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Abstract

Clustering methods for data-mining problems must be extremely scalable. In addition, sev-
eral data mining applications demand that the clusters obtained be balanced, i.e., be of approxi-
mately the same size or importance. In this paper, we propose a general framework for scalable,
balanced clustering. The data clustering process is broken down into three steps: sampling of
a small representative subset of the points, clustering of the sampled data, and populating the
initial clusters with the remaining data followed by refinements. First, we show that a simple
uniform sampling from the original data is sufficient to get a representative subset with high
probability. While the proposed framework allows a large class of algorithms to be used for clus-
tering the sampled set, we focus on some popular parametric algorithms for ease of exposition.
We then present algorithms to populate and refine the clusters. The algorithm for populating
the clusters is based on a generalization of the stable marriage problem, whereas the refinement
algorithm is a constrained iterative relocation scheme. The complexity of the overall method is
O(kN log N) for obtaining k balanced clusters from N data-points, which compares favorably
with other existing techniques for balanced clustering. In addition to providing balancing guar-
antees, the clustering performance obtained using the proposed framework is comparable to and
often better than the corresponding unconstrained solution. Experimental results on several
datasets, including high-dimensional (> 20, 000) ones, are provided to demonstrate the efficacy
of the proposed framework.

1 Introduction

The past few years have witnessed a growing interest in clustering algorithms that are suitable for
data-mining applications [24, 23, 14, 17]. Clustering algorithms for data-mining problems must be
extremely scalable. In addition, several data mining applications demand that the clusters obtained
be (roughly) balanced, i.e., be of approximately the same size or importance. As elaborated later
on, balanced groupings are sought in a variety of real-life scenarios as they make the results more
useful or actionable towards fulfilling a business need.

There are several notable approaches that address the scalability issue. Some approaches try to
build the clusters dynamically by maintaining sufficient statistics and other summarized information
in main memory while minimizing the number of database scans involved. For example, Bradley
et al. [7, 8] propose out-of-core methods that scan the database once to form a summarized model
(for instance, the size, sum and sum-squared values of potential clusters, as well as a small number
of unallocated data-points) in main memory. Subsequent refinements based on this summarized
information is then restricted to main memory operations without resorting to further disk scans.
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Another method with a similar flavor [38] compresses the data objects into many small subclusters
using modified index trees and performs clustering with these subclusters. A different approach
is to subsample the original data before applying the actual clustering algorithms [10, 19]. Ways
of effectively sampling large datasets have also been proposed [32]. [12] suggest using less number
of points in each step of an iterative relocation optimization algorithm like kmeans as long as the
model produced does not differ significantly from the one that would be obtained with full data.

The computational complexity of several of these methods are linear per iteration in the number
of data-points N as well as the number of clusters k and hence scale very well. However their
“sequential cluster building” nature prevents a global view of the emergent clustering that is needed
for obtaining well-formed as well as reasonably balanced clusters. Even the venerable KMeans does
not have any explicit way to guarantee that there is at least a certain minimum number of points
per cluster, though it has been shown that KMeans has an implicit way of preventing highly skewed
clusters [26]. It has been empirically observed by several researchers [6, 18, 11] that KMeans and
related variants quite often generate some clusters that are empty or extremely small, when both the
input dimensionality and the number of clusters is in the tens or more. In fact, several commercial
clustering packages, including Mathwork’s implementation of KMeans, have a check for zero sized
clusters, typically terminating with an error message when this happens.

Having null or very small clusters is undesirable in general. In fact, for certain practical appli-
cations one requires quite the opposite, namely that the clusters be all of comparable sizes. Here
“size” of a cluster refers either to the number of data points in that cluster, or to the net value of
all points in cluster in situations where different points may have different values or weights associ-
ated with them. This balancing requirement comes from the associated application/business needs
rather than from the inherent properties of the data, and helps in making the clusters actually
useful and actionable. Some specific examples are:

• Direct Marketing [35, 37]: A direct marketing campaign often starts with segmenting cus-
tomers into groups of roughly equal size or equal estimated revenue generation, (based on,
say, market basket analysis, demographics, or purchasing behavior at a web site), so that the
same number of sales teams, marketing dollars, etc., can be allocated to each segment.

• Category Management [31]: Category management is a process that involves managing prod-
uct categories as business units and customizing them on a store-by-store basis to satisfy
customer needs. A core operation in category management is to group products into cate-
gories of specified sizes such that they match units of shelf space or floor space. This is an
important balanced clustering application for large retailers such as Walmart [34]. Another
operation key to large consumer product companies such as Procter & Gamble, is to group
related stock keeping units (SKUs) in bundles of comparable revenues or profits. In both
operations the clusters need to be refined on an on-going basis because of seasonal difference
in sales of different products, consumer trends etc. [21].

• Clustering of Documents [27, 2]: In clustering of a large corpus of documents to generate
topic hierarchies, balancing greatly facilitates browsing/navigation by avoiding the generation
of hierarchies that are highly skewed, with uneven depth in different parts of the hierarchy
“tree” or having widely varying number of documents at the leaf nodes. Similar principles
apply when grouping articles in a website [27], portal design, and creation of domain specific
ontologies by hierarchically grouping concepts.
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• Balanced Clustering in Energy Aware Sensor Networks [16, 20]: In distributed sensor net-
works, sensors are clustered into groups, each represented by a sensor “head”, based on
attributes such as spatial location, protocol characteristics, etc. An additional desirable prop-
erty, often imposed as an external soft constraint on clustering, is that each group consume
comparable amounts of power, as this makes the overall network more reliable and scalable.

From the examples above, it is clear that a balancing constraint is typically imposed because
of application needs rather than from observing the actual distribution of the data. Clusters that
are too small may not be useful, e.g., a group of otherwise very similar customers that is too small
to provide customized solutions for. Similarly very large cluster may not be differentiated enough
to be readily actionable. Sometimes, even the desired range of the number of clusters sought, say
5 to 10 in a direct marketing application, comes from high level requirements rather than from
data properties. Thus it may happen that balancing is sought even though the “natural” clusters
in the data are quite imbalanced. Similarly the most appropriate number of clusters determined
from a purely data-driven perspective may not match the number obtained from a need-driven
one. In such cases, constrained clustering may yield solutions that are of poorer quality when mea-
sured by a data-centric criterion such as “average dispersion from cluster representative” (KMeans
objective function), even though these same solutions are more preferable from the application
viewpoint. In this paper, we report experimental results on several datasets where the associated
class priors range from equal valued to highly varying ones, to study this aspect. A positive,
seemingly surprising result from the empirical results is that even for fairly imbalanced data our
approach to balanced clustering provides comparable, and sometimes better results as judged by
the unconstrained clustering objective function. Thus balanced clusters are clearly superior if the
benefit of meeting the constraints is also factored in. The advantage is largely because balancing
provides a form of regularization that seems to avoid low-quality local minima stemming from poor
initialization.

There are a few existing approaches for obtaining balanced clusters. First, an agglomerative
clustering method can be readily adapted so that once a cluster reaches a certain size in the
bottom-up agglomeration process, it can be removed from further consideration. However, this may
significantly impact cluster quality. Moreover, agglomerative clustering methods have a complexity
of Ω(N2) and hence does not scale well. A recent approach to obtain balanced clusters is to convert
the clustering problem into a graph partitioning problem [25, 35]. A weighted graph is constructed
whose vertices are the data-points. An edge connecting any two vertices has a weight equal to a
suitable similarity measure between the corresponding data-points. The choice of the similarity
measure quite often depends on the problem domain, e.g., Jaccard coefficient for market-baskets,
normalized dot products for text, etc. The resultant graph can be partitioned by efficient “min-
cut” algorithms such as METIS [25] that also incorporate a soft balancing constraint. Though this
approach gives very good results, Ω(N 2) computation is required just to compute the similarity
matrix. Another approach is to iterate over kmeans but do the cluster assignment by solving a
minimum cost flow problem satisfying constraints [6] on the cluster sizes. This approach is O(N 3)
and has even poorer scaling properties. The cost-flow approach was also used in [16] to obtained
balanced groupings in energy aware sensor networks.

An alternative approach to obtain balanced clustering is via frequency sensitive competitive
learning methods for clustering [1], where clusters of larger sizes are penalized so that points are
less likely to get assigned to them. Such a scheme can be applied both in the batch as well as in
the online settings [4]. Although frequency sensitive assignments can give fairly balanced clusters
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in practice, there is no obvious way to guarantee that every cluster will have at least a pre-specified
number of points.

A pioneering study of constrained clustering in large databases was presented by Tung et. al. [36].
They describe a variety of constraints that may be imposed on a clustering solution, but subse-
quently focus solely on a balancing constraint on certain key objects called pivot objects. They start
with any clustering (involving all the objects) that satisfies the given constraints. This solution is
then refined so as to reduce the clustering cost, measured as net dispersion from nearest represen-
tatives, while maintaining the constriant satisfaction. The refinement proceeds in two steps: pivot
movement and deadlock resolution, both of which are shown to be NP-hard. They propose to scale
their approach by compressing the objects into several tight “micro-clusters”[7] where possible, in
a pre-clustering stage, and subsequently doing clustering at the micro-cluster level. However, since
this is a coarse grain solution, an option of finer grain resolution needs to be provided by allowing
pivot points to be shared among multiple micro-clusters. This last facility helps to improve solution
quality, but negates some of the computational savings in the process.

In this paper, we address the issue of developing scalable clustering algorithms that satisfy
balancing constraints on the cluster sizes, i.e., the number of objects in each cluster. 1 We present
a method for clustering N data-points into k clusters so that each cluster has at least m points
for some given m ≤ N

k
. The overall complexity of the method is O(kN log N). The proposed

method can be broken down into three steps: (1) sampling, (2) clustering of the sampled set and
(3) populating and refining the clusters while satisfying the balancing constraints. We address each
of the steps separately and show that the three-step method gives a very general framework for
scaling up balanced clustering algorithms. The post-processing refinement step is similar in spirit
to the pivot movement step in [36], though it differs in the actual procedure. However, the overall
framework is fundamentally different. Its efficiency really stems from the first two steps, and there
is no need to resort to summarized micro-clusters for computational savings.

The rest of the paper is organized as follows. A brief overview of the three steps is presented in
section 2. The three steps are discussed and analyzed in detail in sections 3, 4 and 5. In section 6
we present experimental results on high-dimensional text clustering problems. The paper concludes
in section 7 with a discussion on the proposed framework.

2 Overview

Let X = {x1,x2, · · · ,xN}, xi ∈ R
d, ∀i, be a set of data-points that needs to be clustered. Let

d : R
d×R

d 7→ R+ be a given distance function between any two points in R
d. The clustering problem

this article addresses is that of finding a disjoint k-partitioning {Sh}
k
h=1 of X and a corresponding

set of k cluster representatives M = {µh}
k
h=1 in R

d for a given k such that the clustering objective
function

L({µh, Sh}
k
h=1) =

k
∑

h=1

∑

x∈Sh

d(x, µh) (1)

1Note that both KMeans type partitional algorithms and graph-partitioning approaches can be readily generalized
to cater to weighted objects [5, 35]. Therefore, our framework can be easily extended to apply to situations where
balancing is desired based on a derived quantity such as net revenue per cluster, since such situations are dealt with
by assigning a corresponding weight to each object.
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is minimized under the constraint that |Sh| ≥ m, ∀h, for a given m with mk ≤ N . Further, we
assume that for the optimal partitioning {S∗

h}
k
h=1, we have

min
h

|S∗
h|

N
≥

1

l
(2)

for some integer l ≥ k. In other words, if samples are drawn uniformly at random from the set
X , the probability of picking a sample from any particular optimal partition is at least 1

l
for some

given l ≥ k. Note that l = k if and only if |S∗
h| = N/k, ∀h, so that the optimal partitions are exactly

of equal size and the clusters are all of equal size.
For the clustering problem to be tractable, the distance function d has to be well-behaved in

the following sense: Given a set of points xi, · · · ,xn, there should be an efficient way of finding the
representative

µ = argmin
c

n
∑

i=1

d(xi, c) .

While a large class of distance functions are well-behaved in the above sense, in this article, we focus
on the squared Euclidean distance and the cosine distance, for both of which the representative can
be computed in O(n) time. In fact, it can be shown that the representative can be computed in O(n)
for all Bregman divergences [5]. For the general framework discussed in this article, any meaningful
distance function can potentially be used as long as the computation of the representative can be
done efficiently. Further, the scalability analysis can be extended to non-parametric clustering
algorithms, where explicit representative computation is absent.

To make the solution of this constrained clustering problem scalable, we break up the solution
into three steps making use of the information regarding the nature of the optimal clustering. The
three steps in the proposed scheme are as follows:

Step 1 Sampling of the given data: The given data is first sampled in order to get a small repre-
sentative subset of the data. One potential problem with sampling is that one may end up
sampling all the points from only a few of the optimal partitions so that the sampled data
is not a representative subset for clustering. We show that this kind of a scenario is unlikely
under the assumptions of (2) and compute the number of samples we must must draw from
the original data in order to get a good representation from each of the optimal partitions
in the sampled set with high probability.

Step 2 Clustering of the sampled data: Any clustering algorithm that fits the problem domain can
be used in this stage. The algorithm is run on the sampled set. Since the size of the sampled
set is much less than that of the original data, one can use slightly involved algorithms as
well, without much blow-up in complexity. It is important to note that the general frame-
work works for a wide class of distance (or similarity) based clustering algorithms as long as
there is a concept of a representative of a cluster and the clustering objective is to minimize
the average distance (or maximize the similarity) to the corresponding representatives.

Step 3 Populating and Refining the clusters: The third step has two parts: Populate and Refine. In
the first part, the small clusters generated in the second step are populated with the data-
points that were not sampled in the first step. For populating, we propose an algorithm
poly-stable, motivated by the stable marriage problem [22], that satisfies the requirement
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on the number of points per cluster, thereby generating a feasible and reasonably good
clustering.

In the second part, an iterative refinement algorithm refine is applied on this stable feasible
solution to monotonically decrease the clustering objective function while satisfying the
constraints all along. On convergence, the final partitioning of the data is obtained.

Note that populating and refining of the clusters can be applied irrespective of what cluster-
ing algorithm was used in the second step, as long as there is a way to represent the clusters.
In fact, the third step is the most critical step and the first two steps can be considered a
good way to initialize the populate-refine step.

The three steps outlined above provide a very general framework for scaling up clustering algorithms
under mild conditions, irrespective of the domain from which the data has been drawn and the
clustering algorithm that is used as long as they satisfy the assumptions.

3 Sampling

First, we examine the question: given the set X having k underlying (but unknown) optimal

partitions {S∗
h}

k
h=1, and that the size of the smallest partition is at least |X |

l
, l ≥ k, what is the

number n of samples that need to be drawn from X so that there are at least s À 1 points from
each of the k partitions with high probability? Let X be a random variable for the number of
samples that need to be drawn from X to get at least s points from each cluster. E[X] can be
computed by an analysis using the theory of recurrent events and renewals [15]. A simpler version
of this analysis can be found in the so-called Coupon Collector’s problem [30], or, equivalently in
the computation of the cover time of a random walk on a complete graph. With a similar analysis
in this case, we get the following result.

Lemma 1 If X is the random variable for the number of samples be drawn from X to get at least
s points from each partition, E[X] ≤ sl ln k + O(sl).

Proof: Let C1, C2, · · · , CX be the sequence of samples drawn where Ch ∈ {1, · · · , k} denotes the
partition number from which the ith sample was drawn. We call the h-th sample Ch good if less
than s samples have been drawn from partition Ch in the previous (h − 1) draws. Note that the
first s samples are always good. The sequence of draws is divided into epochs where epoch i begins
with the draw following the draw of the ith good sample and ends with the draw on which the
(i + 1)-th good sample is drawn. Since a total of sk good samples have to be drawn, the number
of epochs is sk. Let Xi, 0 ≤ i ≤ (sk − 1), be a random variable defined to be the number of trials
in the ith epoch, so that

X =
sk−1
∑

i=0

Xi .

Let pi be the probability of success on any trial of the ith epoch. A sample drawn in the ith epoch
is not good if the draw is made from a partition from which s vertices have already been drawn. In
the ith epoch there can be at most b i

s
c partitions from which s samples have been already drawn.

Hence, there are still at least (k − b i
s
c) partitions from which good samples can be drawn. Then,
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since the probability of getting a sample from any particular partition is at least 1
l
, the probability

of the sample being good is

pi ≥

k−b i

s
c

∑

j=1

1

l
=

k − b i
s
c

l
.

The random variable Xi is geometrically distributed with parameter pi and hence

E[Xi] =
1

pi
≤

l

k − b i
s
c

.

Therefore, by linearity of expectation,

E[X] = E[
sk−1
∑

i=0

Xi] =
sk−1
∑

i=0

E[Xi]

≤
sk−1
∑

i=0

l

k − b i
s
c

= l
k
∑

j=1

s−1
∑

h=0

1

k − b (j−1)s+h
s
c

= sl
k
∑

j=1

1

k − (j − 1)
= sl

k
∑

i=1

1

i

≈ sl ln k + O(sl) .

That completes the proof.

Using this lemma, we present the following result that shows that if we draw n = csl ln k ≈ cE[X]
samples from X , where c is an appropriately chosen constant, then we we will get at least s samples
from each optimal partition with high probability.

Lemma 2 If csl ln k samples are drawn uniformly at random from X the probability of getting at
least s À 1 samples from each of the optimal partitions is more than (1 − 1

kd ), where c and d are

constants such that c ≥ 1
ln k

and d ≤ s
ln k
{c ln k − ln(4c ln k)} − 1.

Proof: Let En
h denote the event that less than s points have been sampled from the partition S∗

h

in the first n draws. Let qh be the probability that a uniformly random sample is chosen from S∗
h.

Then, qh ≥
1
l
. We shall consider the number of draws n = csl ln k for a constant c ≥ 1

ln k
. Then,

Pr[En
h ] =

s−1
∑

j=0

(

n

j

)

qj
h(1− qh)n−j ≤

s−1
∑

j=0

(

n

j

)(

1

l

)j (

1−
1

l

)n−j

.

Now, since the expectation for the binomial distribution B(csl ln k, 1
l
) is cs ln k ≥ s > (s − 1), the

largest term in the summation is the term corresponding to i = s− 1. Hence,

Pr[En
i ] ≤ s

(

n

s− 1

)(

1

l

)s−1(

1−
1

l

)n−s+1

≤ s

(

n

s

)(

1

l

)s(

1−
1

l

)n−s

.

Since n
(

1
l

) (

l−1
l

)

≈ n
l

= cs ln k ≥ sÀ 1, applying the Poisson approximation [33],

(

n

s

)(

1

l

)s(

1−
1

l

)n−s

≈ e−
n

l

(

n
l

)s

s!
.
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Hence,

Pr[En
i ] ≤ se−

n

l

(

n
l

)s

s!
.

Using the fact that the probability of a union of events is always less than the sum of the probabilities
of these events, we obtain

Pr[X > n] = Pr[∪k
i=1E

n
i ] ≤

k
∑

i=1

Pr[En
i ] ≤ kse−

n

l

(

n
l

)s

s!
.

Putting n = csl ln k, we get

Pr[X > n] ≤ kse−
n

l

(

n
l

)s

s!

= kse−cs ln k (cs ln k)s

s!

≤ (ce)ssk1−cs(ln k)s (since s! ≥
(s

e

)s

)

=
(

cek
1

s
−c ln ks

1

s

)s

.

Then Pr[X ≤ n] ≥ (1 − 1
kd ), or, Pr[X > n] ≤ 1

kd if
(

cek
1

s
−c ln ks

1

s

)s

≤ 1
kd , which is true if

kc− d+1

s ≥ ces
1

s ln k. Now, s
1

s ≤ e
1

e , ∀s, and hence es
1

s ≤ ee
1

e < 4. So, the probability bound is

satisfied if kc− d+1

s ≥ 4c ln k. A simple algebraic manipulation of the last inequality gives our desired
upper bound on d.

To help understand the result, consider the case where l = k = 10 and we want at least s = 50
points from each of the partitions. Table 1 shows the total number of points that need to be
sampled for different levels of confidence. Note that if the k optimal partitions are of equal size and

d 1 2 3 4 5

Confidence, 100(1− 1
kd )% 90.000 99.000 99.900 99.990 99.999

Number of Samples, n 1160 1200 1239 1277 1315

Table 1: Number of samples required to achieve a given confidence level for k=10 and s=50

csk ln k points are sampled uniformly at random, the expected number of points from each partition
is cs ln k. Thus the underlying structure is expected to be preserved in this smaller sampled set
and the chances of wide variations from this behavior is very small. For example, for the 99.99%
confidence level in Table 1, the average number of samples per partition is 127, which is only about
2.5 times the minimum sample size that is desired, irrespective of the total number of points in X ,
which could be in the millions for example.

4 Clustering of the Sampled Set

The second step involves clustering the set of n sampled points, Xs. The only requirement from this
stage is to obtain a k-partitioning of Xs and have a representative µh, h = 1, · · · , k corresponding
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to each partition. There are several clustering formulations that satisfy this requirement, e.g.,
clustering using Bregman divergences [5] for which the optimal representatives are given by the
centroids, clustering using cosine-type similarities [11, 3] for which the optimal representatives are
given by the `2-normalized centroids, convex clustering [29] for which the optimal representatives are
given by generalized centroids, etc. Since there are already a large number of clustering formulations
that satisfy our requirement and the main issue we are trying to address is how to make the existing
clustering algorithms scalable, we do not propose any new algorithm for clustering the sampled set.
Instead, we just review two widely used existing algorithms, viz Euclidean kmeans clustering [28]
and spherical kmeans clustering [11], for which experimental results will be presented.

4.1 Euclidean kmeans

Euclidean kmeans takes the set of n points to be clustered, Xs, and the number of clusters, k, as an
input. The Euclidean kmeans problem [28, 13] is to get a k-partitioning {Sh}

k
h=1 of Xs such that

the following objective function,

Jkmeans =
1

n

k
∑

h=1

∑

x∈Sh

(x− µh)2,

is minimized. The kmeans algorithm gives a simple greedy solution to this problem that guarantees
a local minimum of the objective function. The algorithm starts with a random guess for {µh}

k
h=1.

At every iteration, each point x is assigned to the partition Sh∗ corresponding to its nearest centroid
µh∗ . After assigning all the points, the centroids of each partition is computed. These two steps
are repeated till convergence. It can be shown that the iterations converge in a finite number of
iterations to a local minimum of the objective function. The reason we chose the kmeans algorithm
is its wide usage. Further, since kmeans is a special case of Bregman clustering algorithms [5] as
well as convex clustering algorithms [29], the experiments of section 6 gives some intuition as to
how the proposed framework will perform in more general settings.

4.2 Spherical kmeans

Spherical kmeans [11] is applicable to data points on the surface of the unit hypersphere and has
been successfully applied and extended to clustering of natural high-dimensional datasets [3]. The
spherical kmeans problem is to get a k-partitioning {Sh}

k
h=1 of a set of n data points Xs on the

unit hypersphere such that the following objective function,

Jspkmeans =
1

n

k
∑

h=1

∑

x∈Sh

xT µh,

is maximized. The spkmeans algorithm [11] gives a simple greedy solution to this problem that
guarantees a local maximum of the objective function. Like kmeans, spkmeans starts with a random
guess for {µh}

k
h=1. At every iteration, each point x is assigned to the partition Sh∗ corresponding

to its most similar centroid µh∗ , and finally, the centroids of each partition are computed. It
can be shown that the algorithms converge in a finite number of iterations to a local maximum
of the objective function. Successful application of this algorithm to natural datasets, e.g., text,
gene-expression data, etc., gives us the motivation to study the algorithm in greater detail.
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5 Populating and Refining the Clusters

After clustering the n point sample from the original data X , the remaining (N −n) points can be
assigned to the clusters, satisfying the balancing constraint. Subsequently, these clusters need to
be refined to get the final partitioning. This is the final and perhaps most critical step since it has
to satisfy the balancing requirements while maintaining the scalability of the overall approach. In
fact, the previous two steps can essentially be considered as a good way of finding an initialization
for an iterative refinement algorithm that works with X and minimizes the objective function L.
In this section, we discuss a novel scheme for populating the clusters and then iteratively refining
the clustering.

5.1 Overview

There two parts in the proposed scheme:

1. Populate: First, the points that were not sampled, and hence do not currently belong to any
cluster, are assigned to the existing clusters in a manner that satisfies the balancing constraints
while ensuring good quality clusters.

2. Refine: Iterative refinements are done to improve on the clustering objective function while
satisfying the balancing constraints all along.

Hence, part 1 gives a reasonably good feasible solution, i.e., a clustering in which the balancing
constraints are satisfied. Part 2 iteratively refines the solution while always remaining in the feasible
space.

Let nh be the number of points in cluster h, so that
∑k

h=1 nh = n. Let Xu = {x1, · · · ,xN−n}
be the set of (N − n) non-sampled points. The final clustering needs to have at least m points per
cluster to be feasible. Let b = mk

N
, where 0 ≤ b ≤ 1 since m ≤ N/k, be the balancing fraction.

For any assignment of the members of X to the clusters, let `i ∈ {1, . . . , k} denote the cluster
assignment of xi. Further, let Sh = {xi ∈ X |`i = h}.

5.1.1 Part 1: Populate

In the first part, we just want a reasonably good feasible solution so that |Sh| ≥ m, ∀h. Hence,
since there are already nh points in Sh, we need to assign [m − nh]+ more points to Sh, where
[x]+ = max(x, 0). Ideally, each point in Xu should be assigned to the nearest cluster so that ∀xi,
d(xi, µ`i

) ≤ d(xi, µh), ∀h. Such assignments will be called greedy assignments. However, this need
not satisfy the balancing constraint. So, we do the assignment of all the points as follows:

(1) First, exactly [m − nh]+ points are assigned to cluster h, ∀h, such that for each xi that has
been assigned to a cluster,

either it has been assigned to its nearest cluster, i.e.,

d(xi, µ`i
) ≤ d(xi, µh), ∀h ,

or all clusters h′ whose representatives µh′ are nearer to xi than its own representative µ`i

already have the required number of points [m−nh′ ]+, all of which are nearer to µh′ than
xi, i.e.,

∀h′ such that d(xi, µ`i
) > d(xi, µh′), d(xi, µh′) ≥ d(x′, µh′), ∀x′ ∈ Sh′ .
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(2) The remaining points are greedily assigned to their nearest clusters.

Condition (1) is motivated by the stable marriage problem that tries to get a stable match of n
men and n women, each with his/her preference list for marriage over the other set [22]. The
populate step can be viewed as a generalization of the standard stable marriage setting in that
there are k clusters that want to “get married”, and cluster h wants to “marry” at least [m− nh]+
points. Hence, an assignment of points to clusters that satisfies condition (1) will be called a stable
assignment and the resulting clustering is called stable.

5.1.2 Part 2: Refine

In the second part, feasible iterative refinements are done starting from the clustering obtained
from the first part until convergence. Note that at this stage, each point xi ∈ X is in one of the
clusters and the balancing constraints are satisfied, i.e., |Sh| ≥ m, ∀h. There are two ways in which
a refinement can be done, and we iterate between these two steps and the updation of the cluster
representative:

(1) If a point xi can be moved, without violating the balancing constraint, to a cluster whose
representative is nearer than its current representative, then the point can be safely re-assigned.
First, all such possible individual re-assignments are done.

(2) Once all possible individual re-assignments are done, there may still be groups of points in
different clusters that can be simultaneously re-assigned to reduce the cost without violating
the constraints. In this stage, all such possible group re-assignments are done.

After all the individual and group reassignments are made, the cluster representatives are re-
estimated. Using the re-estimated means, a new set of re-assignments are possible and the above
two steps are performed again. The process is repeated until no further updates can be done, and
the refinement algorithm terminates.

5.2 Details of Part 1: Populate

In this subsection, we discuss poly-stable, an algorithm to make stable assignment of [m− nh]+
points per cluster. The algorithm, which is a generalization of the celebrated stable marriage
problem, is presented in detail in Algorithm 1. First the distance d(x, µh) between every unassigned
point x ∈ Xu and every cluster representative is computed. For each cluster Sh, all the non-sampled
(N−n) points are sorted in increasing order of their distance with µh, h = 1, . . . , k. Let the ordered
list of points for cluster Sh be denoted by Πh. Let mh denote the number of points yet to be assigned
to cluster Sh at any stage of the algorithm to satisfy the constraints. Initially mh = [m − nh]+.
The algorithm terminates when mh = 0, ∀h.

The basic idea behind the algorithm is “cluster proposes, point disposes”. In every iteration,
each cluster Sh proposes to its nearest mh points. Every point that has been proposed, gets
temporarily assigned to the nearest among its proposing clusters and rejects any other proposals.
Note that if a point has received only one proposal, it gets temporarily assigned to the only cluster
which proposed to it and there is no rejection involved. For each cluster, mh is recomputed. If
mh 6= 0, cluster Sh proposes the next mh points from its sorted list Πh that have not already rejected
its proposal. Each of the proposed points accepts the proposal either if it is currently unassigned
or if the proposing cluster is nearer than the cluster Sh′ to which it is currently assigned. In the
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later case, the point rejects its old cluster Sh′ and the cluster Sh′ loses a point so that mh′ goes up
by 1. This process is repeated until mh = 0, ∀h and the algorithm terminates.

Algorithm 1 poly-stable

Input: The existing clusters {Sh}
k
h=1, the cluster representatives M = {µh}

k
h=1, the required

minimum cluster size m, and the set of unassigned data points Xu.
Output: A disjoint stable k-partitioning {Sh}

k
h=1 of X such that |Sh| ≥ m, ∀h

Method:

Mark all x ∈ Xu as free
for h = 1 to k do

Πh ← Sort Xu in increasing order according to d(x, µh),x ∈ Xu, µh ∈M
mh ← [m− |Sh|]+ {number of points to be assigned}
ιh ← 1 {index in the sorted list Πh}

end for

λ←
∑k

h=1 mh

while λ > 0 do

for h = 1 to k do

if mh > 0 then

m∗
h ← mh

{ Cluster Ch proposes to the next mh points Πh(i), i = ιh, · · · , (ιh + mh − 1) }
for i = ιh to (ιh + mh − 1) do

if Πh(i) is free then

Sh ← Sh ∪ {Πh(i)}
Mark Πh(i) ∈ X (u) as engaged to h
mh ← mh − 1

else if Πh(i) is engaged to h′ but d(v, µh) < d(v, µh′) then

Sh ← Sh ∪ {Πh(i)}, Sh′ ← Sh′ \ {Πh(i)}
Mark Πh(i) ∈ Xu as engaged to h
mh ← mh − 1, mh′ ← mh′ + 1

end if

end for

ιh ← ιh + m∗
h

end if

end for

λ←
∑k

h=1 mh

end while

Now we show that this algorithm indeed satisfies all the required conditions and hence ends up
in a stable assignment. Before giving the actual proof, we take a closer look at what exactly happens
when an assignment is unstable. Let (xi → Sh) denote the fact that the point xi has been assigned
to the cluster Sh. An assignment is unstable if there exist at least two assignments (xi1 → Sh1

)
and (xi2 → Sh2

), h1 6= h2, such that xi1 is nearer to µh2
than its own cluster representative µh1

and µh2
is nearer to xi1 than xi2 . The point-cluster pair (xi1 , Sh2

) is said to be dissatisfied under
such an assignment. An assignment in which there are no dissatisfied point-cluster pairs is a stable
assignment and satisfies the constraints. Next, we show that there will no dissatisfied point-cluster
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pair after the algorithm terminates.

Lemma 3 poly-stable gives a stable assignment.

Proof: If possible, let poly-stable give an unstable assignment. Then there must exist two
assignments (xi1 → Sh1

) and (xi2 → Sh2
) such that (xi1 , Sh2

) is a dissatisfied point-cluster pair.
Then, since xi1 is nearer to Sh2

than xi2 , Sh2
must have proposed to xi1 before xi2 . Since xi1 is

not assigned to Sh2
, xi1 must have either rejected the proposal of Sh2

meaning it was currently
assigned to a cluster which was nearer than Sh2

, or accepted the proposal initially only to reject
it later meaning it got a proposal from a cluster nearer than Sh2

. Since a point only improves its
assignments over time, the cluster Sh1

to which xi1 is finally assigned must be nearer to it than
the cluster Sh2

which it rejected. Hence xi1 cannot be dissatisfied which contradicts the initial
assumption. So, the final assignment is indeed stable.

Next we look at the total number of proposals that are made before the algorithm terminates.
After a cluster proposes to a point for the first time, there are three possible ways this particular
point-cluster pair can behave during the rest of the algorithm: (i) the point immediately rejects the
proposal in which case the cluster never proposes to it again; (ii) the point accepts it temporarily
and rejects it later — the cluster obviously does not propose to it during the acceptance period
and never proposes to it after the rejection; (iii) the point accepts the proposal and stays in that
cluster till the algorithm terminates — obviously the cluster does not propose to it again during
this time. Hence, each cluster proposes each point at most once and so the maximum number of
proposals possible is k × (bN − n).

We take a look at the complexity of the proposed scheme. Following the above discussion, the
complexity from the proposal part is O(k(bN − n)). Before starting the proposals, the sorted lists
of distances of all the points from each of the clusters have to be computed, which has a complexity
of O(k(N − n) log(N − n)). And after poly-stable terminates, the remaining N(1− b) points are
greedily assigned to their nearest clusters. Note that the greedy assignments at this stage does not
hamper the feasibility or the stability of the resulting clustering. So, the total complexity of the
first part of the proposed scheme is O(k(N−n)(log(N−n)+k(bN−n)+N(1−b)) = O(kN log N).

After all the points are assigned to clusters using poly-stable, the cluster representatives
{µh}

k
h=1 are updated such that for h = 1, . . . , k,

µh = argmin
µ

∑

x∈Sh

d(x, µ) .

We assume that there is an efficient way to get the representatives. Note that each new representa-
tive will be at least as good as the old representatives in terms of the cost function. Hence, optimal
updation of the cluster representatives results in a decrease in the cost function value.

5.3 Details of Part 2: Refine

In this subsection, we discuss refine, an algorithm to do iterative refinements in order to get a
better solution to the clustering problem while satisfying the constraints all along. Note that this
part of the scheme applies to all points in X , and does not differentiate between a sampled or
non-sampled point. Further, the input to this part is an existing disjoint partitioning {Sh}

k
h=1 of

X such that |Sh| = nh ≥ m, ∀h. As outlined earlier, refine has two parts in every iteration: the
first part involves performing individual re-assignments, where individual points are re-assigned
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with a guaranteed decrease in the objective while satisfying constraints; the second part involves
performing group reassignments with the same guarantees.

5.3.1 Individual Re-assignments

The individual re-assignment (IR) runs over all the points x ∈ X . If, for a point xi in cluster S`i
,

(a) there is a cluster h whose representative µh is nearer to xi than its current representative µ`i
,

i.e.,
∃h 6= `i, d(xi, µ`i

) > d(xi, µh) ,

(b) cluster S`i
can afford to let go a point without violating the constraints, i.e., n`i

> m,

then xi can be safely reassigned to (any such) cluster h. Clearly, the overall objective function
decreases without violating any constraints. To obtain the maximum decrease, xi should be assigned
to its nearest cluster.

After a pass through the entire data, for any point xi

either it is in its nearest cluster, and hence there is no reason to re-assign it,

or it is not in its nearest cluster, but it cannot be re-assigned since that will violate the balancing
constraints for the cluster it is currently in.

For the first set of points, no updates are necessary. For the second set, we investigate if group
re-assignments can improve the objective while satisfying constraints.

5.3.2 Group Re-assignments

For every point x ∈ X , let H (x) be the set of clusters h whose cluster representatives µh are nearer
to x than its current cluster representative µ`i

, i.e.,

H(x) = {h|d(x, µ`i
) > d(x, µh)} ,

Clearly, for points already in their nearest cluster, H (x) is the null set. Using the sets H (x), ∀x ∈ X ,
we construct a k-vertex potential assignment graph G = (V, E) with V = {h}kh=1, one vertex
corresponding to every cluster, such that for every point xi ∈ X , there is a directed edge of unit
capacity from vertex `i to all vertices h ∈ H(xi). The total capacity on every directed edge is
consolidated to get a single integer value, and edges with zero capacity are considered non-existent.
Note that a cycle in this integer weighted directed graph, suggests a set of group re-assignments
of points that is guaranteed to decrease the clustering objective function. In order to do group
re-assignments, the algorithm finds the strongly connected components of G and keeps removing
weighted cycles from each component till there are no cycles in the graph.

The final step is to re-estimate the representatives of the individual clusters so that the clustering
objective function is further decreased. Note that the re-estimation of the representatives should be
followed by individual and group re-assignments, and the process is to be repeated till convergence.
The details of the algorithm refine are presented in Algorithm 2.
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Algorithm 2 refine

Input: A disjoint stable k-partitioning {Sh}
k
h=1 of X such that |Sh| ≥ m; a set of cluster repre-

sentatives µh

Output: A disjoint k-partitioning {S∗
h}

k
h=1 of X and a set of representatives {µ∗

h}
k
h=1 such that

|S∗
h| ≥ m, L({µ∗

h, S∗
h}

k
h=1) ≤ L({µh, Sh}

k
h=1) and {µ∗

h, S∗
h}

k
h=1 is a local minimum of L(·).

Method:

repeat

θ ← 0
{Update the cluster means}
for h = 1 to k do

µh ←
1

|Sh|

∑

x∈Sh
x

end for

{Reassign points}
for all xi ∈ X do

H(xi) ← ∅
{Individual Reassignments}
for h = 1 to k do

if d(x, µh) < d(x, µh∗) then

if |S`i
| > m then

Sh ← Sh ∪ {x}, S`i
← S`i

\ {x}, `i ← h, θ ← θ + 1
else

H(xi) ← H(xi) ∪ {h}
end if

end if

end for

end for

{Group Reassignments}
Construct potential assignment graph G = (V, E) from {H (x)}x∈X
C ← strongly-connected-components(G)
for all γ ∈ C do

while there exists back-edge in DFS(γ) do

λ← the cycle corresponding to this back-edge
θ ← θ + minimum edge-weight in λ
λθ ← λ with all edge-weights set to θ
reassign points according to directed cycle λθ

γ ← γ \ λθ

end while

end for

until θ = 0
{S∗

h}
k
h=1 ← {Sh}

k
h=1
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6 Experimental Results

In this section, we first briefly discuss the complexity of the proposed framework. Then, we present
empirical results on several high-dimensional text datasets using different performance evaluation
criterion for comparison.

First, we show that the complexity of the proposed framework is quite reasonable. The sampling
of the n points out of N uniformly at random has a complexity of O(N). If the clustering algorithm
on the sampled data is a variant of KMeans, the computational complexity is O(t0kn) where t0
is the number of iterations. As shown earlier, the poly-stable algorithm has a complexity of
O(kN log N). The individual re-assignments of the refinement step is O(N), whereas the group
re-assignments take O(kN + t1k

2) where t1 is the number of strongly connected components in
that iteration. If the refinement is performed for t2 iterations, then the complexity of the step
is O(t2N + t2kN + t1t2k

2) = O(kN). So, the total complexity of the scheme is O(kN log N),
assuming t0, t1, t2 are constants. Note that this is better than the Ω(N 2) complexity of graph-
based algorithms that can provide balancing. It is worse than the O(kN) complexity (assuming
constant number of iterations) of the iterative greedy relocation algorithms such as KMeans, but
such algorithms are not guaranteed to satisfy the balancing constraints.

6.1 Datasets

The datasets that we used for empirical validation and comparison of our algorithms were carefully
selected to represent some typical clustering problems. We also created various subsets of some
of the datasets for gaining greater insight into the nature of clusters discovered or to model some
particular clustering scenario (e.g. balanced clusters, skewed clusters, overlapping clusters etc.).

• classic3: Classic3 is a well known collection of documents used for text analysis. It is an easy
dataset to cluster since it contains documents from three well-separated sources. Moreover,
the intrinsic clusters are largely balanced. The corpus contains 3893 documents, among which
1400 Cranfield documents are from aeronautical system papers, 1033 Medline documents
are from medical journals, and 1460 Cisi documents are from information retrieval papers.
The particular vector space model used had a total of 4666 features (words). Thus, each
document is represented as a vector in a 4666-dimensional space. The dataset serves as a
sanity check for the algorithms.

• news20: The CMU Newsgroup dataset, hereafter called news20, is a widely used compilation
of documents. We tested our algorithms on not only the original dataset, but on a variety of
subsets with differing characteristics to explore and understand the behavior of our algorithms.
The standard dataset is a collection of 19,997 messages, gathered from 20 different USENET
newsgroups. One thousand messages are drawn from the first 19 newsgroups, and 997 from
the twentieth. The headers for each of the messages are then removed to avoid biasing the
results. The particular vector space model used had 25,924 words. The dataset embodies
the features characteristic of a typical text dataset—high-dimensionality, sparsity and some
significantly overlapping clusters.

• small-news20: We formed this subset of news20 by sampling 2000 messages from original
dataset. We sampled 100 messages from each category in the original dataset. Hence the
dataset has balanced clusters (though there may be overlap). The dimensionality of the data
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was 13,406. Since the dimensionality of the data is much smaller than the number of data
points, this is a harder dataset to cluster.

• similar-1000: We formed another subset of news20 by choosing 3 somewhat similar newsgroups:
talk.politics.guns, talk.politics.mideast, talk.politics.misc. The dataset has a total of 3000
documents, with 1000 documents per newsgroup, and a dimensionality of 10,083. The dataset
has a fair amount of overlaps in high dimensions and is hence a difficult dataset to cluster.

• yahoo: The Yahoo20 dataset (K-series) is a collection of 2340 Yahoo news articles belonging
one of 20 different Yahoo categories, and has a dimensionality of 24273. The salient feature
of this dataset is that the natural clusters are not at all balanced, with cluster sizes ranging
from 9 to 494. This is where it significantly differs from the previous datasets. This dataset
helps in studying the effect of forcing balanced clustering in a naturally unbalanced data.

• nsf-top30: The NSF dataset contains abstracts of all NSF proposals that were granted funding
over a period of 14 years from 1990-2003. The nsf-top30 is a mildly pruned version of the
data that contains the top 30 categories, in terms of number of grants, that were funded. The
data consists of 128,111 abstracts from 30 categories with sizes ranging from 9911 to 1447. In
fact, all categories with more than 1000 grants were selected. The data has a dimensionality
of 45,998. This is a rather large and quite sparse dataset since abstracts are typically much
smaller than normal documents.

6.2 Algorithms

We compared 6 different algorithms on every dataset.

• KMeans is the widely used and popular iterative relocation clustering algorithm. There is one
important modification we make in the way the algorithm was run — we ran the data on
the L2 normalized version of the data. There are two reasons for this: (i) all algorithms run
on the same representation of the data, and (ii) it has been well established that applying
kmeans on the original sparse high-dimensional data gives poor results [11].

• SPKMeans is the spherical kmeans algorithm [11] outlined in section 4. Motivated by re-
search in information retrieval, the algorithm uses cosine similarity between data points and
cluster representatives and has been shown to give good results on several benchmark text
datasets [11, 3].

Note that both the above algorithms do not have any way to ensure balanced clustering. The
next algorithm uses all the components of the proposed framework, and hence guarantees
balanced clusterings with a scalable algorithm.

• SPKpr uses SPKMeans as the base clustering algorithm and uses both the populate (p) and
refine (r) steps as outlined in section 5. This algorithm is guaranteed to satisfy any balancing
constraints given as input, although the quality of clusters may deteriorate under stringent
conditions.

We also perform lesion studies using three other algorithms, in which one or more components
of the proposed framework are missing.
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• SPKpnr uses SPKMeans as the base clustering algorithm. It uses the populate (p) step, but does
not refine (nr) the resulting clusters. The algorithm satisfies any given balancing constraints
but need not give good results since the feasible solution is not refined.

• SPKgpnr also uses SPKMeans for clustering. It uses a greedy populate (gp) scheme where every
point is assigned to the nearest cluster. Further, no refinements (nr) are done after the greedy
populate step. Clearly, this algorithm is not guaranteed to satisfy balancing constraints.

• SPKgpr uses SPKmeans as the base clustering algorithm. It uses greedy populate (gp) to
put points into clusters, but performs a full refinement (r) after that. The algorithm is not
guaranteed to satisfy the balancing constraints since the populate step is greedy and the
refinements do not start from a feasible clustering.

In a tabular form, the four algorithms can be presented as follows:

No Refine Refine Balancing

Greedy Populate SPKgpnr SPKgpr No Guarantee
Populate SPKpnr SPKpr Guaranteed

6.3 Methodology

Performance of the algorithms are evaluated using one measure for the quality of clustering and
two measures for the balancing of cluster sizes. The measure for cluster quality evaluates how the
clustering agrees with the hidden true labels of the data. The measures for cluster sizes evaluate
how well balanced the cluster sizes are in the average as well as worst case.

Quality of clustering is evaluated using the following measure:

• Normalized Mutual Information (NMI) is used to measure the agreement of the assigned
cluster labels and the true class labels from the confusion matrix of the assignments. Mutual
information (MI) gives the amount of statistical similarity between the cluster and class
labels [9]. If X is a random variable for the cluster assignments and Y is a random variable

for the true labels on the same data, then their MI is given by I(X; Y ) = E[ln p(X,Y )
p(X)p(Y ) ]

where the expectation is computed over the joint distribution of (X, Y ) estimated from the
particular clustering of the dataset under consideration. In order to get a number in [0, 1],
we normalize the MI to get NMI(X; Y ) = I(X; Y )/

√

H(X)H(Y ), where H(X), H(Y ) are
the entropies of the marginal distributions of X, Y respectively.

Quality of balancing is evaluated using the following measures:

• Standard Deviation in cluster sizes is the first and perhaps most obvious way to evaluate bal-
ancing. For algorithms that are guaranteed to give balanced clusters, the standard deviation
becomes smaller as the balancing fraction is increased.

• The ratio between the minimum to average cluster sizes is our second measure of evaluation.
For N data points put into k clusters, the average cluster size is just N/k. For a given
clustering, we compare the size of the smallest cluster to this average.

All results reported herein have been averaged over 10 runs. All algorithms were started with
the same random initialization to ensure fairness of comparison. Each run was started with a
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different random initialization. However, no algorithm was restarted within a given run and all of
them were allowed to run to completion. Since the standard deviations over 10 runs were reasonably
small, to reduce clutter, we have chosen to omit a display of error bars in our plots.

We report experimental results for particular choices of datasets, algorithms, number of samples
and balancing fraction in the next section. Note that there may be a mismatch in the choice of
number of samples and the balancing fraction. For example, consider a 3-clustering task with 10,000
points. Let the number of samples be 6,000 and the balancing fraction be 0.8. If the preliminary
3-clustering of 6,000 points puts all points in one cluster with two other empty clusters, then
populate cannot ensure balancing fraction of 0.8 using the remaining 4,000 points. As a result,
refine has to start working on a clustering that does not already satisfy the balancing constraints.
In practice, there are several ways to address such a situation. First, one can reallocate sets of
points before or after populate, so that refine starts from a clustering that satisfies the balancing
constraint. If formal guarantees of balancing are not critical, then one can simply run refine on the
output of populate and not worry about this issue. Since smaller (than required by the balancing
constraints) clusters can only get new points in refine, it is reasonable to expect that the final
solution will almost, if not exactly, satisfy the balancing constraints. Since we want to guarantee
balancing, we use yet another approach—that of restricting the number of samples you can draw.
For the above example, if we sample at most 2000 points, then irrespective of what the preliminary
cluster sizes were, it is always possible to satisfy the balancing constraints. In general, sampling a
maximum of bN(1 − b(1 − 1

k
))c points always leaves enough points to generate a balanced cluster

with balancing fraction b. Since bN(1−b)c ≤ bN(1−b(1− 1
k
))c, we draw at most bN(1−b)c samples

in the the reported experiments. Hence, for all the results reported, if s is the attempted number
of samples and strue is the actual number of samples, then strue = bmin(s, N(1 − b))c. Unless
otherwise mentioned, all reported results are for s = N/2 so that strue = bmin(N/2, (1 − b)N)c.
For the example above, since b = 0.8, we draw strue = bmin(N/2, N/5)c = bN/5c = 2000 samples.

6.4 Results

The results on classic3 are shown in figure 1. From the results in 1(a), we see that most algorithms
perform very similarly under very weak balancing requirements. KMeans performs poorly compared
to all the other algorithms that are well suited for high-dimensional data. Also, SPKgpnr achieves
lower NMI values compared to the other SPKMeans based algorithms since it uses greedy populate
and does not refine the resulting clusters. In 1(b), since the balancing fraction is 0.9, the algo-
rithms that satisfy the balancing constraints, viz SPKpr and SPKpnr, achieve lower NMI than those
that do not satisfy the constraints. In particular, SPKgpr performs better than its corresponding
balanced algorithm SPKpr, and SPKgpnr performs better than its corresponding SPKpnr. This de-
crease in performance is due to the fact that the balancing algorithms are satisfying the balancing
constraints. In fact, the value of the refinement stage becomes clear as SPKpr, that guarantees
balancing, performs better than SPKgpnr, that is unconstrained but does use the refinement phase.
Figure 1(c) shows the variation in NMI across a range of balancing fractions, with the results of
KMeans and SPKMeans shown as points, since their performance does not depend on the balancing
fraction. Again, the algorithms respecting balancing constraints perform better over the entire
range. Fig 1(d) shows the change in standard deviation in cluster sizes as the number of clusters
changes. The standard deviation goes down for all the algorithms, although it is marginally more
pronounced for the balancing algorithms. Figures 1(e) and (f) show the minimum-to-average ratio
of cluster sizes with varying number of clusters. While there is not much difference in figure 1(e)
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due to the weak balancing requirement, figure 1(f) clearly shows how SPKpr and SPKpnr respect
the balancing requirement while the fraction gets small for the other algorithms.

Figure 2 shows the results on news-20. This is a typical high-dimensional text clustering problem
and the true clusters are balanced. As shown in figure 2(a), the balanced algorithms SPKpr and
SPKpnr perform as good as SPKMeans, whereas the unconstrained algorithms SPKgpr and SPKgpnr

do not perform as well. Clearly, the balancing constraints resulted in better results. As before,
KMeans does not perform as well as the other algorithms. Under a stricter balancing requirement
in figure 2(b), as before, SPKgpr performs marginally better than SPKpr, but the latter satisfies the
balancing constraints. The same behavior is observed for SPKgpnr and its corresponding SPKpnr.
Note that among the two balancing algorithms, SPKpr performs much better than SPKpnr, thereby
showing the value of the refinement step. The same is observed for the unbalanced algorithms as
well. Figure 2(c) shows the variation in NMI across balancing constraints for the right number of
clusters. We note that the refined algorithms perform much better, although the constraints do
decrease the performance by a little amount. Interestingly, both KMeans and SPKmeans achieve
very low minimum balancing fraction. Figure 2(d) shows the standard deviation in cluster sizes.
The balancing algorithms achieve the lowest standard deviations, as expected. Figures 2(e) and
2(f) show the minimum-to-average ratio of cluster sizes. Clearly, the balancing algorithms respect
the constraints whereas the ratio gets really low for the other algorithms. For a large number of
clusters, almost all the unconstrained algorithms start giving zero-sized clusters.

The overall behavior of the algorithms on small-news-20 (figure 3) and similar-1000 (figure 4)
are more or less the same as that described above for news-20 and classic3.

Figure 5 shows the results on yahoo. This is a very different dataset from the previous datasets
since the natural clusters are highly unbalanced with cluster sizes ranging from 9 to 494. The
comparison on most measures of performance look similar to that of other datasets. The major
difference is in the minimum-to-average ratio shown in figures 5(e) and (f). As expected, the bal-
anced algorithms SPKpr and SPKpnr respect the constraints. The other algorithms (except KMeans)
start getting zero-sized clusters for quite low values of clusters. Also, as the balancing requirement
becomes more strict (as in figure 5(f)), the disparity between the balanced and other algorithms
become more pronounced. Surprisingly, even for such an unbalanced data, the balanced algorithms,
particularly SPKpr, perform almost as good as the unconstrained algorithms (figures 5(c)).

Figure 6 shows the results on nsf-top30. Although this is a rather large dataset with 128,111
points and 30 natural clusters, the performance of the scaled algorithms are quite competitive.
In fact, as shown in figure 6(a), at a balancing fraction of 0.3, the refined algorithms SPKpr and
SPKgpr often perform better than the base algorithm SPKMeans. At a higher balancing fraction of
0.9, the NMI values for the algorithms SPKpr and SPKpnr guaranteed to give balancing decreases
(figure 6(b)). Even under such a strict balancing requirement, which is violated by the natural
clusters themselves, SPKpr still performs quite well. At the correct number of clusters, the per-
formance of the algorithms, as shown in figure 6(c), are comparable over a range of balancing
fractions. Interestingly, the balancing fractions achieved by KMeans and SPKMeans are really low as
seen in figure 6(c). In fact, SPKMeans has a balancing fraction of 0, meaning it generated at least
one empty cluster in all 10 runs. Figure 6(d) shows the variation in standard deviation in cluster
sizes. As expected, the algorithms guaranteed to generate balanced clusters show a lower standard
deviation. In figures 6(e) and (f), we present the minimum-to-average ratio of cluster sizes over
a range of number of clusters. Other than SPKpr and SPKpnr which are guaranteed to meet the
balancing requirements, all other algorithms generate empty clusters even for moderate number of
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Number of Number of Samples
Clusters 1000 5000 10000 20000 32027 64055 96083 128111

10 92.09 92.49 94.77 97.21 95.81 98.21 100.36 104.65
20 107.98 116.31 117.39 118.51 118.71 119.19 121.43 125.39
30 123.12 138.94 143.75 138.15 141.89 148.69 149.06 153.41

Table 2: Running times (in seconds) for SPKpnr on nsf-top30, averaged over 10 runs.

Number of Number of Samples
Clusters 1000 5000 10000 50000 100000 1000000

10 130.80 136.80 143.53 164.76 172.63 253.55
20 252.35 261.89 272.21 306.80 322.02 453.98
30 373.19 386.20 400.02 446.89 468.02 647.79

Table 3: Running times (in seconds) for SPKpnr on Art1M, averaged over 10 runs.

clusters. Also, the low balancing fractions of KMeans and SPKMeans, as observed in figure 6(c), is
better explained by these figures.

The above results show that in terms of cluster quality, the proposed methods achieve clustering
results that are as good as applying the basic clustering method on the entire dataset. In addition,
the methods ensure that the clustering has guaranteed balancing properties. We now take a look at
how well the framework scales with increase in the number of samples used. In Table 2, we report
actual running times (in seconds) for SPKpnr on nsf-top30 for varying number of samples. The run
times were observed on a 2.4 GHz P4 linux machine with 512 MB of RAM.

A few things need to be noted regarding the running times in Table 2. First, although there
are speed-ups due to sampling, the improvements are not as stark as one would expect, especially
when less than 10% of the samples are used. There are two main reasons for this. First, the
base clustering algorithm SPKMeans is quite fast and takes about 2-3 minutes to cluster 128,111
documents. For slower base clustering algorithms such as agglomerative hierarchical clustering, the
improvement would be more marked. Second, most of the time is taken to read the data from
disk into the data structures needed for the algorithm, and we have no ready way to separate this
time from the computational time. Also, we have not attempted to optimize the code, which could
bring down the run-time further. It is also important to note that the running time need not
monotonically increase with increasing number of samples. The actual running time (in seconds)
depends on various factors such as the speed, load and memory availability on the machine, as well
as the number of iterations needed by the algorithm to converge. However, there is a clear trend
towards lower running times with less samples.

In order to study the scalability aspect for even larger datasets, we generated an artificial dataset
Art1M of 1 million points sampled from a sparse multivariate Gaussian distribution.2 The objective
of the experiment was to study scalability, and not quality, for which we have already presented
extensive evidence. The running times (averaged over 10 runs) of SPKpnr on Art1M is presented
in Table 3. Note that the number of samples denote the size of the subset selected in step 1 of

2We used the sprandn function in Matlab to generate the artificial data.
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Minimum acceptable number, s 10 20 30 40 50 60 70 80 90 100

Min. obtained/100 runs (news20) 13 41 67 90 120 150 178 205 243 273

Min. obtained/100 runs (nsf-top30) 21 49 77 113 143 170 200 234 276 301

Table 4: Comparison of the minimum acceptable number of samples per cluster with the smallest
numbers obtained over 100 runs.

the proposed methodology, and the running time is the total time for the three steps for clustering
of all the points. As before, sampling less points clearly results in smaller running times, and the
improvement is more pronounced for larger number of clusters. Thus, the relative advantages of
the proposed methodology becomes more clear for larger datasets, which is very desirable.

Lemma 2 gives a high probability guarantee that csl ln k samples are sufficient to get at least s
samples from each cluster, for an appropriately chosen constant c. To compare empirically observed
numbers with the guidelines provided by Lemma 2, we ran additional experiments on the two largest
datasets, nsf-top30 and news20, with k = 30 and 20 respectively. For nsf-top30, there are 128111
documents and the smallest true cluster size is 1447 documents, giving l = 89. Since c = 1 satisfies
the condition of the Lemma, we chose this simple setting for both data sets. We now sampled the
dataset randomly according to our formula to get at least s samples per cluster for a range of values
of s. In Table 4, we report results by taking the worst numbers over 100 runs, i.e., we draw csl ln k
samples from the dataset 100 times, note the smallest representative size for every run and then
report the smallest among these 100 numbers. As is clear from the table, csl ln k samples indeed
seem sufficient as we always exceeded the desired minimum number of samples per cluster. At
the same time, the numbers observed are of the same order as s, hence the Lemma is not overtly
conservative. Similar results were observed for news20, with l = 21, c = 1, k = 20.

7 Conclusion

In this paper, we used ideas from the theory of recurrent events and renewals, generalizing a known
result in the coupon collector’s problem in route to Lemma 2 which essentially showed that a small
sample was sufficient to obtain a core clustering. We then efficiently allocated the rest of the
data points to the core clusters while adhering to balancing constraints, by using a scheme that
generalizes the stable marriage problem. These two steps underlie the efficiency and generality of
the proposed framework. Indeed, this framework for scaling up balanced clustering algorithms is
fairly broad and is applicable to a very wide range of clustering algorithms, since the sampling as well
as the populate and refine phases of the framework are practically independent of the clustering
algorithm used for clustering the sampled set of points. Moreover, the guarantees provided by
sampling, as stated in Lemma 2 and exemplified in Table 1 implies that the computational demands
for the second step of the framework is not affected by the size of the dataset. Hence, it may
be worthwhile to apply more sophisticated graph-based balanced partitioning algorithms in step
2 [25, 35]. Further, the populate and refine stages are quite efficient and provide the guarantee
that each cluster will eventually have the pre-specified minimum number of points. As seen from
the experimental results, the sampled balanced algorithms perform competitively, and often better,
compared to a given base clustering algorithm that is run on the entire data.

It is often hard to choose the right clustering algorithm for a given problem. However, given
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a base algorithm, the proposed framework can make an efficient scalable algorithm out of it, as
long as the chosen algorithm belongs to a large class of parametric clustering algorithms. One
possible concern for applying the method is that if the natural clusters are highly imbalanced, the
framework may give poor results. The competitive results on the highly skewed yahoo dataset
shows that this is not necessarily true. Further, one can always set the minimum number of points
per cluster to a small value, or, generate a large number of clusters and then agglomerate, so that
the balancing constraints do not hamper the quality of final clusters formed. Problems of uniform
sampling from extremely skewed true clusters may be alleviated by applying more involved density-
biased sampling techniques [32] during step 1, so that the assumptions and requirements on step 2
remain unchanged, i.e., the base clustering algorithm gets enough points per cluster. The proposed
framework, with appropriate modifications, is also applicable to such settings where instead of an
explicit cluster representative, the goodness of an assignment is measured by the objective function
of the corresponding clustering. Computational and qualitative gains by applying the proposed
framework on such sophisticated algorithms can be studied as a future work.
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Figure 1: Results on classic3
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Figure 2: Results on news20
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Figure 3: Results on small-news20
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Figure 4: Results on similar-1000
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Figure 5: Results on yahoo
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Figure 6: Results on nsf-top30
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