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Abstract

Logistic models are arguably one of the most widely used

data analysis techniques. In this paper, we present analyses

focussing on two important aspects of logistic models—its re-

lationship with exponential family based generative models,

and its performance in online and potentially adversarial set-

tings. In particular, we present two new theoretical results

on logistic models focusing on the above two aspects. First,

we establish an exact connection between logistic models

and exponential family based generative models, resolving

a long-standing ambiguity over their relationship. Second,

we show that online Bayesian logistic models are competi-

tive to the best batch models, even in potentially adversar-

ial settings. Further, we discuss relevant connections of our

analysis to the literature on integral transforms, and also

present a new optimality result for Bayesian models. The

analysis makes a strong case for using logistic models and

partly explains the success of such models for a wide range

of practical problems.

1 Introduction

Logistic models are arguably one of the most widely
used tools in data analysis techniques [22]. Two of
the most popular logistic models are logistic regression
(LR) [22, 32, 34], used for classification, and conditional
random fields (CRFs) [27], used for structured predic-
tion. Both types of models have been successfully ap-
plied to prediction problems in a wide range of problem
domains. The key unifying aspect of logistic models
is that they are discriminative models where the class
posterior distributions are assumed to be Gibbs distri-
butions [22, 27] over the features. In practice, one often
prefers a Bayesian logistic regression approach [29, 26]
that provides regularization, which can be valuable for
high-dimensional problems [33].

Discriminative probabilistic models for classifica-
tion are often more desirable than their generative coun-
terparts as discriminative models do not try to model
the joint distribution p(x, y) over features x ∈ Rd and
labels y ∈ {−1,+1}. Instead, they explicitly model the
posterior p(y|x). In order to do the modeling, discrimi-
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native models make appropriate assumptions about the
parametric form of p(y|x) [25, 27], and use training data
to learn the parameters. Logistic models are one of the
most widely studied discriminative models [35, 24]. The
parametric assumption of logistic regression is that the
log-odds ratio of the class posteriors p(y|x) is an affine
function of the features x. This assumption has appro-
priate extensions to the multi-class [22] and structured
prediction [27] settings.

Generative models, on the other hand, make ex-
plicit assumptions about the class conditional distribu-
tions p(x|y). Such assumptions translate to assump-
tions about the marginal p(x) as well as the joint dis-
tribution p(x, y). Modeling the joint distribution for
classification purposes is considered an over-kill in that
one is solving a more general problem than is necessary
for solving the classification problem. Further, gen-
erative model typically have higher “bias” [17], which
typically translate to faster training but higher asymp-
totic errors [34]. Nevertheless, generative models per-
form quite well for some applications such as speech
recognition [37] and text analysis [10]. Popular gener-
ative models often use mixtures of exponential family
distributions employing either point estimation [37] or
Bayesian estimation [10].

While it is well known [22, 9, 24] that certain specific
assumptions about the class conditional distributions
lead to log-odds ratio of the class posterior distributions
being affine, the literature does not have a characteriza-
tion of exactly what family of conditional models lead
to affine log-odds ratio of the posterior [24, 32, 3, 22]. In
particular, it is known that if the conditional distribu-
tions all belong to the same exponential family, then the
log-odds of the posteriors is affine. However, it is not
known if the converse of the above is true, or, in case it
is false, what other conditionals lead to affine log-odds
of the posterior. In this paper, we give an exact charac-
terization of the family of conditional models that lead
to affine log-odds of the posterior. For logistic regression
models, we show that the log-odds ratio of the posteriors
will be affine if and only if the class conditional distribu-
tions belong to the same exponential family. We estab-
lish a similar result for structured prediction problems



by showing that the label sequence posterior will be that
of a conditional random field (CRF) if and only if the
conditionals belong to structured exponential families.
We also show that hidden Markov models (HMMs) as-
sume label sequence conditionals to be in a fixed struc-
tured exponential family, and hence have significantly
higher bias than CRFs.

A wide range of real-life prediction problems have to
be solved in an online setting, where data is coming one
at a time or in small groups. Predicting events in the
stock market [23] or online models for novelty/anomaly
detection [41] are practical examples of such settings.
Further, unlike certain other predictive modeling set-
tings, one cannot make assumptions about the data
since the data may potentially be coming from an ad-
versary, e.g., in the anomaly detection setting. What
can be said about the predictive performance of logistic
models in such online and potentially adversarial set-
tings? From a more practical consideration, we ask: Do
we need to train a logistic regression classifier on the en-
tire historical data every time a new (group of) point(s)
comes in, or is there a way to incrementally update the
current classifier and still get predictive performance as
good as that of retraining the classifier on the entire
historical data? The second main result of this paper
shows that an incrementally updated Bayesian logistic
regression model will have performance comparable to
that of the single best logistic regression classifier that
can be obtained by training on the entire historic data.
The theoretical guarantee holds without any assump-
tion about the data, and hence strongly supports the
use of Bayesian models for real-life online setting.

The rest of the paper is organized as follows. We
review some background material on exponential fami-
lies, linear discriminant models, and logistic regression
in Section 2. In Section 3, we present and prove our
first main result connecting logistic regression and ex-
ponential families, and its generalization to structured
prediction models connecting conditional random fields
and structured exponential families. In Section 4, we
present our second main result on relative performance
of Bayesian logistic regression in an online and poten-
tially adversarial setting. Section 5 presents a discussion
connecting exponential families and integral transforms,
in particular Fourier and Laplace transforms, which play
an important role in our analysis. We also present a new
perspective on the optimality of Bayesian models using
Bregman divergences. We conclude in Section 6.

2 Background

In this section, we review some background material on
exponential families and logistic regression.

2.1 Exponential Families. A multivariate para-
metric family Fψ of distributions {p(ψ,θ)|θ ∈ Θ ⊆ Rd} is
called an exponential family if each probability density
is of the form

p(ψ,θ)(x) = exp(〈x,θ〉 − ψ(θ))p0(x), ∀x ∈ Rd ,

where x is a sufficient statistic for the family and
p0(x) is a non-negative base measure independent of
the parameters θ. The function ψ(θ) is known as
the log-partition function or the cumulant function

corresponding to the exponential family. If the sufficient
statistic x is minimal, i.e., ∄ non-zero a ∈ Rd such that
〈a,x〉 = c (a constant) ∀x, and Θ = dom(ψ) is open, the
family is called regular. For a regular exponential family
Fψ, the log-partition function ψ is uniquely determined
up to a constant additive term. It can be shown [6] that
Θ is a non-empty convex set in Rd and ψ is a convex
function of Legendre type [38].

2.2 Linear Discriminant Analysis. Linear dis-
criminant analysis (LDA) is one of the traditional ap-
proaches to (multiclass) classification [22]. In its general
form, one assumes that the class conditional densities
all belong an exponential family with each class having
different (natural) parameters. If θh is the natural pa-
rameters of the conditional density for class h, we have

p(x|h) = exp(〈x,θh〉 − ψ(θh))p0(x) .

For classification purposes, one considers the log-odds
ratio of the posteriors of the classes under considera-
tion. For classes h, k, with prior probabilities πh, πk

respectively, the log-odds ratio is

log
P (h|x)

P (k|x)
= log

p(x|h)

p(x|k)
+ log

πh

πk

= 〈x,θh − θk〉 − (ψ(θh) − ψ(θk)) + log
πh

πh

,

which is linear in x, thereby justifying the name.
Two of the most popular special cases of LDA are
Gaussian LDA, which assumes class conditionals to be
multivariate Gaussians with different means but equal
covariances, and naive-Bayes models [36, 34], which
assume factored exponential families typically applied
for multinomial conditionals [36]. Some generalizations
such as quadratic discriminant analysis (QDA) can also
be incorporated in this framework by appropriate choice
of sufficient statistics. In particular, QDA reduces to
LDA using sufficient statistics based on xi and xixj ,
i, j = 1, . . . , d.

2.3 Logistic Regression. In the basic setting of lo-
gistic regression, one assumes the existence of a distri-
bution over X × {1, . . . , k} such that the log-odds ratio



of the class posteriors is affine in x, i.e., ∀x, for any class
h and the (arbitrary) reference class k,
(2.1)

log

(

P (h|x)

P (k|x)

)

= 〈ah,x〉 + bh , h = 1, . . . , (k − 1) ,

where ah ∈ Rd and bh ∈ R. For the purposes of
this article, we make the definition more precise by
introducing logistic families. First, note that P (y|x) =
P (y)p(x|y)/p(x). Further, assuming that P (h) =
1
k
, ∀h ∈ {1, . . . , k}, we have1

log

(

P (x|h)

P (x|k)

)

= 〈ah,x〉 + bh , h = 1, . . . , (k − 1) .

We say a family of distributions belongs to a logistic
family Flog if for any two distributions p1, p2 ∈ Flog,

their log-odds ratio is affine, i.e., log
(

p1(x)
p2(x)

)

= 〈a,x〉+b,

for some a ∈ Rd, b ∈ R. It is important to note
that the logistic regression assumption implies that
the conditional distributions corresponding to the two
classes belong to the same logistic family. However,
unlike an exponential family, we do not have an explicit
characterization of the members of the logistic family.

3 Logistic Models and Exponential Families

Since logistic models make an explicit assumption about
the posterior p(y|x), a natural question to ask is: what
kind of assumptions about the conditional distributions
p(x|y) lead to the assumed form of the posterior? In
the literature, there are several examples of conditional
distributions that lead to the desired posterior [22, 9,
24]. In particular, it is known that if the conditional
distributions all belong to the same exponential family,
then the log-odds of the posteriors is affine. What is
not known can be posed as follows: Are exponential
families the only conditional distributions that can lead
to a log-odds of the posterior that is affine? Several
authors have commented on the relationship between
exponential family distributions and logistic regression.
For example, Anderson [3] and McLachlan [32, page 256]
discuss the wide applicability of logistic regression, as
a wide variety of families of conditional distributions
and perturbations of them satisfy the requirement that
the log-odds ratio of the posterior is affine, and go
on to give specific examples. Jordan [24], Bishop [9,
pages 233-234], and Hastie et. al. [22, pages 103-105]
have presented discussions on the relationship as well.
Interestingly, there is no precise quantification of exactly

1We assume equal priors for simplicity. Unequal priors simply
result in a different b. We discuss this and other extensions in
Section 3.

what conditional distributions lead to affine log-odds
ratio of the posteriors.

In this section, we give an exact characterization of
the class of conditional models that lead to affine log-
odds of the posterior. In particular, for logistic regres-
sion models, we show that the log-odds ratio of the class
posteriors p(y|x) will be affine if and only if the class
conditional distributions p(x|y) belong to the same ex-
ponential family. Since linear discriminant models are
obtained from exponential family conditionals,2 our re-
sult shows that logistic regression models have a signif-
icantly lower “bias” [17] than linear discriminant mod-
els [22, 34]. We establish a similar result for structured
prediction problems by showing that the label sequence
posterior distribution will be that of a conditional ran-
dom field (CRF) if and only if the conditionals belong
to structured exponential families. We also show that
hidden Markov models (HMMs) assume label sequence
conditionals to be in a fixed structured exponential fam-
ily, and hence have significantly higher bias compared
to CRFs.

3.1 Laplace Transform of Non-negative Func-
tions. Our analysis hinges on viewing exponentially
families as being generated from generalized Laplace
transforms [8] of bounded non-negative measures on
Rd. Let P0(x) be a bounded non-negative measure on
Rd with density p0(x). Then, the generalized Laplace
transform of p0(x) is given by

(3.2) L(θ) =

∫

x

exp(〈x,θ〉)p0(x)dx .

Since p0(x) is non-negative, L(θ) is non-negative and
can be expressed as L(θ) = exp(ψ(θ)) for some function
ψ(θ). Plugging this back into (3.2) and rearranging
terms, we get

exp(ψ(θ)) =

∫

x

exp(〈x,θ〉)p0(x)dx(3.3)

1 =

∫

x

exp(〈x,θ〉 − ψ(θ))p0(x)dx(3.4)

showing that exp(〈x,θ〉 − ψ(θ))p0(x) is a probability
density function of an exponential family distribution.
Since P0(x) is a bounded measure, let k0 =

∫

Rd p0(x)dx.
But L(0) = k0 so that ψ(0) = log k0. Hence, the density
function p0(x)/k0 is a member of this exponential family
for θ = 0. In general, an appropriately scaled version
of the base measure is always a member the family. In
other words, one member of every exponential family

2One typically considers the case of multivariate Gaussians
with different means but the same covariance matrix (for example,
see [22]).



is an arbitrary integrable non-negative density function
over Rd and the other members are generated from it.
This observation is key to the rest of our analysis.

3.2 Relationship for Logistic Regression. For
simplicity, we first focus on the 2-class classification set-
ting. Let EXP2(d) denote the class of joint distribu-
tions p(x, y) on X × {−1, 1} that can be represented
as a mixture of two distributions from any fixed ex-
ponential family with X ⊆ Rd and equal priors, i.e.,
if p(x, y) ∈ EXP2(d), then p(x|y) = p(ψ,θy)(x) and

P (−1) = P (+1) = 1
2 , where p(ψ,θy)(x) ∈ Fψ. Let

LR2(d) denote the class of joint distributions p(x, y) on
X ×{−1,+1} such that p(x|+1) and p(x|−1) belong to
the same logistic family Flog and P (−1) = P (+1) = 1

2 .
Note that p(x, y) ∈ LR2(d) is equivalent to the assump-
tions of logistic regression, i.e., the log-odds ratio is
affine in x. In this section, we establish a connection be-
tween the class of distributions in LR2(d) and the class
of distributions EXP2(d). In particular, with a rather
simple argument, we show that LR2(d) = EXP2(d), so
that the assumption made by logistic regression is ex-
actly the same as assuming that the generative model
for the observed data is a mixture of any two distribu-
tions from any fixed exponential family.

Theorem 1 For a 2-class classification problem with

equal priors, the log-odds ratio of the class posteriors

is affine if and only if the class conditional distributions

belong to any fixed exponential family. Hence, LR2(d) =
EXP2(d).

Proof. First, we prove that p(x, y) ∈ EXP2(d) ⇒
p(x, y) ∈ LR2(d) so that EXP2(d) ⊆ LR2(d).3 In other
words, if the class conditionals belong any fixed expo-
nential family, then the log-odds ratio of the posterior
is affine. Let p(x, y) be a mixture of two distributions
from the exponential family with equal priors and with
cumulant function ψ : Rd 7→ R. Let θ+,θ− ∈ Rd be the
natural parameters of the two distributions. Then,

log

(

P (+1|x)

P (−1|x)

)

= log p(ψ,θ+)(x) − log p(ψ,θ−)(x)

= 〈a,x〉 + b,

where a = θ+ − θ−, and b = ψ(θ−) − ψ(θ+). Hence
p(x, y) ∈ LR2(d).

Now, we prove the converse that p(x, y) ∈
LR2(d) ⇒ p(x, y) ∈ EXP2(d) so that LR2(d) ⊆
EXP2(d). In other words, if the log-odds ratio of the
class posteriors is affine, then the class conditionals both

3This part of the result has appeared in the literature [9, 24].
We provide the proof in our notation for completeness.

belong to any fixed exponential family. By definition,
∀x we have

log

(

P (+1|x)

P (−1|x)

)

= 〈a,x〉 + b

⇒ p(x| + 1) = exp(〈a,x〉 + b) p(x| − 1) .(3.5)

Now, p(x| − 1) can be either an arbitrary density
function or a member of an exponential family. We
consider both cases. When p(x| − 1) is an arbitrary
density function, let p(x|−1) = f(x). Then, from (3.5),
we have

p(x| + 1) = exp(〈a,x〉 + b)f(x) .

Since p(x|+1) is a probability density function, we have

1 =

∫

x

p(x| + 1)dx

=

∫

x

exp(〈a,x〉 + b)f(x)dx

⇒ exp(−b) =

∫

x

exp(〈a,x〉)f(x)dx .

From (3.3) it follows that if ψ is the cumulant function
of the exponential family with base measure f(x), then
−b = ψ(a). Hence, p(x| + 1) is the exponential family
distribution with density p(ψ,a) ∈ Fψ. Furthermore,
since p(x| − 1) = p(ψ,0) ∈ Fψ, the mixture distribution
p(x, y) ∈ EXP2(d).

The alternative possibility is that p(x| − 1) is
actually an exponential family distribution p(ψ,θ), say
with base measure p0(x), i.e., p(x| − 1) = exp(〈x,θ〉 −
ψ(θ))p0(x). Then,

(3.6) p(x| + 1) = exp(〈x,a + θ〉 + b − ψ(θ))p0(x)dx .

Again, since p(x| + 1) is a probability density function

1 =

∫

x

exp(〈x,a + θ〉 + b − ψ(θ))p0(x)dx ,

so that

exp(−(b − ψ(θ))) =

∫

x

exp(〈x,a + θ〉)p0(x)dx

= exp(ψ(a + θ)) .

Hence, −(b − ψ(θ)) = ψ(a + θ) implying that p(x| +
1) is the exponential family distribution with density
p(ψ,a+θ) ∈ Fψ. Since, p(x| − 1) = p(ψ,θ) ∈ Fψ, the
mixture density p(x, y) ∈ EXP2(d). Hence, LR2(d) ⊆
EXP2(d). That completes the proof.

The above argument can be easily extended to the
case when the class priors are not equal—there is one ad-
ditive terms in addition to b, but the main argument re-
mains unchanged. The extension to the multi-class case



is also straightforward. For the uniform class prior case,
with suitable extensions of our definitions to EXPk(d)
(mixture of k exponential family distributions, one cor-
responding to each class) and LRk(d) (the pairwise log-
odds ratios, and hence log-conditional ratios, are affine),
we have the following result.

Theorem 2 For a k-class classification problem with

equal priors, the pairwise log-odds ratio of the class

posteriors is affine if and only if the class conditional

distributions belong to any fixed exponential family.

Hence, LRk(d) = EXPk(d).

The proof is identical to that of 2 classes. As before,
EXPk(d) ⊆ LRk(d) essentially follows from the def-
inition of exponential family. For the converse, i.e.,
LRk(d) ⊆ EXPk(d), if one assumes that one of the con-
ditional distributions p(x|h) belongs to an exponential
family, then since the log-odds of all other conditionals
are affine with respect to p(x|h), it follows that all condi-
tionals belong to the same family. On the other hand, if
one assumes that one of the conditionals p(x|h) is an ar-
bitrary density function, then all conditionals belong to
the exponential family generated by that density. The
extension to the case of unequal priors in the multiclass
setting is also straightforward.

3.3 Relationship for Conditional Random
Fields. Conditional Random Fields (CRFs) [27] are
logistic models on structures, such as sequences and
graphs. Our discussion focuses on the case of sequences,
where any labeled training exampled (x,y) is a se-
quence of labels applied to a sequence of observations,
such as part-of-speech tagging of English text. The
extension to the general case of structured prediction is
straightforward.

In CRFs, the probability of a label sequence y given
an observation sequence x is given by

p(y|x,λ) =
1

Z(x,λ)
exp





d
∑

j=1

λjFj(y,x)



 ,

where, for a n-length sequence, Fj(y,x) =
∑n

i=1 fj(yi−1, yi,x, i), where each fj(yi−1, yi,x, i)
can be a state-potential function s(yi,x, i) or a
transition-potential function t(yi, yi−1,x, i), and
Z(x,λ) is a normalization constant or cumulant given
by

Z(x,λ) =
∑

y′∈Y

exp





d
∑

j=1

λjFj(y
′,x)



 ,

where Y is the set of all possible label sequences. Since
|Y| is typically exponential in n, carefully designed al-
gorithms [27, 40] are necessary for maximum-likelihood

estimation of λ. Written in a similar form, a k-class
logistic regression formulation only has k terms in the
cumulant, making simple gradient-based solutions pos-
sible for maximum-likelihood estimation of the param-
eters.

Consider a class of generative exponential fam-
ily models that use the feature vector Φ(x,y) =
[F1(x,y) . . . Fd(x,y)]T as a sufficient statistic. Then,
the joint probability of the observation sequence x and
the label sequence y is given by

p(x,y|θ) = exp(〈Φ(x,y),θ〉 − Ψ(θ))q0(Φ(x,y)) .

We focus on a special class of base measures for which
q0(Φ(x,y)) = p0(x), and call the corresponding joint
distributions p(x,y|θ) as belonging to structured expo-

nential families. Then, we have the following result.

Theorem 3 For a sequence classification problem, the

posterior probability of a label sequence is that of a con-

ditional random field if and only if the joint distributions

belongs to any structured exponential family.

Proof. First we prove the “if” part. If the joint distri-
butions belong to a structured exponential family, then

p(x,y|θ) = exp(〈Φ(x,y),θ〉 − Ψ(θ))p0(x) .

Then, by Bayes theorem,

p(y|x,θ) =
p(x|y,θ)p(y|θ)

∑

y′∈Y
p(x|y′,θ)p(y′|θ)

=
p(x,y|θ)

∑

y′∈Y
p(x,y′|θ)

(a)
=

1

Z(x,θ)
exp(〈Φ(x,y),θ〉) ,

where Z(x,θ) =
∑

y′∈Y
exp(〈Φ(x,y′),θ〉), and (a)

follows since the exp(−Ψ(θ))p0(x) terms cancel out.
Clearly, the last expression is the posterior correspond-
ing to a CRF with λ = θ.

Now, we prove the “only if” part. Since the
posterior probability of any label sequence is that of
a CRF, for any pair of label-sequences y,y0, we have

log

(

p(y|x,λ)

p(y0|x,λ)

)

= 〈Φ(x,y) − Φ(x,y0),λ〉 .

Hence, we have

p(x,y|λ) = exp(〈Φ(x,y) − Φ(x,y0),λ〉)p(x,y0|λ) .

If p(x,y0|λ) is a structured exponential family distribu-
tion, then

p(x,y0|λ) = exp(〈Φ(x,y0),λ〉 − Ψ(λ))p0(x) .



Plugging this back in the expression for p(x,y|λ), we
get

p(x,y|λ) = exp(〈Φ(x,y),λ〉 − Ψ(λ))p0(x) .

Thus, if one of the joint distributions is a structured
exponential family distribution, then all of them must
be structured exponential family distributions. Next,
we consider the case where p(x,y0|λ) is an arbitrary
distribution of the form f0(x) exp(b), where f0(x) ≥ 0
and b is a real constant, so that

∫

x
f0(x) exp(b)dx = 1.

Note that the assumed form is general, since p(x,y0|λ)
is a probability distribution, and y0 is fixed. Now,
we define new features Φ0(x,y) = Φ(x,y) − Φ(x,y0).
Then, we have

p(x,y|λ) = exp(〈Φ0(x,y),λ〉 + b)f0(x) .

Since p(x,y|λ) is a probability distribution,

1 =

∫

x,y

exp(〈Φ0(x,y),λ〉 + b)f0(x)dx

exp(−b) =

∫

x,y

exp(〈Φ0(x,y),λ〉)f0(x)dx .

If Ψ0(λ) is the cumulant function of an exponential fam-
ily with sufficient statistics Φ0(x,y) and base measure
f0(x), then b = −Ψ0(λ). Hence,

p(x,y|λ) = exp(〈Φ0(x,y),λ〉 − Ψ0(λ))f0(x) .

Since y is arbitrary, all joint distributions p(x,y|λ),
are structured exponential family distributions. That
completes the proof.

Theorem 3 exactly characterizes the “bias” of CRFs
as compared to specific generative models that belong
to structured exponential families. We wrap up this
section by showing that the widely used Hidden Markov
Model (HMM) [37] is a specific instance of a structured
exponential family distribution. Recall that according
to a HMM, the joint probability of an observation and
label sequence is given by

p(x,y|λ) =

n
∏

i=1

p(yi|yi−1)p(xi|yi) .

For k states, and n observables, in an over-complete
representation the parameters λ consist of the (k +
k2 + nk) components, of which k are based on state
initiation probabilities p(h), h = 1, . . . , k; k2 are based
on state-transition probabilities p(h|ℓ), h, ℓ = 1, . . . , k;
and nk are based on emission probabilities p(i|h), h =
1, . . . , k, i = 1, . . . , n. In particular, we have

λh = log p(h), λhℓ = log p(h|k), λih = log p(i|h) .

The first set of k sufficient statistics are boolean, in-
dicating whether h was the start state; the set of k2

statistics are counts of state transitions; and the set
of nk statistics are again counts of emissions. With
q0(x,y) = p0(x) being the counting measure, and cor-
responding Ψ(λ) = 0, it is straightforward to see that
a HMM is a specific example of structured exponential
family distribution. From Theorem 3 it follows that the
posterior distribution of label sequences has the form of
that of a CRF. However, CRFs are significantly more
robust since several other joint distributions lead to the
same posterior.

4 Online Performance of Logistic Models

In several real life applications, additional data becomes
available over time. Such a situation can arise be-
cause the data actually gets created over time, e.g., text
categorization applications on the web, or additional
measurements are being made, e.g., satellite images of
earths surface. In such a setting, a natural question to
ask is: Do we have to re-train the classifier on the en-
tire dataset, or can we make incremental updates to the
existing classifier based on the new data and still get
good performance? There is yet another reason that
makes the capability of incremental training desirable.
Consider training a classifier such as logistic regression
or support vector machine on a very large dataset, con-
sisting of several million points. The computation and
main memory storage necessary for training can be pro-
hibitive on several commonly available computation in-
frastructures. Instead, if one does incremental training
using one-point or, a small group of points at a time,
the approach will be feasible both in terms of compu-
tation and storage. However, the crucial question be-
comes: Will the incrementally trained classifier be com-
parable to the best classifier trained in batch? In this
section, we give an answer to this question for logistic
regression models. Without making any statistical as-
sumptions about the data, we show that incrementally
trained Bayesian logistic regression models have perfor-
mance comparable to the best logistic regression model
that can be trained in batch, looking back at the entire
dataset.

In some situations, Bayesian models are preferred
since they can naturally incorporate prior belief about
the parameter values [21]. The regularization provided
by Bayesian models are critical, particularly for high-
dimensional problems [33]. Bayesian logistic regression
has gained popularity in the recent years for a wide
variety of applications[26, 29]. We consider a Bayesian
prior over all logistic regression models, where for any
input x, the predictor corresponding to w assigns



probability

p(y|x,w) =
1

1 + exp(−y〈w,x〉)
,

where y ∈ {−1,+1}. 4 Then, we assume a Gaussian
prior distribution P0 with density p0(w) = N(w;0, I)
over all predictors w ∈ Rd.

Let ST = {(x1, y1), . . . , (xT , yT )} be a sequence of
examples presented to the Bayesian classifier. Predic-
tion proceeds in iterations, where in iteration t, input
xt is presented, and each of the predictors generates a
prediction. If yt is the true label, then each predictor w
incurs a loss of

ℓt(w) = − log p(yt|xt,w) .

Further, the distribution over w is updated based on
the loss incurred by individual predictors. If Pt−1 is
the distribution on the predictors after seeing the first t
examples St−1 = {(x1, y1), . . . , (xt−1, yt−1)}, by a direct
application of Bayes rule, the updated distribution Pt

after observing (xt, yt) has a density

pt(w) ≡ p(w|St) = p(w|St−1,xt, yt)

=
p(yt|xt,w, St−1)p(w|xt, St−1)

p(St)

=
p(yt|xt,w)p(w|St−1)

p(St)
=

p(yt|xt,w)pt−1(w)

p(St)
,

since yt is independent of St−1 given xt,w, i.e., indi-
vidual predictors are memory-less, and p(w|xt, St−1) =
p(w|St−1) as we update the distribution over w only
after getting the label on the current input xt.

At iteration t, on receiving input xt, the Bayesian
logistic regression model predicts

p(y|xt, St−1) = Ew∼pt−1
[p(y|xt,w)]

=

∫

w

pt−1(w)

1 + exp(−y〈w,x〉)
dw .

If yt is the true label, the Bayesian model incurs a
loss of − log p(yt|xt, St−1). Hence, after such iterative
prediction on ST , the total loss incurred by Bayesian
logistic regression is

LBLR(ST ) =

T
∑

t=1

− log p(yt|xt, St−1) .

Let Q be any fixed distribution over the predictors
w ∈ Rd. Consider a Gibbs prediction scheme that

4Note that 〈a,x〉 + b can always be written as 〈w,x〉 by
augmenting x by a constant element.

samples w ∼ Q, and then predicts on xt based on w.
The expected loss incurred by Q at iteration t is simply

ℓt(Q) = Ew∼Q[− log p(yt|xt,w)] ,

and the total loss

LQ(ST ) =

T
∑

t=1

ℓt(Q) = Ew∼Q

[

T
∑

t=1

− log p(yt|xt,w)

]

.

Then, by a convexity argument (for example, see [4, 25,
20] for details) one can establish the following result,
where we denote ST by S for simplicity.

Theorem 4 ([4, 25]) For any distribution Q on w ∈
Rd,

LBLR(S) ≤ LQ(S) + KL(Q‖P0) .

We use Theorem 4 to prove the following dimension
independent and data size independent relative loss
bound for Bayesian logistic regression. For simplicity,
we assume that ‖xt‖ = 1,∀t.

Theorem 5 Let w∗ be any weight vector used for

logistic regression with cumulative loss Lw∗(S) =
∑T

t=1 ℓt(w
∗) =

∑T
t=1 − log p(yt|xt,w

∗). Then, for any

sequence of examples S,

LBLR(S) ≤ 2Lw∗(S) +
‖w∗‖2

2
.

Proof. We prove the result by a derandomization argu-
ment applied to Theorem 4. Consider a distribution Q
on the predictors w with density q(w) = N(w;w∗, I).
Then, since p0(w) = N(w;0, I), we have

KL(Q‖P0) = Ew∼Q

[

−
‖w − w∗‖2

2
+

‖w‖2

2

]

= Ew∼Q[〈w,w∗〉] −
‖w∗‖2

2

=
‖w∗‖2

2
.

We complete our proof by showing that LQ(S) ≤
2Lw∗(S). In fact, we show that the instantaneous losses
satisfy the desired relationship, i.e., ℓt(Q) ≤ 2ℓt(w

∗).
Note that

ℓt(Q) = Ew∼Q[− log p(yt|xt,w)]

= Ew∼Q[log(1 + exp(−yt〈xt,w〉))]

≤ log(1 + Ew∼Q[exp(−yt〈xt,w〉)]) ,

by an application of Jensen’s inequality since log is a
concave function. Let z = 〈xt,w〉. Since w ∼ Q with



density q(w) = N(w;w∗, I), z ∼ N(z; z∗, 1), where
z∗ = 〈xt,w

∗〉, because the projection of multivariate
identity covariance normal random variable along any
unit vector has a univariate unit variance normal distri-
bution. Then,

ℓt(Q) ≤ log(1 + Ez∼N(z∗,1)[exp(−ytz)])

Recall that the moment generating function of the
univariate unit variance normal distribution is given by

M(t) = Ez∼N(µ,1)[exp(tz)] = exp(tµ + t2/2) .

Replacing µ = z∗ and t = −yt, we obtain

ℓt(Q) ≤ log(1 + exp(−ytz
∗ + 1/2))

≤ log(1 + 2 exp(−ytz
∗))

≤ log(1 + 2 exp(−ytz
∗) + exp(−2ytz

∗))

= 2 log(1 + exp(−ytz
∗))

= 2 log(1 + exp(−yt〈xt,w
∗〉))

= 2ℓt(w
∗) .

Adding both sides over t = 1, . . . , T, completes the
proof.

Theorem 5 shows that the loss incurred by the incre-
mentally maintained Bayesian logistic regression classi-
fier will be within twice the loss of the best logistic re-
gression classifier that can be trained on the entire data,
plus an additional constant that is independent of data
properties such as number of data points or the dimen-
sionality of the data. In other words, the incremental
Bayesian model “tracks” the best logistic classifier, even
though the best classifier can change as more points are
added.

As an application of Lemma 4, [25, Theorem 2.2]
recently proved a relative loss bound for generalized
linear models, and applied the bound to the special
case of logistic regression [25, Theorem 3.3]. In our
notation, their bound for Bayesian logistic regression
can be written as
(4.7)

LBLR(S) ≤ Lw∗(S) +
‖w∗‖2

2ν2
+

d

2
log

(

1 +
Tν2

d

)

,

where ν ≤ 0.5. The bound in (4.7), derived using a
very different argument from ours, has a constant of 1
on Lw∗(S), instead of 2 as in Theorem 5. However, their
bound has a dependency on the number of data points
T as well as the data dimensionality d. In particular, for
a fixed d, the bound degrades approximately according
to log(T ). Further, for very high-dimensional data, i.e.,
as d → ∞, (1 + a/d)d → exp(a),∀a ∈ R, and hence

LBLR ≤ Lw∗(S) +
‖w∗‖2

2ν2
+

Tν2

2
,

so the bound degrades linearly as the number of sam-
ples. Our bound is independent of the data dimension-
ality as well as the number of data points, and demon-
strates that Bayesian logistic regression is capable of
tracking the logistic best classifier irrespective of the di-
mensionality of the data and the number of samples. We
believe that both bounds are useful and bring out dif-
ferent aspects of Bayesian logistic regression. For quan-
titative purposes, one can always use the minimum of
the two.

5 Discussion

Our first set of results make use of a Laplace trans-
form perspective of exponential family distributions.
In Section 5.1, we take a more detailed look at the
integral transform viewpoint, including both Laplace
and Fourier transforms, and review connections be-
tween positive definite functions and probability mea-
sures. Our second main result makes use of a Bayesian
model applied to logistic regression. In Section 5.2, we
present a new perspective on the optimality of Bayesian
models in terms of Bregman divergences [5].

5.1 The Integral Transform Viewpoint. In this
subsection, we review some important results from
harmonic analysis that are relevant to our current
analysis of exponential and logistic family distributions.
Further, the results help in connecting exponential
family distributions to positive definite functions, which
are currently widely studied in data mining.

5.1.1 Laplace Transform of Non-negative Func-
tions. In Section 3.1, we presented a Laplace transform
viewpoint of exponential family distributions. In par-
ticular, we saw that the cumulant function is the gen-
eralized Laplace transform of the base measure, which
is an arbitrary non-negative function. Now, we review
an important characterization of Laplace transform of
non-negative functions in terms of exponentially convex
functions, which are defined below.

Definition 1 A function f : Θ 7→ R++, Θ ⊆ Rd is
called exponentially convex if the kernel Kf (α, β) =
f(α + β), with α + β ∈ Θ, satisfies

n
∑

i=1

n
∑

j=1

Kf (θi,θj)uiūj ≥ 0 ,

for any set {θ1, · · · ,θn} ⊆ Θ with θi+θj ∈ Θ, ∀i, j, and
{u1, · · · , un} ⊂ C (ūj denotes the complex conjugate of
uj), i.e, the kernel Kf is positive semi-definite.

It is well known that the logarithm of an exponentially
convex function is a convex function [2]. The following



result, due to [16], relates exponentially convex func-
tions to Laplace transforms of bounded non-negative
measures, and hence to exponential family distributions.

Theorem 6 ([16]) Let Θ ⊆ Rd be an open convex set.

A necessary and sufficient condition that there exists

a unique, bounded, non-negative measure ν such that

L : Θ 7→ R++ can be represented as

(5.8) L(θ) =

∫

x∈Rd

exp(〈x,θ〉) dν(x) ,

is that L is continuous and exponentially convex.

From Theorem 6, it is easy to see that in the context of
exponential family distributions, the exponentially con-
vex function is the partition function, and the logarithm
of the exponentially convex function is indeed the cu-
mulant function ψ(θ). Also, it is important to note that
exponentiation of arbitrary convex functions do not give
exponentially convex functions.5

5.1.2 Fourier Transform of Non-negative Func-
tions. Since Laplace transform of non-negative func-
tions give rise to exponential family distributions, a nat-
ural question to ask is: Is there a good way to char-
acterize Fourier transforms of non-negative functions?
The answer is quite simple: Fourier transforms of non-
negative functions give rise to positive definite func-
tions, which are currently extensively used in data min-
ing. In fact, the original result, due to Bochner [11],
goes one step further to show that the only way to ob-
tain a positive definitive function is by taking Fourier
transform of a non-negative function. We state the re-
sult in the form it appears in [14, 18, 19].

Theorem 7 ([11]) A necessary and sufficient condi-

tion that a function F : Rk 7→ C can be represented

as

(5.9) F (y) =

∫

Rd

exp(i〈x,y〉) dν(x) ,

where ν is a bounded non-negative function, is that F
is continuous and positive definite.

5.1.3 Laplace to Fourier and Back. The results of
Theorems 6 and 7 leads to another tempting conclusion
that Laplace and Fourier transforms of a non-negative
function can be obtained from one another by a simple
plug-in procedure, i.e., replacing θ by iy to go from
Laplace to Fourier, and replacing y by −iθ to go from

5An argument establishing this fact is outside the scope of the
current paper.

Fourier to Laplace. Interestingly, as [19] showed, the
plug-in procedure is correct given one extra condition
is satisfied: the positive definite function F (y) has
to be entire. Recall that a complex valued function
F (y),y ∈ Rd, is entire if it can be uniquely extended to
a necessarily unique analytic function F (z), z ∈ Cd [1].
With this extra condition, [19] recently established a
bijection between entire positive definite functions and
exponentially convex functions.

Theorem 8 ([19]) If L(θ), θ ∈ Rd, is an exponen-

tially convex function, then it is entire, and F (y) =
L(iy) is a positive definite function. Conversely, if

F (y), y ∈ Rd, is an entire positive definite function,

then L(θ) = F (−iθ), θ ∈ Rd, is an exponentially con-

vex function.

5.1.4 Implications. The results of Theorems 6, 7
and 8 have important implications for data mining and
predictive modeling, where exponential family distribu-
tions and positive definite functions are playing an in-
creasingly important role. In particular, they can be
used to design natural kernels from exponential fam-
ily models of data, or conversely, obtain probabilis-
tic models using kernels learned from data. For ex-
ample, for identity covariance Gaussian distributions,
p0(x) = exp(−‖x‖2/2) and we have

∫

Rd

exp(〈x,θ〉) exp(−‖x‖2/2) dx = exp(‖θ‖2/2) .

From Theorem 6, L(θ) = exp(‖θ‖2/2) is an exponen-
tially convex function. Then, Theorem 8 implies that
L(θ) is entire and F (y) = L(iy) = exp(−‖y‖2/2) is a
positive definite function. Then, for a given set of data
points {x1, . . . ,xm}, F (xi−xj) forms a valid kernel that
can be used by kernel methods. Of course, we clearly
identify this particular kernel to be the widely used ra-
dial basis function (RBF) kernel. Note that such ker-
nels can be constructed for every choice of non-negative
function p0(x) on Rd.

5.2 Bregman Optimality of Bayesian Models.
Bayesian models have been extensively studied in statis-
tics [21], and are getting increasing popular in large
scale data mining and modeling applications [26, 29, 10].
Further, recent years have been seen the development
of theoretical arguments in favor of Bayesian mod-
els [30, 4]. A derandomization of the Bayesian argument
has led to the first margin-based dimension-independent
error-rate bound for support vector machines and other
margin-maximizing classifiers [31, 28].

In this section, we present a new perspective on
the optimality of Bayesian models in terms of Bregman



divergences [12, 13, 5], which are a broad class of
divergence functions that include squared Euclidean
distance, relative-entropy, etc., as special cases. Let
φ : S 7→ R be a strictly convex function defined on a
convex set S ⊆ Rd such that φ is differentiable on ri(S),
the relative interior of S [38]. The Bregman divergence
dφ : S × ri(S) is defined as

dφ(x,y) = φ(x) − φ(y) − 〈x − y,∇φ(y)〉 ,

where ∇φ(y) is the gradient of φ at y.
For the purposes of our analysis, we consider a

multi-class classification settings and focus on a set of
predictors fα(x), parameterized by α. Note that α can
be a parameter of a model such as logistic regression
or support vector machine, or simply an index running
over arbitrary classifiers [39]. For each choice of α,
fα(x) makes a deterministic or stochastic prediction.
In either case, the prediction can be represented as a
probability distribution pα(x) over the k-classes, where,
in the deterministic case, only one component is 1
and the rest are 0s. We assume p0(α) to be a prior
probability distribution over all possible α. Then, a
Bayesian predictor will predict based on a weighted vote
of all the predictors so that

(5.10) p
Bayes

(x) =

∫

α

pα(x)p0(α)dα .

Let dφ(·, ·) be any Bregman divergence well defined on
∆k−1, the simplex embedded in Rk. Then, we have the
following optimality result.

Theorem 9 Let p∗ ∈ ∆k−1 be the distribution over

the classes that minimize expected disagreement with all

other predictors pα(x), where disagreement is measured

by any Bregman divergence, i.e.,

p∗(x) = argmin
p∈∆

Eα∼p0
[dφ(pα(x), p(x))] .

Then, p∗(x) is unique and is given by

p∗(x) = p
Bayes

(x) .

Proof. Let p′(x) ∈ ∆k−1 be an arbitrary distribution
over the classes. Then,

Eα∼p0
[dφ(pα(x), p′(x))] − Eα∼p0

[dφ(pα(x), p
Bayes

(x))]

= φ(p
Bayes

(x)) − φ(p′(x))

− Eα∼p0
[〈pα(x) − p′(x),∇φ(p′(x))]

+ Eα∼p0
[〈pα(x) − p

Bayes
(x),∇φ(p

Bayes
(x))]

(a)
= φ(p

Bayes
(x)) − φ(p′(x)) − 〈p

Bayes
(x) − p′(x),∇φ(p′(x)〉

= dφ(p
Bayes

(x), p′(x)) ≥ 0,

where (a) follows from the linearity of expectation and
since

Eα∼p0
[pα(x)] =

∫

α

pα(x)p0(α)dα = p
Bayes

.

Hence, for all p′ ∈ ∆k−1, we have

Eα∼p0
[dφ(pα(x), p

Bayes
(x))] ≤ Eα∼p0

[dφ(pα(x), p′(x))] ,

so that p
Bayes

(x) is a minimizer of the expected disagree-
ment. From the strict convexity of φ, it follows that
dφ(p

Bayes
(x), p′(x)) is 0 if and only if p′(x) = p

Bayes
(x),

implying that p
Bayes

(x) is the unique minimizer.

Theorem 9 gives a new perspective on the optimal-
ity of Bayesian models. In particular, it shows that
weighted vote used by a Bayesian predictor is the one
that has minimum expected disagreement with all the
individual predictors. Interestingly, the proof argument
is a straight-forward extension of a similar argument due
to [5], where it was used to study partitional clustering
using Bregman divergences.

6 Conclusion

Over the years, logistic models have been successfully
used on a wide variety of practical problems. Logistic
regression has been one of the most widely used prob-
abilistic classification techniques due to its robustness
and high quality predictions. Further, there are several
other advantages to logistic regression: (i) It can be
extended straightforwardly to the multi-class case [22],
which can be problematic for some of the other classifi-
cation methods; (ii) It can be extended to incorporate
kernels since all relevant information are in the form
of dot-products between the parameters and the data;
and (iii) It makes a probabilistic prediction which may
be desirable to get an idea in the confidence or entropy
of the prediction. Conditional random fields are logis-
tic models for sequences/graphs which have gained wide
popularity in the recent years. In this paper, we have
given an exact quantification of the bias [17] of logistic
models. In particular, we have shown that the log-odds
ratio of the posterior probabilities in affine if and only
if each of the class conditional densities belong to the
same exponential families. Thus, making a specific ex-
ponential family generative model assumption has sig-
nificantly higher bias compared to the corresponding
logistic models. Our results further explain some of the
existing experimental as well as theoretical results com-
paring logistic regression to generative models such as
naive-Bayes [34].

Bayesian logistic regression has gained popularity
in the recent past due to both theoretical develop-
ments [25, 26] as well as empirical success in large scale



real-life problems [29, 26]. We have analyzed the per-
formance of Bayesian logistic regression predictors in an
online setting, where data points are coming one at a
time and may be potentially be generated by an ad-
versary. Without making any assumptions about the
data, we have shown the cumulative loss incurred by
the incrementally updated Bayesian logistic regression
classifier is comparable to the loss incurred by the best
single batch logistic classifier that can be trained by us-
ing the entire dataset. The incremental nature of the
algorithm is desirable in several settings, such as in truly
online settings, where more data becomes available over
time, or when the data set size is huge and batch pro-
cessing is costly both in terms of computation as well
as memory requirements. It is reassuring to know that
the incrementally updated classifier will track the best
classifier, irrespective of the dimensionality of the data
or the number of data points.

Our results open up two important new directions
of research worth exploring. One is the application of
logistic models in unsupervised and semi-supervised
settings. In unsupervised settings, one often uses a
mixture of exponential family distributions [5] to model
data densities, which have been appropriately extended
to the semi-supervised setting as well [7]. Our results
indicate that instead of using mixture of exponential
family models, one can use a mixture of logistic models,
whose parameters can be learned using an application
of the EM algorithm [15, 5, 33]. It will be interesting
to study how such models perform in realistic tasks.
The second research direction is to obtain practical
algorithms for Bayesian logistic regression. In practice,
one often uses the MAP estimate instead of the full
Bayesian posterior, resulting in a quantifiable loss in
accuracy [25]. Directly computing the posterior is
difficult since the Gaussian (or any other distribution)
is not the conjugate prior to the logistic model [21]. It
will be interesting to study if a practical approximation
of the Bayesian posterior is possible while still main-
taining the guarantees we have established in this paper.

Acknowledgements: We would like to thank Srujana
Merugu for discussions on Theorem 1.
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