z}_{S}+R_{S}^{n}]=W_{S^{C}}^{n}-\lambda_{n}\hat{z}S^{C}+R_{S^{C}}^{n}$$

$$\lambda_n \hat{z}_{S^c} = [W_{S^c}^n - R_{S^c}^n] - Q_{S^c S}^n (Q_{SS}^n)^{-1} [W_S^n - R_S^n] + \lambda_n Q_{S^c S}^n (Q_{SS}^n)^{-1} \hat{z}_S$$

$$\begin{split} ||\hat{z}_{\mathcal{S}^{\mathcal{C}}}||_{\infty} &\leq |||Q_{\mathcal{S}^{\mathcal{C}}\mathcal{S}}^{n}(Q_{\mathcal{S}^{\mathcal{S}}}^{n})^{-1}|||_{\infty} \left[\frac{||W_{\mathcal{S}}^{n}||_{\infty}}{\lambda_{n}} + \frac{||R_{\mathcal{S}}^{n}||_{\infty}}{\lambda_{n}} + 1\right] \\ &+ \frac{||R_{\mathcal{S}^{\mathcal{C}}}^{n}||_{\infty}}{\lambda_{n}} + \frac{||W_{\mathcal{S}^{\mathcal{C}}}^{n}||_{\infty}}{\lambda_{n}} \\ &\leq (1-\alpha) + (2-\alpha) \left[\frac{||R_{\mathcal{S}^{\mathcal{C}}}^{n}||_{\infty}}{\lambda_{n}} + \frac{||W_{\mathcal{S}^{\mathcal{C}}}^{n}||_{\infty}}{\lambda_{n}}\right] \end{split}$$

Sample Fisher Matrix (Cont'd)

- We use the bounds on the rest of the terms.
- ► $||\hat{z}_{S^c}||_{\infty} \leq (1 \alpha) + \alpha/4 + \alpha/4 = 1 \alpha/2 \text{ (wp } \rightarrow 1)$
- ► Sign recovery: $||\theta_{S} \theta_{S}^{*}||_{\infty} \leq \frac{\theta_{\min}^{*}}{2}$

$$\begin{split} \frac{2}{\theta_{\min}^*} ||\theta_S - \theta_S^*||_{\infty} &\leq \frac{2}{\theta_{\min}^*} ||\theta_S - \theta_S^*||_2 \\ &\leq \frac{2}{\theta_{\min}^*} \frac{5}{C_{\min}} \sqrt{d} \lambda_n \\ &\leq 1 \text{ (for } \theta_{\min}^* > \frac{10}{C_{\min}} \sqrt{d} \lambda_n) \end{split}$$

Uniform Convergence of Sample Information Matrix

 Lemma5: Suppose that dependence condition holds for the population matrix Q^{*} and E_{θ*}[XX^T]. For any δ > 0 and some fixed constants A and B,

$$P\left[\Lambda_{\max}\left[\frac{1}{n}\sum_{i=1}^{n}x_{\backslash r}^{(i)}(x_{\backslash r}^{(i)})^{T}\right] \ge D_{\max} + \delta\right]$$
$$\le 2\exp(-A\frac{\delta^{2}n}{d^{2}} + B\log(d))$$
$$P[\Lambda_{\min}(Q_{SS}^{n}) \le C_{\min} - \delta] \le 2\exp(-A\frac{\delta^{2}n}{d^{2}} + B\log(d))$$

Uniform Convergence of Sample Information Matrix

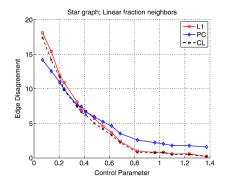
Lemma6: If the population covariance satisfies a mutual incoherence condition with parameter α ∈ (0, 1], as in assumption, then the sample matrix satisfies an analogous version, with high probability in the sense that:

$$P[|||Q_{S^{c}S}^{n}(Q_{SS}^{n})^{-1}|||_{\infty} \ge 1 - \frac{\alpha}{2}] \le \exp(-K\frac{n}{d^{3}} + \log(p))$$

Proof Idea

- Qⁿ(θ) − Q(θ) can be written as an iid sum of the form
 Z_{jk} = ¹/_n ∑ⁿ_{i=1} Z⁽ⁱ⁾_{jk}, where each Z⁽ⁱ⁾_{jk} is zero mean and bounded. By Azuma-Hoeffding bound,
- $P[(Z_{jk})^2 \ge \epsilon^2] = P\left[\left| \frac{1}{n} \sum_{i=1}^n Z_{jk}^{(i)} \right| \ge \epsilon \right] \le 2 \exp(-\frac{\epsilon^2 n}{32})$
- $\blacktriangleright \Lambda_{\min}(Q_{SS}^n) \geq C_{\min} |||Q_{SS} Q_{SS}^n|||_2$
- $|||Q_{SS} Q_{SS}^n|||_2 \le (\sum_{j=1}^d \sum_{k=1}^d (Z_{jk})^2)^{1/2}$

Simulation



Control parameter $\beta(n, p, d) = n/[10d \log(p)]$, Edge disagreement: $E[|\{(s, t) | \hat{E}_{st} \neq E_{st}^*\}|]$

Reference

High Dimensional Ising Model Selection Using l_1 Regularized Logistic Regression, by Pradeep Ravikumar, Martin Wainwright and John Lafferty. Annals of Statistics, 2010, (38) (1287-1319)