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Abstract

In spite of the popularity of probabilistic mixture mod-
els for latent structure discovery from data, mixture mod-
els do not have a natural mechanism for handling sparsity,
where each data point only has a few non-zero observa-
tions. In this paper, we introduce conditional naive-Bayes
(CNB) models, which generalize naive-Bayes mixture mod-
els to naturally handle sparsity by conditioning the model
on observed features. Further, we present latent Dirichlet
conditional naive-Bayes (LD-CNB) models, which consti-
tute a family of powerful hierarchical Bayesian models for
latent structure discovery from sparse data. The proposed
family of models are quite general and can work with arbi-
trary regular exponential family conditional distributions.
We present a variational inference based EM algorithm for
learning along with special case analyses for Gaussian and
discrete distributions. The ef�cacy of the proposed models
are demonstrated by extensive experiments on a wide vari-
ety of different datasets.

1. Introduction

Probabilistic mixture models are arguably one of the
most popular approaches to latent structure discovery from
observed data [12, 7, 2]. Naive-Bayes (NB) models are
a special case of such generative mixture models which
have found successful applications in a wide variety of do-
mains [11, 4, 10]. In spite of their popularity, mixture
models and NB models do not have an explicit mechanism
to handle sparse observations. However, several emerging
large scale applications generate sparse observations. For
example, in a recommender system, a user rates only a very
small fraction of all the available movies. An attempt to use
a mixture model to discover user clusters based on movie
ratings typically leads to unsatisfactory results, as missing
entries dominate the data matrix.

In this paper, we introduce conditional naive-Bayes
(CNB) models, which generalize NB mixture models to nat-

urally handle sparsity in observed data by conditioning the
model on observed features. For the recommender system
example, the CNB model is de�ned over the ratings con-
ditioned on all the movies rated by a user. While CNB
models can handle sparsity by design, they inherit another
shortcoming of mixture models�all features in a data point
are assumed to come from only one component of the mix-
ture. There are a few existing approaches to relax this
assumption, most prominently including multi-cause mod-
els [13, 14], overlapping mixture models [1], aspect mod-
els [6], and latent Dirichlet allocation (LDA) [3, 5]. In LDA,
features of a data point are allowed to potentially come from
different components of the mixture. For the recommenda-
tion system example, the model allows the possibility of a
user liking Action, Animation, and Documentaries simulta-
neously, whereas mixture models will force each user to be
consistently of only one type. In addition, LDA allows each
data point to have a different prior drawn from a Dirichlet
distribution.

Based on the above motivation, we present latent Dirich-
let conditional naive-Bayes (LD-CNB) models that are sig-
ni�cantly more �exible than mixture models, and can natu-
rally handle sparsity. Following Blei et al. [3], we present
a variational approximation method for inference that can
work with arbitrary regular exponential family conditional
distributions, which include Gaussian and discrete distribu-
tions as special cases. We present extensive experimental
results for Gaussian and discrete models. One key highlight
of our results is that LD-CNB models perform better than
CNB models in most settings, and the performance is very
stable across a wide range of input parameter choices, even
on held out testing sets.

The rest of the paper is organized as follows. In sec-
tion 2, we present LD-CNB models for exponential family
distributions, along with two speci�c instantiations to Gaus-
sian and discrete conditional distributions. For learning LD-
CNB models, a variational approximation based EM algo-
rithm is presented in Section 3. We present experimental
results on UCI benchmark and Movielens recommendation
system datasets in section 4, and conclude in section 5.



2. Latent Dirichlet Conditional Naive Bayes

In this section, we present latent Dirichlet conditional
naive-Bayes (LD-CNB) models. We motivate the model by
taking a careful look at settings where standard LDA and
NB models have limitations. The proposed LD-CNB is then
constructed by taking the best of both the worlds.

A �data point� for LDA [3] is assumed to be a sequence
of tokens, each of which is assumed to be generated from
a component discrete distribution. The set of distributions
remains the same across all tokens, since the tokens are
semantically identical, e.g., words in case of LDA [3, 5].
In several applications, there are two important deviations
from the above set-up: (i) Instead of a feature being a to-
ken, each feature has a measured value, e.g., real, categor-
ical, etc.; and (ii) Different features in the feature set are
semantically different. It is highly desirable to be able to
extend LDA-style hierarchical models to such settings.

For �nite dimensional feature vectors, a naive-Bayes
model works well in practice. In particular, the probabil-
ity of a feature vector x given the component z is given by

p(x|θ, z) =
d∏

j=1

pψj (xj |z, θj) ,

where pψj (xj |z, θj) is the exponential family distribution
for feature j, ψj determines the appropriate exponential
family, and d is the total number of features [2]. This widely
used model suffers from two important limitations:
(i) Most large-scale data-sets are sparse, so most feature
values xj will be unknown. For example, in a movie rec-
ommendation setting, each user would have rated only a
very small fraction of all available movies. The naive-Bayes
models have no explicit mechanism to handle sparsity.
(ii) Unlike LDA, the naive-Bayes models assume that all the
features xj corresponding to a feature vector x come from
the same mixture component z. Such a mixture of unigrams
approach [3] puts a severe restriction on the modeling power
of naive-Bayes.

To address the �rst draw-back of naive-Bayes models,
we introduce Conditional Naive-Bayes (CNB) models, that
condition a naive-Bayes model only on a subset of observed
features f = {f1, . . . , fm} where |f | = m ≤ d. The condi-
tional distribution of x is given by

p(x|π, Θ, f) =
k∑

z=1

p(z|π)
m∏

j=1

pψ(xj |z, fj ,Θ) ,

where π is the prior distribution over k components, and
Θ = {θz, [z]k1} ([z]k1 ≡ z = 1, . . . , k) are the parameters
for exponential family distribution. ψ ≡ ψfj determines the
exponential family model appropriate for feature fj . Opera-
tionally, the model is only over the features f whose values
were observed, e.g., the movies that have been rated by a
certain user. To avoid clutter, we have dropped the subscript

fj on ψ. For the movie rating example, x are the ratings
given by a user on the rated movies in f . Note that f will be
potentially different for different users and the model can
directly handle such sparsity structures.

To address the second drawback, we use latent Dirichlet
allocation on conditional naive-Bayes models. In particular,
we assume a Dirichlet prior with parameter α from which
the mixing weights π is sampled. Further, for an observed
feature fj , a component zj is �rst sampled from π, and xj

is sampled from the corresponding component distribution.
Thus, the process of generating a sample x following LD-
CNB model can be described as follows: (i) Choose π ∼
Dir(α); (ii) For each of the observed features fj , [j]m1 : (a)
Choose a class zj ∼ Discrete(π) , and (b) Choose a feature
value xj ∼ pψ(xj |zj , fj ,Θ) . From the generative model,
the joint distribution of (π, z,x) is given by

p(π, z,x|α, Θ, f) = p(π|α)
m∏

j=1

p(zj |π)pψ(xj |zj , fj , Θ) .

The marginal distribution for a data point x is obtained by
integrating over π and summing over all z. The probability
of an entire dataset X = {xi, [i]n1} is given by

p(X|α, Θ, F ) = (1)
n∏

i=1

∫

π

p(π|α)




mi∏

j=1

k∑
zij=1

p(zij |π)pψ(xij |zij , fij ,Θ)


 dπ ,

where F = {fi, [i]n1} is the set of features. The form of
the corpus probability has obvious similarities with that of
LDA [3]. There are, however, a few important differences
in the detail: (i) the model is conditioned on the observed
features, (ii) the model is over the values that the features
can take instead of tokens, and (iii) the marginal probability
pψ(xij |zij , fij ,Θ) follows an appropriate exponential fam-
ily distribution.

In LDA, an atomic event is the generation of a word wj

from a discrete distribution determined by zj . For a given
zj , the probability of wj does not depend on j, i.e., where
the word occurs in the document. In LD-CNB, an atomic
event is the generation of a value xj for feature fj from an
exponential family distribution pψ(xj |zj , fj ,Θ). Further-
more, the distribution (family) depends on which feature
is being considered, and, may be different for different fj .
Since each feature can have a different family determined
by ψ, the LD-CNB model is readily applicable to heteroge-
neous feature vectors. In addition, LD-CNB can also handle
sparse, missing, or variable-length features.

For a concrete exposition to LD-CNB models, we will
focus on two speci�c instantiations of such models based
on univariate Gaussian and discrete distributions for each
feature in each class:
LD-CNB-Gaussian: Such models are appropriate for real-
valued features. Assuming k latent classes and data



dimensionality of d, the model parameters are Θ =
{(µ(z,fj), σ

2
(z,fj)

), [j]d1, [z]k1}, i.e., each feature in each class
has a univariate Gaussian distribution.1 Then, the prob-
ability of generating a feature sequence x from the LD-
CNB-Gaussian model is as in (1) with pψ(xj |zj , fj ,Θ) =
p(xj |µ(zj ,fj), σ

2
(zj ,fj)

).
LD-CNB-Discrete: Such models are appropriate for cate-
gorical features. In general, each feature is allowed to be
of a different type and different number of possible val-
ues. Assuming k latent classes, d features with rj pos-
sible values for the feature fj , the model parameters are
Θ = {p(z,fj)(r), [r]

rj

1 , [j]d1, [z]k1} such that for latent class
z and feature fj , p(z,fj) is a discrete probability distribu-
tion over possible values, i.e., p(z,fj)(r) ≥ 0, [r]rj

1 and∑
r p(z,fj)(r) = 1.

3. Inference and Learning

For a given corpus X , the learning problem for LD-
CNB can be posed as estimating (α∗, Θ∗) such that
p(X|α∗, Θ∗, F ) is maximized. However, for a given choice
of parameters (α, Θ), computing p(x|α, Θ, F ) directly is
intractable. As a result, we pose and solve a surrogate learn-
ing problem of choosing (α∗, Θ∗) that maximizes a varia-
tional lower bound on p(x|α∗,Θ∗, F ).

3.1 Variational Inference

For any distribution q(π, z) approximating the latent
variable distribution p(π, z|α, Θ,x, F ), we have [9]

log p(x|α, Θ, F ) ≥ Eq[log p(π, z,x|α, Θ, F )]+H(q(π, z)),
(2)

where H(·) denotes the Shannon entropy. In variational ap-
proximation, one works with a tractable family of paramet-
ric distributions q(π, z|γ, φ), thereby getting a lower bound
on log p(x|α, Θ, F ) using (2). The best lower bound can be
computed by optimizing over the free variational parame-
ters (γ, φ). Following Blei et al. [3], we use

q(π, z|γ, φ, f) = q(π|γ)
m∏

j=1

q(zj |φj) ,

where γ is a Dirichlet parameter and φ = (φ1, . . . , φm)
are multinomial parameters. Following (2), we can get a
correspond lower bound L(γ, φ; α, Θ) given by

L(γ, φ; α, Θ) = Eq[log p(π|α)] + Eq[log p(z|π)]
+ Eq[log p(x|z,Θ)] + H(q(π)) + H(q(z)) .

The lower bound L(γ, φ; α, Θ) can be iteratively maxi-
mized over the free parameters (γ, φ) using the following

1Naive-Bayes for Gaussians has the exact same set Θ of parameters.

set of update equations:

φ(zj ,fj)∝ exp


Ψ(γzj )−Ψ




k∑
zj′=1

γzj′




pψ(xj |zj , fj , Θ)

γzj
= αzj

+
m∑

j=1

φ(zj ,fj) .

For the LD-CNB-Gaussian model and LD-CNB-Discrete
models, the appropriate iterations can be obtained by
replacing the corresponding distributions in place of
pψ(xj |zj , fj , Θ) in the update equation for φ(zj ,fj). The
form of the updates for γzj

is independent of the exponen-
tial family being used.

3.2 Parameter Estimation

We use the lower bound L(γ, φ; α, Θ) as a surrogate
objective function to be maximized since the original log-
likelihood is intractable. Note that for a �xed value of the
variational parameters (γ, φ), say obtained by variational
inference, the lower bound is a function of the parameters
(α, Θ). Following [3], the update for α can be computed
using a linear time Newton-Raphson iteration. Further, fol-
lowing [12, 2], the parameters Θ can be estimated in closed
form for all exponential family distributions.
LD-CNB-Gaussian: For Gaussians, taking derivative with
respect to µ(zj ,fj) and σ2

(zj ,fj)
, the exact update equations

can be obtained as

µ(zj ,fj) =
∑n

i=1 φi(zj ,fj)xij∑n
i=1 φi(zj ,fj)

σ2
(zj ,fj)

=
∑n

i=1 φi(zj ,fj)(xij − µ(zj ,fj))
2

∑n
i=1 φi(zj ,fj)

,

where φi(zj ,fj) is the variational parameter for component
zj of feature fj of observation xi.
LD-CNB-Discrete: For a discrete distribution p(zj ,fj) over
[r]rj

1 values for feature fj , taking derivative with respect
to each component p(zj ,fj)(r), we have p(zj ,fj)(r) ∝∑n

i=1 φi(zj ,fj)1(r|i, fj), where 1(r|i, fj) is the indicator
of observing value r for feature fj in observation xi. To
avoid 0 probabilities, applying Laplace smoothing for some
ε > 0, we get

p(zj ,fj)(r) ∝
n∑

i=1

φi(zj ,fj)1(r|i, fj) + ε .

3.3 EM for LD-CNB

Starting with an initial guess (α0, Θ0), the EM algorithm
to estimate (α∗, Θ∗) alternates between two steps:



LD-CNB-Gaussian CNB-Gaussian
train test train test

balance 4.5071 3.3082 5.8241 5.8888
cmc 0.6557 0.7136 6.1544 6.1915
derm 0.1814 0.1685 4.5756 4.5735
glass 0.4370 0.5103 1.5766 1.6081
iono 1.4519 1.5101 1.6269 1.6520
iris 1.7762 1.9563 1.8993 2.0090
lung 0.2449 0.4102 2.2339 2.6071
musk 1.6880 1.7513 2.6639 2.6836
pima 0.2280 0.2740 1.1163 1.1314
wine 1.4426 1.5237 3.1618 3.2646

Table 1. Perplexity of LD-CNB-Gaussian and CNB-
Gaussian on training and testing sets.

1. E-Step: Given (α, Θ), for each data point xi, �nd
the variational parameters (γ∗i , φ∗i ) that maximize
L(γ, φ; α, Θ, fi). L(γ∗i , φ∗i ;α, Θ, fi) gives a lower
bound to log p(xi|α, Θ, fi).

2. M-Step: Maximize the aggregate lower bound∑n
i=1 L(γ∗i , φ∗i ; α, Θ, fi) with respect to (α, Θ) in or-

der to obtain an improved parameter estimate.

4. Experimental Results

In this section, we present two sets of experimental
results comparing CNB and LD-CNB models. The �rst
set focuses on Gaussian models and uses UCI benchmark
datasets. The second set focuses on discrete models and
uses the Movielens recommendation dataset.

4.1 Gaussian Models

In this section, we compare modeling performance of
CNB-Gaussian with that of LD-CNB-Gaussian. For all of
the datasets we consider, all features are available for all in-
stances. As a result, the CNB model becomes exactly equiv-
alent to the NB model based on all features.
Datasets and Methodology: Ten datasets from UCI ma-
chine learning repository, as shown in �rst column of Ta-
ble 1, are used for our experiments. For evaluation purpose,
we compute the perplexity [6, 3] of the entire corpus X as:

Perplexity(X) = exp
{
−

∑n
i=1 log p(xi)∑n

i=1 mi

}
, (3)

where mi is the number of observed features for xi. In the
case of UCI dataset, mi is the same for all instances in each
dataset. Perplexity is a monotonically decreasing function
of log-likelihood, implying that lower perplexity is better
since the model can explain the data better. Note that the
comparison is fair for all practical purposes, since the LD-
CNB models use only one additional parameter compared

to CNB. We used the same initial values of µ, σ, and α for
two models. All results reported on the testing sets are the
average of 10-fold cross validation.
Results: The results are presented in Table 1. It is clear
that LD-CNB-Gaussian consistently outperforms CNB-
Gaussian on all of the ten datasets. Since all features are
observable, CNB-Gaussian is equivalent to the correspond-
ing NB-Gaussian. Figure 1 shows some example learning
curves of LD-CNB-Gaussian and CNB-Gaussian on iris,
lung, and wine datasets. We display only the �rst few it-
erations, but the trend shown is maintained till the end. In
general, the perplexity drops dramatically in the �rst few
iterations, and then it slows down until convergence.

4.2 Discretes Models

In this section, we compare the modeling performance of
CNB-Discrete with that of LD-CNB-Discrete on the Movie-
lens recommendation dataset [8]. Since each user rates only
a small fraction of the available movies, the CNB model is
different from the NB model in this case. In fact, the dataset
provides a typical situation where applying NB directly can
be problematic since most features (movie ratings) corre-
sponding to a data point (user) are missing.
Datasets and Methodology: The Movielens dataset is a
movie recommendation dataset created by the Grouplens
Research Project. The dataset we use consists of 100,000
ratings (1-5) for 1682 movies by 943 users. Since each user
only rates a few movies, the data matrix is very sparse.

We ran experiments on three models: CNB-Discrete,
LD-CNB-Discrete, and a version of NB which treats the
missing entries as a sixth category. For CNB-Discrete and
LD-CNB-Discrete, since each user has potentially rated a
different number of movies, the users are actually repre-
sented by a set of variable-length features.

We use the same initialization for CNB-Discrete and LD-
CNB-Discrete. For experiments on the training set, we used
the entire dataset for both training and testing. For experi-
ments on the testing set, we held out 10% data for testing
purpose, and trained on remaining 90%. Further, we applied
Laplace smoothing to all three models with a parameter ε.

We again use perplexity de�ned in (3) for evaluation.
An important difference with the UCI datasets is that the
number of features mi can be different for different users.
Since NB cannot work with variable length sequences, we
use per-user perplexity to compare CNB and NB:

UserPerp(X) = exp
{
−

∑n
i=1 log p(xi)

n

}
. (4)

Results: For a �xed ε (ε=0.1) and a �xed number of classes
k (k = 20), the results are listed in Table 2. LD-CNB-
Discrete consistently outperforms CNB-Discrete. Further,
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Figure 1. Learning curve of CNB-Gaussian and LD-CNB-Gaussian over iterations.

perplexity per-user perplexity
train test train test

NB- � � 1.4309 1.1074
Discrete ×10167 ×10183

CNB- 2.7950 4.5731 2.1724 1.2640
Discrete ×1047 ×1070

LD-CNB- 2.6871 4.2144 3.3297 2.1649
Discrete ×1045 ×1066

Table 2. Perplexity and per-user perplexity of three mod-
els on training and testing set while ε = 0.1 and k = 20.

CNB-Discrete outperforms NB-Discrete in terms of per-
user perplexity, as CNB-Discrete is able to concentrate
on the meaningful non-zero features while NB-Discrete is
dominated by the meaningless zero entries.

We ran extensive experiments for a range of values for
k and ε. In particular, the number of classes k was varied
from 5 to 45 in steps of 5, with ε set to 0.01, 0.1, 0.5, and
1. The overall results for entire (k, ε) range are presented
as perplexity surfaces in Figures 2 and 3 for training and
testing sets respectively. For training set results in Figure 2,
we note that the perplexity surface for LD-CNB-Discrete is
almost always lower than that of CNB-Discrete over the en-
tire range. Both models tend to perform better with a larger
k and a smaller ε. For testing set results in Figure 3, the per-
plexity surface for LD-CNB-Discrete is better than that of
CNB-Discrete for a smaller ε and a smaller k. The testing
set performance of LD-CNB-Discrete being very consistent
across the entire range of (k, ε) is reassuring, and high-
lights the stability of the model. Overall, LD-CNB-Discrete
demonstrates better performance on training set and more
consistent and mostly better performance on testing set.

In Figures 2 and 3, if we �x the number of latent classes,
say k = 20, we could see the perplexity trend with varied
values of ε. Generally, for larger values of ε, the perplex-
ity on training set is higher, and the perplexity on testing
set is lower. The result is consistent with the Bayesian in-
tuition behind smoothing. In particular, a lower value of
the Laplace smoothing parameter implies a higher con�-
dence on the parameters learnt from the training set. The

learnt parameters will surely have a good performance on
the training set itself, but not necessarily on the testing set.
On the other hand, larger value of the smoothing parameter
implies a conservative approach, which need not do as well
on training set, but may perform reasonably well on testing
set, especially if the training set is noisy or sparse. There-
fore, we observed the ideal behavior one would expect as an
effect of smoothing.

In order to gain a better understanding, we ran several
related experiments to test for failure modes of LD-CNB-
Discrete model. In the experiments on a small subset of the
Movielens dataset, consisting of the ratings of 50 users on a
total of 1084 movies, CNB mostly outperformed LD-CNB
across a range of values of (k, ε), especially when ε is large.

We also compared per-user perplexity of NB-Discrete
and CNB-Discrete on the full Movielens dataset. The re-
sults are shown in Figures 4 and 5. Interestingly, the per-
user perplexities do not change much with the number of
latent classes. Further, the perplexity for CNB-Discrete
is consistently better than NB-Discrete. The poor perfor-
mance of NB-Discrete demonstrates the risk of NB mod-
eling with missing feature values. The improvement due
to CNB somewhat justi�es the conditional model, although
the plots cannot be directly compared since the models use
different number of features.

5 Conclusion
Ability to naturally handle sparsity is fast emerging

as a key requirement for large scale data mining. In
this paper, we presented a family of LD-CNB models
that can not only handle sparsity, but actually take full
advantage of it. On one hand, such models naturally
extend the popular naive-Bayes models to work with sparse
observations by conditioning the model on the observed
features. On the other hand, we show that the machinery of
hierarchical Bayesian modeling can be readily applied to
such conditional naive-Bayes models. The stability of the
performance of the LD-CNB model on held out test data
is reassuring, and highlights the promise of the proposed
family of models.



5 10 15 20 25 30 35 40 45
0.01

0.1
0.5

12

2.5

3

3.5

4

Smoothing 
Parameter Number of Classes

P
er

pl
ex

ity

CNB−Discrete LD−CNB−Discrete
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and smoothing.
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