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Abstract

We show that several important Bayesian
bounds studied in machine learning, both in
the batch as well as the online setting, arise
by an application of a simple compression
lemma. In particular, we derive (i) PAC-
Bayesian bounds in the batch setting, (ii)
Bayesian log-loss bounds and (iii) Bayesian
bounded-loss bounds in the online setting us-
ing the compression lemma. Although every
setting has different semantics for prior, pos-
terior and loss, we show that the core bound
argument is the same. The paper simplifies
our understanding of several important and
apparently disparate results, as well as brings
to light a powerful tool for developing similar
arguments for other methods.

1. Introduction

Prediction is widely studied under two settings: batch
and online. In the batch setting, data is assumed
to be generated from a fixed but unknown distribu-
tion (Langford, 2005). Prediction performance of a
specific algorithm, such as support vector machine or
boosting, is theoretically evaluated using PAC bounds.
The PAC-Bayesian bound (McAllester, 2003a) is cur-
rently one of the most widely used results for proving
algorithm specific bounds (McAllester, 2003b). In the
online setting, prediction proceeds in iterations and no
assumptions are made regarding how the data is be-
ing generated. Data can be generated by an adversary
and the performance of a specific algorithm, such as
weighted majority (Littlestone & Warmuth, 1994) or
hedging (Freund & Schapire, 1997), is evaluated us-
ing cumulative loss in the worst case. Typically, one
computes a bound on the cumulative loss relative to a
fixed “expert” or a fixed distribution over experts. Al-
though the settings are rather different, some powerful
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ideas from online learning have been successfully used
in the batch setting. This includes direct applications
such as that of the leave-one-out method (Helmbold
& Warmuth, 1995) to voted perceptrons (Freund &
Schapire, 1999b), as well as indirect applications such
as weighted majority (Littlestone & Warmuth, 1994)
motivating adaboost (Freund & Schapire, 1997).

In this paper, we focus on the theoretical methods for
performance evaluation in the two settings. In partic-
ular, we focus on PAC-Bayesian bounds (McAllester,
2003a) in the batch setting, and log-loss (Freund
et al., 1997; Kakade & Ng, 2004) and bounded-loss
bounds (Freund & Schapire, 1997; Freund & Schapire,
1999a) in the online setting. We show that all these
bounds result from an application of a simple com-
pression lemma, along with some additional setting
specific arguments. From a Bayesian perspective, each
setting has different semantics for prior, posterior and
loss. However, the core bound argument is exactly the
same.

There are two desirable aspects to our treatment:

1. It gives a unified and simple understanding of
the most widely studied and apparently disparate
bounds in machine learning.

2. It explicitly brings to light a powerful tool for de-
veloping related inequalities and bounds.

We note that the original arguments for each of the
bounds considered in this paper were ingeniously de-
rived, and all of them implicitly or explicitly had to
prove and use the compression lemma that unify these
bounds.

The rest of the paper is organized as follows. In Sec-
tion 2, we discuss the compression lemma that will be
applied throughout the rest of the paper. In Section 3,
we derive the PAC-Bayesian bound using the compres-
sion lemma. Using the same result, in Section 4 we
prove log-loss bounds for adaptive probabilistic pre-
diction models in the online setting. In Section 5, we
present a similar analysis for arbitrary bounded loss
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functions, the most common setting for studying on-
line learning algorithms. We highlight further connec-
tions in Section 6, and conclude in Section 7.

2. A Compression Lemma

In this section, we present and discuss a simple com-
pression lemma that will be repeatedly used to derive
the batch as well as the online Bayesian bounds in sub-
sequent sections. The lemma can also be viewed as a
special case of Fenchel’s inequality, which is a power-
ful class of “best” inequalities using the concept of a
conjugate of a convex function (see Appendix A for an
exposition).

Since we are interested in Bayesian prediction, let H
be a set of predictors under consideration. Our results
hold without the semantics that h € H are predictors,
but it serves our purpose well. The compression lemma
can be simply stated as follows:

Lemma 1 (Compression Lemma) For any mea-
surable function ¢(h) on H, and any distributions P
and QQ on 'H, we have

Eqo(h)] —log Eplexp(¢(h))] < KL(Q|P) . (1)
Further,

sup (Eql¢(h)] —log Eplexp(¢(h))]) = KL(Q||P) .
(2)

Proof: For any measurable function ¢(h), we have

Folot = e |l (g explot) g0 )|
= KL(Q|P) + Eq {log (exp(¢(h))%$;>]
(a) dP(h)]
< KL(Q|P) + log Eq {GXP@)m_
= KL(Q||P) +log Eplexp(¢(h))] ,
where (a) follows from Jensen’s inequality. Rearrang-
ing terms give (1).

In order to prove (2), for a given P and @, we simply
give a function ¢(h) that achieves the upper bound.
In particular, let

o) 1oz (G ) - 0
With this choice of ¢(h),

Brfesp(o(h)] = Ep | (G200)] = Bolt) = 1.

Hence,
Eq[p(h)] — log Ep[exp(¢(h))]
_ E, {mg (;’f__{_gzm log1
= KL(Q|P) .
That completes the proof. =

The first part of the result has earlier explicitly ap-
peared in the literature (McAllester, 2003b, Lemma
8). The second part essentially follows from the obser-
vation that only one application of Jensen’s inequality
is used to prove the first part. If one claims a stronger
bound, then it can always be falsified by a proper
choice of ¢, P,). This argument simply carries over
from the exact same property of Jensen’s inequality—
it cannot be tightened any further in the general case.
The property of Jensen’s inequality, in turn, follows
from the fact that a (closed) convex function is the
point-wise supremum of all affine functions majorized
by the convex function.

One can view the compression lemma as a very special
case of Fenchel’s inequality (Appendix A). To see this,
for any measurable function ¢ : H — R, let

f(¢) =log E,plexp(¢(h))] ,

for any fixed distribution P on H. Now, for any ¢1, ¢
and VA € [0,1],

Af(61) + (1= A)f(d2)

= log (Ep[exp(¢1(h))]AEp[exp(@(h))](lf)\))

% log Epfexp(Ad () + (1 — Na(h)]

= f(Ag1+ (1= A)¢2) ,

where (a) follows from Holder’s inequality. Thus, f
is a convex function. We choose ¢* to be the density
corresponding to a distribution @) on H so that

(¢,07) = Ep~qlo(h)] -
Then, the conjugate of f is

V

(9% = sup (¢, 0%) — £(9))
= swp (Eqlo(h)] —log Eplexp(¢(h))])
= KL(QIIP),

which follows from (2) in Lemma 1. Hence, from

Fenchel’s inequality, we have

(9,907) — f(9)
= Eqlo(h)] —log Eplexp(6(h))]

f7(97%)

<
< KL@Q|P) .
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We present yet another viewpoint of Lemma 1 from the
compression perspective. Consider the Gibbs density

dG(h)

O g(h) = exp(6(h) — f(9)) -

The fact that g(h) is a valid probability density with
respect to P follows from the observation that f(¢)
is simply the cumulant function, thereby ensuring the
integral over P is 1. Recall that the expected descrip-
tion length Eq[—logw(h)] of encoding @ using a den-
sity m(h) is minimized when w(h) = dQ(h), and the
corresponding minimum description length is simply
H(Q), the Shannon entropy of @ (Cover & Thomas,
1991). Then, if one chooses m(h) = dG(h), we have

- H(Q).

Putting in the expression for dG(h) and rearranging
sides, we obtain

Eqlo(h) — f(#)] + Egllog dP(h)]
= Eqlo(h)] — f(9) KL(Q|P) ,

which is exactly (1) in Lemma 1. This information
theoretic interpretation justifies the name of the com-
pression lemma.

Eql-log dG(R)] = Eq[~log dQ(h)

< Eg[logdQ(h)]
<

Next, we show that the PAC-Bayesian bound in the
batch setting, and the Bayesian log-loss and bounded-
loss bounds in the online setting follow by a direct ap-
plication of (1), along with some setting specific cal-
culations. Although the exact semantics associated
with ¢, P, are different for each setting, ¢ always
quantifies loss, P is the prior and @ is the reference
distribution or posterior. The setting specific addi-
tional calculations are always focused on the cumu-
lant f(¢) = log Eplexp(¢(h))], taking the form of con-
centration bounds in the batch setting, and convex
bounds in the online setting. We revisit these similar-
ities in Section 6.

3. PAC-Bayesian Bounds

In the PAC-Bayesian setting, the domain H is the set
of possible classifiers h, and P, are the prior and
posterior distributions on H. We consider a batch
classification task using the predictors from H. Let
S = {(x1,¥1),---, (Xm,ym)} be the train set drawn
independently according to a fixed (but unknown) dis-
tribution D. By abuse of notation, we denote the sam-
ple distribution of the train set by S as well. For any
classifier h, let £(h,W) € [0,1] denote the error-rate
of h given the samples are drawn according to W. If
the atomic loss function is simply the 0-1 classifica-
tion error-rate, then £(h, W) = E(x ~w[h(x) # yl.

Of course, more general loss functions are admissi-
ble (Bartlett et al., 2004). The Bayesian prediction
scheme proceeds as follows: let P be the prior distri-
bution over H that gets updated to @) after observing
S. One is interested in quantifying the performance of
the Bayesian classifier based on () when samples are
drawn following D. With £(Q, W) = Eg[¢(h, W)], and
for p,q € [0,1], KLg(pllq) = plog(p/q)+(1—p)log((1—
p)/(1—q)), the PAC-Bayesian bound can be stated as
follows:

Theorem 1 (PAC-Bayesian Bound) With proba-
bility at least (1 — &) over the choice of S ~ D™,

KL(Q||P) + log mT“

" (4)

The result, due to (McAllester, 2003a), originally ap-
peared in a more explicit, albeit weaker, form. The im-
plicit form, due to (Langford, 2005), is quantitatively
tighter. The proof of the PAC-Bayesian theorem is
well-known (McAllester, 2003b, Appendix), and was
simplified by (Seeger, 2002). In the context of our
current paper, we highlight the fact that the “simple”
proof is just an application of Lemma 1.

KLp(U(Q,9)[16(Q, D))] <

Proof: From the compression lemma, we know that
for any measurable function ¢(h), we have

Eqlp(h)] < KL(Q|P) + log Eplexp(¢(h))] -

Let ¢(h) = mKLg(¢(h,S)||¢(h,D)) where S is the

sample distribution and D is the true (unknown) dis-

tribution. Then,

mEqQ[K Lg({(h, S)||((h, D))]

<KL(Q||P) + log Eplexp(mK Lg(£(h, S)||((h, D)))] -
(5)

Since relative entropy is convex in both argu-

ments (Cover & Thomas, 1991, Theorem 2.7.2), from

Jensen’s inequality, we have

KLg({(Q,9)[[4Q, D)) < Eq[KLg({(h,S)|((h, D))] -
(6)

Now, since mf(h,S) is binomially distributed with
probability = = £(h, D), by definition we have

Es~pmlexp(mKLg(£(h, S)||7))]
- Z p(s) exp(mK Lg(£(h, s)|T))

s~Bin(m,m)

i (m> (1 —m)" " exp(mK Lg(n/m|7))

n=0 n
Z( )exp —mH (n/m)) §Z =m+1,
n=0 n=0
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where (a) follows from the fact that (7)) <
exp(—mH (n/m)) (Cover & Thomas, 1991, Chapter
12). Taking expectations with respect to P and ap-
plying Fubini’s theorem (Williams, 1991), we have

Esepm|[Epoplexp(mE L (U(h, S)|[6(h, D)))] < m+1.

Then, from Markov’s inequality, with probability at
least (1 — &) over S ~ D™, we have

m+1
Y

Ep[exp(mKLB (E(h, S) ||€(h7 D)))] <

Plugging (6) and (7) back into (5) completes the proof.
[

Application of the bound for deterministic classifiers
involves a carefully constructed derandomization ar-
gument. For example, dimension independent mar-
gin bounds can be derived by choosing the prior and
posterior to be shifted versions of an identity covari-
ance Gaussian distribution (Langford & Shawe-Taylor,
2002; McAllester, 2003b; Langford, 2005).

4. Bayesian Log-Loss Bounds

The online-Bayes setting is seeming very different but,
as before, the main relative loss bounds result from a
direct application of Lemma 1. In the online setting,
the domain H is a set of predictors h, known as “ex-
perts” when H is finite, and one assumes a prior dis-
tribution Py over H. The predictors are assumed to be
stochastic, so that for any input x, each h generates a
distribution p(y|x, h) over the output. Prediction pro-
ceeds in iterations, where in iteration ¢, an input x; is
presented, and each of the predictors generates a pre-
dicted distribution. If y; is the true label, then each
predictor h incurs a loss of

Ly(h) = —log p(y¢|xs, ) .

Moreover, depending on the loss incurred by individ-
ual predictors, the distribution over H is updated.
If P;_; is the distribution on H after seeing S;_; =
{(x1,91)s- -5 (X¢—1,91—-1)}, the combined prediction
from the ensemble on x; is simply Epp,_, [p(y|x¢, h)].
There are two important questions that are of inter-
est: first, how to update the distribution P;,_; on H
depending on the performance of the predictors; sec-
ond, how to get a bound on the performance of the
ensemble.

The “obvious” update of P;_; involves an application

of Bayes rule. In particular,

P, = p(h|Sy) = p(h|Si—1, %, Y1)
_ p(ye|xt, h, Se—1)p(h|x¢, Si 1)

P(St)
(@) p(ye|xt, B)p(h|Si—1) _ P(ye|xe, h) Py ®)
p(St) p(St)

where (a) follows since y; is independent of S; 1
given Xy, h, i.e., individual predictors or “experts” are
memory-less, and since p(h|x¢, Si—1) = p(h|Si—1) as
we update the distribution over H only after getting
the label on the current x;. Hence, (8) is a simple
application of Bayes rule. However, note that

exp(—ti(h)) Pi-1(h)
Zt ’

Py(h) = (9)
where Z, = p(S:) = Ep,_,[exp(—¥{¢(h))] is the nor-
malization term. Note that this is the strategy used
by exponentiated gradient methods (Kivinen & War-
muth, 1997) with well studied properties.

We now focus on the regret bound of the adaptive
ensemble predictor compared to a predictor that uses
a fixed distribution @ over H. While such bounds
have been well studied in the literature (Freund et al.,
1997), we simply show that similar to the PAC-
Bayesian case, a direct application of Lemma 1 gives
such bounds in a straightforward way.

At iteration ¢, on receiving input x;, the Bayesian
model predicts

p(lxt, St—1) = En~r,_, [p(ylxe, 1)) -

If y; is the true label, the model incurs a log-loss of
—log p(y¢|x¢, Si—1). Hence, after such iterative predic-
tion on S, the total log-loss incurred by the Bayesian
model is
T
Lpri(Sr) =Y —logp(yi|x:, Si-1) -

t=1

Let @@ be any fixed distribution over the predictors
h € H. Consider a prediction scheme that samples
h ~ @, and then predicts on x; based on h. The
expected loss incurred by @ at iteration ¢ is simply

0(Q) = En~qlli(h)] = En~g[—log p(yi|xs, h)]

and the total loss

T
Lq(St) = Z@(Q) = Eq

Zet(m]

Then, with S = S7, we have the following result.
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Theorem 2 (Log Loss Bound) In the Bayesian
log-loss setting, for any distribution Q on H, we have

Li1u(S) < Lo(S) + KL(Q| o) -

The result has appeared in different forms in the liter-
ature (Freund et al., 1997; Kakade & Ng, 2004). We
give a proof using Lemma 1.

Proof: From the compression lemma, we know for
any measurable function ¢(h),

Eq[¢(h)] —log Ep, [exp(¢(h))] < KL(Q| Fo) -

To complete the proof, we simple choose ¢(h) such
that Eq[¢(h)] = —Lq(S) and —log Ep, [exp(¢(h))] =
Lprr(S). Note that since

T

P

7LQ (h)} )

we have ¢(h) = — 31—, £;(h). By definition,

Mﬂ

Lprr(S) = —log p(y:|xt, Si—1)
t=1
= _1Ong(yt|xt75t—l)-
t=1

Note that p(y¢|x:, Si—1) = Ep,_, [exp(—Lli(h))] = Z,
so that Lprr(S) = —logHthl Z.
using (9), we have

Now, repeatedly

ZTZ/HGXP( {r(h))pr—1(h)dh

Hence, we have

T T
[12 = Erlesp(= 3" th))] = Er,lexp(6(h))] .

That completes the proof. [

5. Bayesian Bounded-Loss Bounds

The online bounded-loss bounds are similar in essence
to the online log-loss bounds, but works with arbitrary
bounded losses. Further, the updates can be more gen-
eral than a direct application of Bayes rule as in Sec-
tion 4. As before, let H be set of predictors h, better

known as “experts” when H is finite. Prediction pro-
ceeds in iterations, where at iteration ¢ every h predicts
the outcome of an event and receives loss £,(h) € [0, 1].
Hence, the loss received by experts in ‘H at iteration ¢
is a function ¢; : H +— [0,1]. Let Sy = {f1,...,4}. In
a Bayesian setting, one starts with a prior distribution
Py over H. At any iteration ¢, since the individual pre-
dictors receive a loss of ¢;(h), the Bayesian predictor
receives the expected loss

L,=Ep, [t(h)]€]0,1].

Further, the distribution P;_; over H is updated to P,
such that

B Mp,_y(h)
Zy(B)
exp(—kg £i(h))Pi—1
Z0)

where § € (0,1), kg = log(1/3) > 0, and

P p(h|St) =

Z4(8) = Ep,_, 16" "] = Ep,_,[exp(—ks ()]

is the normalization. Note that the update is similar
to that in (9), other than the scaling factor kg. Since
there is no explicit notion of input or output, the per-
formance of the Bayesian predictor is measured by the
cumulative loss over T iterations,

T
ZLt ZEPt,fl[gt(h)}
t=1

As before, we focus on the performance of the Bayesian
predictor relative to a predictor based on any fixed
distribution @ on H. The cumulative loss incurred by
such a predictor is

Lpre(St) =

T
T) =Y Eqlti(h)] = Eq

T
Zﬁt(h)] .

Then, we have the following result.

Theorem 3 (Bounded Loss Bound) For any se-
quence of loss functions S and any B € (0,1)

(1=B)LpLe(S) < ksLq(S) + KL(Q||Fy) ,  (10)

where kg = log(1/5).

The bounded-loss bounds have been primarily stud-
ied in the case when the number of predictors is
finite (Littlestone & Warmuth, 1994; Freund &
Schapire, 1997; Freund & Schapire, 1999a; Cesa-
Bianchi et al., 1997). In such cases, each predictor is
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called an expert. The above result is a simple exten-
sion to a general Bayesian setting. More interestingly,
the proof is a simple application of the compression
lemma, exactly like the PAC-Bayesian and log-loss
bounds discussed earlier. For convenience, we denote

L(h) = Y201 te(h).

Proof: From the compression lemma, for any measur-
able function ¢(h), we have

Eq¢(h)] —log Ep, [exp(¢(h))] < KL(Q| Fy) -

As before, we choose ¢(h) such that Eg[log¢(h)] =
—kgLg(S). Note that since

T
—ksLqo(S) = Eql-ks Y _t(h)] = Eglé(h)],

t=1

we have ¢(h) = —kg Y, li(h) = —ksL(h). Now,

Z2(8) = [ exp(—ks Lr(h)) pr (h)dh

1

T
" Zra(B)- Z:(8) /he"p(*’fﬁ > L) polh)

which implies
T
1 2:(8) = Ep,[exp(=ksL(R))] = Ep,lexp(¢(h))] -

Since exp(—kgL(h)) = B from the compression
lemma we have

—log Ep,[3"™] < ks Lq(S) + KL(Q||P) -

We complete the proof by showing that
log Ep, [B*M] = Y1_logZ, < —(1 — B)LpLs(S).
Treating ¢ = ¢,(h) € [0,1] as a probability, from
Jensen’s inequality, we have 8 < (1 — ¢q)B° + ¢8! =
1— (1 - B)q. Hence,

logZ, = logEp,_,[6""]
< log(l— (1= B)Ep,_,[t:(h)])
< —(1=PB)Ep,_,[t:(h)] .
Summing over ¢t = 1,...,T, we have Zle log Z; <
—(1—=B)Lprp(S). That completes the proof. |

6. Discussion

In this section, we revisit some aspects of the bounds
in Sections 3, 4 and 5, discuss properties and highlight
connections with other existing work.

6.1. A Simplified Understanding

We have tried to develop a simplified understanding
of the batch and online Bayesian bounds that are ap-
plicable to significantly disparate settings. Somewhat
surprisingly, and with elementary arguments, we have
shown that all these bounds follow from a simple com-
pression lemma. In particular, there is only one term,
the cumulant f(¢) = log Ep,[exp(¢(h))], that needed
separate treatment depending on the setting. In the
PAC-Bayesian setting,

¢(h) = mKLg(E(h, S)|[((h, D)) ,

where ¢(h, W) is the error-rate of h when samples are
drawn following W, measures the discrepancy between
the error rate on the sample distribution S and the
true (unknown) distribution D. In the log-loss and
bounded-loss settings, we respectively have

¢(h) =—=> Li(h) and ¢(h) = —kg» li(h),

where ¢;(h) is the log-loss of a probabilistic predic-
tion in the first case, and any bounded-loss in the
second case. In case of log-loss bounds, no setting
specific calculations are necessary and the main re-
sult (Theorem 2) follows directly from the compression
lemma. In PAC-Bayesian setting, since the sample S
is random, the term f(¢) = log Ep,[exp(¢(h))] is ran-
dom, and one uses concentration bounds (McAllester,
2003a) to get the main result (Theorem 1). In the
bounded-loss setting, elementary convexity arguments
on the f(¢) = log Ep,[exp(¢(h))] term are required to
get the desired bound (Theorem 3).

6.2. The Online Setting

The similarities between the two online settings are
quite apparent. Consider the log-loss setting. If e > 0
such that p(y|x, h) > €,Vx,y, h, then the loss incurred
by the Bayesian model at any stage is bounded above
by log(1/€). With proper normalization, this reduces
to the bounded loss setting. In general, the prediction
p(yt|xt, St—1) from the Bayesian model can be arbi-
trarily close to 0. In such a case, the log-loss bound
inequality is trivialized, i.e., although the inequality
still holds, both sides become arbitrarily large and are
not of practical interest (Kakade & Ng, 2004; Kakade
et al., 2005).

6.3. Tightness of Bounds

The compression lemma is a special case of Fenchel’s
inequality, which gives the best bounds of the form
f(x)+9g(y) > (x,y). In particular, being an instance



On Bayesian Bounds

of Fenchel’s inequality, Lemma 1 and any of its direct
applications (such as Theorem 2) cannot be improved
in the general case. Note that such tightness proper-
ties of some of the bounds discussed here have been
rigorously established in the literature, e.g., see (Fre-
und & Schapire, 1997, Appendix) and (Vovk, 1995).
In fact, Vovk used conjugacy and Fenchel’s inequal-
ity in order to establish large deviation bounds (Vovk,
1995, Section 5). All such analysis have been primar-
ily targeted to the online setting with bounded loss
and a constant number of experts. In fact, it is in-
teresting to note that the PAC-Bayesian bound was
independently discovered (McAllester, 2003a). Since
we show that all these bounds are consequences of the
compression lemma, it seems that they cannot be im-
proved in the general case, other than possibly some
better arguments for the setting specific calculations.

6.4. Maximum Entropy Learning

Like any other application of Fenchel’s inequality,
Lemma 1 is a mathematical result, irrespective of any
semantics. In other words, it is not the property of
any particular algorithm. Of course, several (conser-
vative) algorithms have been designed to get “best”
worst-case performance as dictated by the inequal-
ity. From the results, we note that the best worst-
case performance implies maximizing entropy. Sev-
eral learning algorithms—such as the entropy pro-
jection viewpoint of boosting (Kivinen & Warmuth,
1999) as well as direct maximum entropy discrimina-
tion in the batch (Jaakkola et al., 1998) and online
settings (Long & Wu, 2004)—follow the maximum en-
tropy “principle.” Since entropy is the minimum de-
scription length, maximizing entropy leads to a max-
imin problem. However, as our results indicate, such
updates try to minimize the worst case (relative) loss,
i.e., it solves a minimax problem. Such a duality con-
nection has been well studied in the literature (Haus-
sler, 1997; Topsoe, 1979) and has been significantly
generalized (Griinwald & Dawid, 2004) in recent years.

7. Conclusion

In this paper, we show that several of the popular and
widely used Bayesian bounds in the batch as well as
online settings are consequences of a simple compres-
sion lemma. While there are no “new” results, we hope
that the analysis will result in a simplified and acces-
sible understanding of the existing results. We note
that the original arguments of all the results discussed
here were ingeniously developed without making use
of the compression lemma explicitly. In fact, the de-
velopment of the PAC-Bayesian theorem, which his-

torically followed the relevant developments in online
learning, never made use of that literature and was
independently established. We hope that our analysis
will bridge any seeming conceptual gaps in the under-
standing of some of the most important bounds in the
batch and online settings.

Acknowledgements: We want to thank the review-
ers for their valuable comments that significantly im-
proved the presentation.
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A. Fenchel’s Inequality

A fundamental duality appears in convex analysis from
the fact that any closed convex set can be equivalently
specified as an intersection of half-spaces that contain
the set (Rockafellar, 1970, Theorem 11.5). Extending
the result to functions, any closed convex function f is
the point-wise supremum of the collection of all affine
functions h majorized by f, i.e., h < f (Rockafellar,
1970, Theorem 12.1). This result leads to the concept
of conjugacy and a powerful class of “best” inequalities
collectively known as Fenchel’s inequality. We briefly
review the key concepts and results. Our presentation
follows (Rockafellar, 1970, Section 12).

Let f be a closed convex function on R?. Let F*
be the set of all pairs (x*,v*) € R?*! such that the
affine function h(x) = (x,x*) — v* is majorized by
f. Now, we have f(x) > h(x), Vx, if and only if
v* > supyepa ((X,x*) — f(x)). Hence, F* is the epi-
graph of the function on R™ given by

fr(x7) = sup ((x,x7) = f(x)) . (11)
x€eR”

f* is called the conjugate of f, and is a closed convex
function itself as it is the point-wise supremum of affine
functions h*(x*) = (x,x*) — v, where (x,v) belongs to
F, the epigraph of f. Further, the conjugate f** of f*
is f.
The theory of conjugacy is regarded as the theory of
the “best”inequalities of the type

fx)+9(y) = (x,y), Vx,y.

Let W denote all the pairs (f,g) for which the in-
equality holds. The “best” pairs (f,g) in W are those
for which the inequality cannot be tightened, i.e., if
(f.g)eW, f>Ff,g=>g, then f=f andg=g.
For any (f,g) in W, we have

Z Sl)lcp (<X,y>—f(X)) :f*(y)v vy

f(x) > sup ((x,y) —9g(y)) =9"(x), Vx .

y

Hence, the “best” pairs in W are precisely those such
that ¢ = f* and f = g*. In particular, we have

)+ () = (x,x7),

holds for any proper convex function f and its conju-
gate f*. This relationship is known as Fenchel’s in-
equality.

Vx, x* (12)



