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Abstract
A number of real-world domains such as social networks and
e-commerce involve heterogeneous data that describes rela-
tions between multiple classes of entities. Understanding the
natural structure of this type of heterogeneous relational data
is essential both for exploratory analysis and for performing
various predictive modeling tasks. In this paper, we propose a
principled multi-way clustering framework for relational data,
wherein different types of entities are simultaneously clus-
tered based not only on their intrinsic attribute values, but
also on the multiple relations between the entities. To achieve
this, we introduce a relation graph model that describes all
the known relations between the different entity classes, in
which each relation between a given set of entity classes is rep-
resented in the form of multi-modal tensor over an appropri-
ate domain. Our multi-way clustering formulation is driven
by the objective of capturing the maximal “information” in
the original relation graph, i.e., accurately approximating the
set of tensors corresponding to the various relations. This for-
mulation is applicable to all Bregman divergences (a broad
family of loss functions that includes squared Euclidean dis-
tance, KL-divergence), and also permits analysis of mixed
data types using convex combinations of appropriate Breg-
man loss functions. Furthermore, we present a large family of
structurally different multi-way clustering schemes that pre-
serve various linear summary statistics of the original data.
We accomplish the above generalizations by extending a re-
cently proposed key theoretical result, namely the minimum
Bregman information principle [1], to the relation graph set-
ting. We also describe an efficient multi-way clustering al-
gorithm based on alternate minimization that generalizes a
number of other recently proposed clustering methods. Em-
pirical results on datasets obtained from real-world domains
(e.g., movie recommendations, newsgroup articles) demon-
strate the generality and efficacy of our framework.

1 Introduction

In recent years, there has been a lot of interest in prob-
abilistic relational learning due to a plethora of real-
world applications that involve modeling the relations
between multiple types of entities, e.g., social networks,
e-commerce. Often, the data available in these domains
is sparse, high dimensional, incomplete, and noisy, which
makes modeling difficult, e.g., movie ratings data in
movie recommendation engines such as Yahoo! Movies,
offer descriptions on product search web sites such as
Froogle. Understanding the latent structure of this type
of heterogeneous relational data is important for ex-
ploratory analysis and as pre-processing for subsequent
predictive modeling tasks. In case of homogeneous data,

∗Department of CSE, University of Minnesota
†AI Center, SRI International
‡Yahoo! Research

this is typically done using clustering techniques [14] that
discover the “latent” groups of objects based on attribute
similarity. To model the relationships between a pair of
entity classes, several structurally different co-clustering
techniques [9, 1, 7], which involve simultaneous cluster-
ing of the two entity classes represented as the rows and
columns of a data matrix, have been proposed. Recently,
these techniques were extended to multi-way clustering
formulations [15, 4] involving multiple entity classes with
pair-wise relations for certain specific structural config-
urations.

In this paper, we propose a principled multi-way
clustering framework for relational data wherein differ-
ent classes of entities are simultaneously clustered based
not only on the intrinsic attribute values of the entities,
but also on the multiple relations between the entities.
Furthermore, each relation can involve multiple sets of
entities (as opposed to pair-wise relations) and the re-
lations can also have attributes. To achieve this, we
introduce a relation graph model that describes all the
known relations between the different entity classes. In
this model, each relation between a given set of entity
classes is represented as a multi-dimensional tensor (or
data cube) over an appropriate domain, with the dimen-
sions being associated with the various entity classes.
Further, each cell in the tensor encodes the relation be-
tween a particular set of entities and can either take real
values, i.e., the relation has single attribute, or itself is
a vector of attributes. This general model is useful for
applications in several domains that have multi-type re-
lational datasets. Let us consider one such real-world
example.

Example 1 Consider online movie recommendation ap-
plications such as Yahoo! Movies. These sites have
movie viewer information linked to movie descriptions,
which can be represented as several relations – (i) f 1:
ratings for (movie, viewer, actor) tuples correspond-
ing to viewers’ feedback on the performance of actors
in different movies; (ii) f2: co-occurrence indicators
for (movie, actor) pairs specifying which actors acted
in which movies; (iii) f3: counts for (movie, review
words) tuples encoding the movie reviews; (iv) f 4: val-
ues for (viewer, demographic attributes) that specify de-
tails such as age, gender, etc., for different viewers. Fig-
ure 1.1 shows an illustration of this dataset as a set of
tensors (or data cubes) with a few common dimensions,



Figure 1.1: Example of multi-type relational data in
movie recommendation.

e.g., f1 and f4 share the viewer dimension while f 1 and
f2 share both the actor and movie dimensions and f 3

also has the movie dimension. A typical application in
this domain would be recommending a movie to a user
who has not seen it before. Clustering jointly across the
multiple entity classes, (i.e., movies, viewers, actors and
words) allows us to capture most of the “information”
in the inter-linked datasets in terms of compressed rep-
resentations comprising of cluster-based statistics. This
compression aids considerably in handling sparsity and
high-dimensionality issues. This in turn enables us to
obtain high quality predictions on the desired unknown
ratings by extrapolating from the ratings of users with
similar profiles (in terms of both movie preferences, de-
mographic attributes) for similar movies (in terms of user
preferences, review descriptions and cast).

There are several other domains where the relation
graph over tensor representation would be directly ap-
plicable. Important examples include - (i) e-commerce
applications, e.g., Froogle, which make use of data con-
sisting of product descriptions, customer demographic
profiles, transaction data, customer reviews of products
and sellers, etc.; (ii) targeted internet advertising, e.g.,
AdSense, which makes use of a web page content, ad’s
textual content, past click-through rates of ads posted
on web pages; (iii) social network analysis, e.g., Blog-
ger, which involves modeling user profiles, user generated
content, interactions between users, etc.

1.1 Contributions. This paper provides a fairly
general multi-way clustering framework for relation
graphs, which is driven by the objective of preserving
the maximal “information” in the original data. In
particular, we make the following key contributions.

1. We introduce a multi-way clustering formulation for
relation graphs that is motivated by an approximation
point of view, i.e., accurately reconstructing the tensors
corresponding to the various relations.

2. Our formulation is applicable to all Bregman diver-
gences (a broad family of loss functions that include
squared Euclidean distance, KL-divergence), and also
permits analysis of mixed data types using convex com-
binations of appropriate Bregman loss functions.

3. We present a large family of structurally different
multi-way clustering schemes that involve preserving
summary statistics that are conditional expectations
based on arbitrary partitionings of the tensors associated
with the different relations.

4. To achieve the above generalizations, we extend the
recently proposed minimum Bregman information prin-
ciple [1], which generalizes both least squares and max-
imum entropy principles, to the relation graph setting.
This also allows us to provide an alternate interpretation
of our clustering formulation in terms of minimizing the
loss in Bregman information.

5. We also propose a highly scalable algorithm based
on alternate minimization that is linear in the number
of non-zeros in the sparse data, converges to a local
optimum of the multi-way clustering objective function,
and generalizes several existing algorithms.

1.2 Overview of the Paper. We begin with a re-
view of preliminary definitions in Section 2. Section 3
considers the case of a single relation over multiple en-
tity classes represented as a multi-dimensional tensor,
and presents the multi-way clustering formulation and
algorithm in detail for this case. Section 4 introduces
the notion of a relation graph for representing multi-
ple relations over a set of entity classes, and describes
how the multi-way clustering formulation for tensors can
be extended to relation graphs associated with a set of
tensors. Section 5 provides empirical evidence on the
benefits of our multi-way clustering framework on real
datasets. Section 6 discusses related work and explains
how some of the existing co-clustering and multi-way
clustering methods [15, 1, 9, 8] can be derived as special
cases of our framework.

2 Preliminaries

In this section, we describe our notation and present
some definitions related to Bregman divergences [6],
which form a large class of well-behaved loss functions.

Notation: Sets such as {x1, · · · , xn} are enumer-
ated as {xi}

n
i=1 and an index i running over the set

{1, · · · , n} is denoted by [i]n1 . Sets are denoted using
calligraphic upper case variables, e.g., S. Random vari-
ables and random vectors are denoted using plain upper
case letters, e.g., Z with the corresponding lower case
letters z denoting the instantiated values. Tensors are
denoted using upper case bold letters, e.g., Z, whereas
the corresponding subscripted lower case letters zu de-
note the elements.



2.1 Bregman Divergence and Information

Definition 1 Let φ be a real-valued strictly convex
function defined on the convex set S ≡ dom(φ) (⊆
R

d), the domain of φ, such that φ is differentiable
on int(S), the interior of S. The Bregman divergence
dφ : S × int(S) 7→ R+ is defined as

dφ(z1, z2) = φ(z1) − φ(z2) − 〈z1 − z2,∇φ(z2)〉 ,

where ∇φ is the gradient of φ.

Special cases of Bregman divergences include squared
loss, i.e., dφ(z1, z2) = (z1 − z2)

2, which corresponds to
φ(z) = z2, z ∈ R and I-divergence, i.e., dφ(z1, z2) =
z1 log(z1/z2) − (z1 − z2), which corresponds to φ(z) =
z log z − z, z ∈ R+ . Given a Bregman divergence
and a random variable, the uncertainty in the random
variable can be captured in terms of a useful concept
called Bregman information [3, 1] defined below.

Definition 2 For any Bregman divergence dφ : S ×
int(S) 7→ R+ and any random variable Z ∼ w(z), z ∈
Z ⊆ S, the Bregman information of Z is defined as the
expected Bregman divergence to the expectation, i.e.,

Iφ(Z) = Ew[dφ(Z,Ew[Z])] .

Intuitively, this quantity is a measure of the “spread”
or the “information” in the random variable. Examples
of Bregman information include squared Frobenius norm
(for squared loss) and negative entropy (for I-divergence),
which respectively correspond to random variables that
are uniformly distributed over the entries of a given
matrix and the joint probability values of two other
random variables [1].

3 Multi-way Clustering on Tensors

In this section, we consider the special case where there
are multiple classes of entities connected via a single re-
lation, which can be described by a multi-dimensional
tensor. For this case, we develop a multi-way clustering
formulation that extends the matrix co-clustering frame-
work presented in [1] to multi-dimensional tensors. Our
formulation is driven by the objective of accurately ap-
proximating the original tensor using a reconstruction
determined solely by the multi-way clustering and cer-
tain summary statistics of the original tensor.

3.1 Tensor Model. We begin with a description of
our tensor representation. Let Ui , [i]n1 , indicate random
variables that take values over n different classes of
entities with cardinalities mi, [i]n1 , respectively. Without
loss of generality, we can assume that the support set
of Ui corresponds to {1, · · · ,mi} for [i]n1 . Any relation
f between all the variables Ui can be considered as

a deterministic function on the random vector Uall =
(U1, · · ·Un). Let the range of f be a subset of the
convex set S = dom(φ).1 Since each random variable Ui

takes mi possible values, this relation f can be exactly
described by a n-dimensional tensor Z ∈ Sm1×···×mn .
Further, let Z = f(Uall) = f(U1, · · · , Un). Then, Z is
a Uall-measurable random variable taking values in Z
following the joint distribution p(Uall) = p(U1, · · · , Un).
For notational simplicity, let w denote the measure
induced on Z by p(Uall) so that p(Z = zu1,··· ,un

) =
wu1···un

= p(u1, . . . , un) = p(uall).

Example 2 Consider the ratings data in the movie-
recommendation problem in Example 1. This data can
be viewed as describing a single relation between three
classes of entities, i.e., viewers (U1), actors (U2), and
movies (U3), and corresponds to a 3-dimensional tensor
Z where zu1,u2,u3

is the rating of viewer u1 for actor u2 in
the movie u3. The measure w corresponds to the weights
on the ratings and is usually assumed to be uniform over
the known values and zero for the missing ones.

3.2 Multi-way Clustering Formulation. Let ki ≤
mi, [i]n1 denote the number of clusters desired for the en-
tity class Ui. Then, a multi-way clustering of these entity
classes is defined as the n-tuple ρ = (ρ1, · · · , ρn) where
each ρi : {1, · · · ,mi} 7→ {1, · · · , ki} denotes a mapping

from the entities to their respective clusters. Let Ûi

be a random variable that takes values in {1, · · · , ki}

such that Ûi = ρi(Ui). We now seek to characterize the
“goodness” of a multi-way clustering ρ in terms of an ap-
proximation to the original tensor Z that depends solely
on ρ and certain pre-specified summary statistics that
need to be preserved. Let Ẑ = Ẑ(ρ) be such an approxi-

mation and let Ẑ be a Uall-measurable random variable
that takes values in this approximate tensor Ẑ following
w. Then, the quality of the multi-way clustering ρ can
be readily measured in terms of the approximation error
or the expected Bregman distortion between the random
variables Z and Ẑ, i.e.,
(3.1)

Ew[dφ(Z, Ẑ)] =
∑

uall

wuall
dφ(zuall

, ẑuall
) = dΦw

(Z, Ẑ) ,

where Φw is a separable convex function induced on
the tensors by the convex function φ. The multi-way
clustering problem is then to find the optimal ρ that
minimizes this expected Bregman distortion.

1Note that S can be any arbitrary convex set associated with
a well defined convex function φ. For example, S could be
[0, 1]d1 × R

d2 , in which case f maps each instantiation of Uall

to an attribute vector of size (d1 +d2) where the first d1 attributes
take values in [0, 1] and the last d2 attributes are real-valued.



Our formulation clearly depends on how Ẑ is char-
acterized, with different choices leading to different clus-
tering formulations. To characterize Ẑ, we need to spec-
ify (i) what summary statistics are to be preserved, and
(ii) how to get an approximation based on the summary
statistics. We discuss these aspects in detail in the next
two subsections.

3.3 Summary Statistics. We consider summary
statistics that are conditional expectations over differ-
ent partitions of the tensor Z. Our choice of conditional
expectation-based statistics is driven by the fact that the
conditional expectation E[Z|V ] is the optimal approxi-
mation of the original Z with respect to any Bregman
divergence among all V -measurable functions [3] for any
random variable V . Depending on the variable V , or
equivalently, the partitionings of the tensor that one con-
siders, one can obtain different sets of summary statis-
tics. The simplest set of summary statistics is one that
consists of the (weighted) multi-way cluster means, i.e.,

just one conditional expectation E[Z|Û1, · · · , Ûn] corre-

sponding to V = (Û1, · · · , Ûn). Another simple example
consists of the marginal averages along any particular
dimension of the tensor, i.e., conditional expectations of
the form E[Z|Ui] corresponding to V = Ui. In general,
the summary statistics may comprise of multiple condi-
tional expectations as we now describe.

Let {Vs}
r
s=1 be a set of r random variables corre-

sponding to different partitionings (or sub-σ-algebras)
of the tensor that are determined completely by the
random variables Ui and Ûi, [i]n1 . For example, for
a two-dimensional tensor, i.e., a matrix, we may have
V1 = (Û1, U2) and V2 = (U1, Û2) with r = 2. We call
such a set a multi-way clustering basis and associate
it with summary statistics given by the corresponding
set of conditional expectations {E[Z|Vs]}

r
s=1. Note that

each such set of conditional expectations leads to a differ-
ent optimal reconstruction for the same multi-way clus-
tering, and hence, a structurally different co-clustering
scheme. We now describe two specific examples of multi-
way clustering bases that will be used in the experiments
in Section 5.
Block Multi-way Clustering (BMC). This is the
simple case where the basis is the singleton set {V1} =

{(Û1, · · · , Ûn)}. The summary statistics are just the

(weighted) multi-way cluster means or E[Z|Û1, · · · , Ûn].
In particular, for each multi-way cluster (û1, · · · , ûn),
there is a single statistic given by E[Z|û1, · · · , ûn] so that
we have

∏n
i=1 ki parameters to approximate the original

tensor Z.
Bias-Adjusted Multi-way Clustering (BAMC).
Another important case is one where the basis consists of
r = n+1 random variables {Vs}

n+1
s=1 where Vs = Us, [s]

n
1 ,

and Vn+1 = (Û1, · · · , Ûn). In this case, the summary

statistics not only include the multi-way cluster means
E[Z|Û1, · · · , Ûn], but also the (weighted) average values
over every possible (n−1) dimensional slice of the tensor,
i.e., {E[Z|Ui]}

n
i=1. These additional summary statistics

capture the biases of the individual entities, and pro-
vide a better approximation. Since each conditional ex-
pectation E[Z|Ui] results in mi values, the total size of
the summary statistics is

∏n

i=1 ki +
∑n

i=1 mi related via
∑n

i=1 ki linear dependencies.

Example 3 For the movie recommendation example,
one could consider either the BMC/BAMC bases de-
scribed above or even a more general clustering basis.
However, the BAMC scheme is usually a good choice
since the summary statistics encode the biases associ-
ated with the individual viewers (e.g., level of criticality),
actors (e.g., quality of acting) and movies (e.g., quality
of plot/direction) in terms of the average viewer rating
E[Z|U1], average actor rating E[Z|U2] and average movie
rating E[Z|U3] respectively. The coarse structure of the
ratings, on the other hand, is captured by the multi-way
cluster means E[Z|Û1, Û2, Û3], i.e., the average rating of
a viewer cluster for the performance of a cluster of actors
in a movie cluster.

3.4 Minimum Bregman Information Principle.
Given a multi-way clustering ρ and a clustering basis
{Vs}

r
s=1, we now seek to characterize the best approxi-

mation Ẑ to the original Z. We begin by considering
a special class of approximations SA such that every
Z ′ ∈ SA preserves the conditional expectations associ-
ated with the specified multi-way clustering basis, i.e.,

(3.2) SA = {Z ′|E[Z|Vs] = E[Z ′|Vs], [s]r1}.

To find the best approximation in the set SA, we invoke
the minimum Bregman information principle, which was
first proposed in [1], and which generalizes the well-
known maximum entropy and least squares principles.
The MBI principle posits that the best approximation Ẑ
is the random variable ẐA ∈ SA that has the minimum
Bregman information, i.e.,

(3.3) ẐA = argmin
Z′∈SA

Iφ(Z ′).

Intuitively, the “best” approximation given certain infor-
mation is one that does not make any extra assumptions
over the available information. Mathematically, under
certain definition of optimality, the notion of “no extra
assumptions” translates to minimum Bregman informa-
tion while the “available information” corresponds to the
linear constraints associated with the conditional expec-
tation statistics.

The following theorem characterizes the solution to
the MBI problem (3.3).



Theorem 1 2 For any random variable Z, Bregman
divergence dφ, multi-way clustering ρ, and clustering
basis {Vs}

r
s=1, the problem (3.3) reduces to a convex

optimization problem with a unique solution

ẐA = hφ(Λ∗, Uall,ρ(Uall)) ,

where hφ is uniquely determined function and Λ∗ =
(Λ∗

V1
, · · · ,Λ∗

Vr
) are the optimal Lagrange multipliers

with respect to the linear constraints E[Z ′|Vs] =
E[Z|Vs], [s]r1 .

Though the MBI problem (3.3) has a unique solution

ẐA, in general, the solution cannot be expressed in closed
form as a function of the summary statistics, except for
certain special bases such as BMC and BAMC, which
are discussed below.
Block Multi-way Clustering. The MBI solu-
tion ẐA in this case is the conditional expectation
E[Z|Û1, · · · , Ûn] itself for all Bregman divergences, i.e.,
each entry zu1,··· ,un

= zuall
in the original tensor Z is ap-

proximated by the average value across the correspond-
ing the multi-way cluster, i.e., E[Z|û1, · · · , ûn].
Bias-Adjusted Multi-way Clustering. For this
basis, the MBI solution has a closed form only for
specific choices of Bregman divergences. In particular,
for squared loss, the MBI solution is given by

ẐA =
n
∑

i=1

(E[Z|Ui] − E[Z|Ûi]) + E[Z|Û1, · · · , Ûn],

whereas for I-divergence, the MBI solution is given by

ẐA =

∏n

i=1 E[Z|Ui]E[Z|Û1, · · · , Ûn]
∏n

i=1 E[Z|Ûi]
.

In other words, the entry zu1,··· ,un
is approximated

by additive/multiplicative combinations of the average
ratings of the entities u1, · · · , un as well as those of the
corresponding clusters û1, · · · , ûn and also the average
rating across the corresponding multi-way cluster.

A natural question to ask is: Why is the MBI
solution ẐA a good approximation to the original Z?
First, the approximation is based solely on the multi-way
clustering and the specified summary statistics derived
from the original Z. Second, the approximation ẐA

actually preserves all the statistics under consideration.
Lastly and more importantly, it can be shown that
the MBI solution is the optimal approximation to the
original Z among a large class of reconstructions, as the
following result shows.

Theorem 2 Given a random variable Z, Bregman di-
vergence dφ, multi-way clustering ρ and clustering ba-
sis {Vs}

r
s=1, let SB be the set of generalized additive

2Please see [18] for more details on the theorems and proofs.

functions based on natural parameterizations (denoted by
gφ(·)) of the summary statistics, i.e.,

SB =

{

Z ′′

∣

∣

∣

∣

∣

Z ′′ = g
(−1)
φ

(

r
∑

s=1

qs(gφ(E[Z|Vs]))

)}

,

where qs, [s]r1 are arbitrary functions. Then, the MBI

solution ẐA in (3.3) is the unique minimizer of the
expected distortion with respect to Z in SB, i.e.,

ẐA = argmin
Z′′∈SB

E[dφ(Z,Z ′′)] .

Note that for the simple BMC case, the summary
statistics consist of a single conditional expectation
so that SB includes all deterministic functions of the
summary statistics, and hence, the MBI solution is
the optimal reconstruction in this entire set. In the
general case, the optimality property is limited to the
specific, but large class of approximations described
in Theorem 2. In particular, for squared error, the
natural parameterization gφ is the identity mapping
itself so that SB consists of all generalized additive
models, while in case of I-divergence, gφ corresponds to
log transformation and SB is the set of all generalized
multiplicative models.

Choosing the MBI solution as the best approxima-
tion, i.e., Ẑ = ẐA also leads to the following result, which
shows that the expected distortion between the original
Z and the approximation Ẑ is exactly equal to the loss
in Bregman information, thus, providing an alternative
characterization of the problem formulation in terms of
minimizing the loss in Bregman information.

Theorem 3 For any random variable Z, Bregman di-
vergence dφ and MBI solution Ẑ as defined in (3.3),

E[dφ(Z, Ẑ)] = Iφ(Z) − Iφ(Ẑ) .

The multi-way clustering problem for tensors, can
therefore be posed as one of finding the optimal multi-
way clustering ρ

∗ that solves the minimization problem:

(3.4) min
ρ

E[dφ(Z, Ẑ)] = min
ρ

[Iφ(Z) − Iφ(Ẑ)] .

3.5 Algorithm. We now propose an alternate mini-
mization scheme for optimizing the multi-way clustering
objective function in (3.4) that is applicable to all Breg-
man loss functions and multi-way clustering bases. Our
algorithm considers each dimension in turn, finds the op-
timal clustering with respect to that dimension keeping
everything else fixed, and recomputes the MBI solution,
and this process is repeated till convergence.



Since the cluster assignment step along each dimen-
sion is going to have similar form, we focus on the ith

dimension with index Ui and current clustering ρi. Let
U−i be the index and ρ−i denote the clustering over all
the other dimensions. From Theorem 1, the MBI solu-
tion in this case is given by Ẑ = hφ(Λ, Uall,ρ(Uall)) =
hφ(Λ, (Ui, U−i), (ρi(Ui), ρ−i(U−i))) where Λ are the
optimal Lagrange multipliers w.r.t ρ. Now, for
any candidate clustering ρ̃i over the ith dimen-
sion, we consider a new reconstruction Z̃ =
hφ(Λ, (Ui, U−i), (ρ̃i(Ui), ρ−i(U−i))). Then, from the def-
inition of expectation, it follows that

E[dφ(Z, Z̃)] =

mi
∑

ui=1

wui
EU−i|ui

[dφ(Z, Z̃(ui, ρ̃i(ui)))]

where Z̃(ui, ρ̃i(ui)) = hφ(Λ, (ui, U−i), (ρ̃i(ui), ρ−i(U−i))).
Thus, the objective function can be decomposed into a
weighted average over mi terms, each of which depends
on a single ui and its assignment ρ̃i(ui). Hence, the
optimal clustering ρnew

i can be obtained by computing
the optimal cluster assignments for each ui as in step B
of Algorithm 2.

Once the cluster assignments are updated, the ob-
jective function decreases, but the reconstruction Z̃new

based on Λ and the new cluster assignments ρ
new =

(ρnew
i , ρ−i) need not be the MBI solution. As the fol-

lowing theorem shows, we can, in fact, obtain a better
approximation to the original Z by computing the MBI
solution Ẑnew with respect to ρ

new.

Theorem 4 For any random variable Z, Bregman di-
vergence dφ and multi-way clustering ρ

new, the MBI re-

construction Ẑnew has less expected distortion with re-
spect to Z than any reconstruction Z̃new based on non-
optimal Lagrange multipliers, i.e.,

E[dφ(Z, Ẑnew)] ≤ E[dφ(Z, Z̃new)] .

To draw analogy with the KMeans algorithms, the com-
putation of the MBI solution is equivalent to computing
the means of every cluster. Putting together the cluster
assignment steps and the computation of MBI solution,
we have a simple and elegant algorithm (Algorithm 1)
for multi-way clustering of tensors, which is conceptu-
ally similar to the KMeans algorithm. Since both step
B and C decrease the objective function, Algorithm 1 is
guaranteed to converge to a local optimum.

Theorem 5 The multi-way tensor clustering algorithm
(Algorithm 1) monotonically decreases the multi-way
clustering objective function in (3.4) and converges to
a locally optimal solution.

Algorithm 1 Multi-way Tensor Clustering

Input: Tensor Z ⊆ Sm1×···×mn , probability measure w,
Bregman divergence dφ : S×int(S) 7→ R+, num. of clusters
(k1, · · · , kn), co-clustering basis {Vs}

r
s=1.

Output: Multi-way clustering ρ
∗ that (locally) optimizes the

objective function in (3.4).
Method:

Initialize with an arbitrary clustering ρ.
repeat

Step A: Pick a dimension i, (1 ≤ i ≤ n) to update.
Step B: Compute cluster assignments ρi

ρi(ui) = argmin
ûi:[ûi]

ki
1

EU−i|ui
[dφ(Z, hφ(Λ, (ui, U−i), (ûi, ρ−i(U−i))))]

Step C: Compute the MBI solution and optimal La-
grange multipliers Λ for ρ using (3.3).

until convergence

return ρ

For some important choices of Bregman divergences
and clustering bases (BAMC/BMC), the MBI solution
in Step C can be computed in closed form, so that
Algorithm 1 requires a computational effort that is only
linear per iteration in the size of the data (non-zeros
in the tensor) and is hence, very scalable. It must
be noted here that Algorithm 1 is a meta algorithm
that can be instantiated for any choice of Bregman
divergence and clustering basis, since the MBI solution
can always be computed numerically using iterative
projection algorithms [6]. In practice, we can also use
multiple restarts or local search heuristics [8] to improve
the locally optimal solution.

4 Multi-way Clustering on Relation Graphs

In this section, we introduce our relation graph model,
which captures multiple relations between a specified
set of variables, where each relation corresponds to a
tensor over possibly different domains. Then, we ex-
tend the multi-way clustering formulation in Section 3
for this setting by defining a suitable convex function
over these relation graphs. More specifically, we use
this convex function to define the Bregman information
of a relation graph and thereby, characterize the opti-
mal reconstruction of the relation graph via MBI prin-
ciple. The multi-way clustering problem is then posed
in terms of determining the clustering that finds the op-
timal reconstruction of the original relation graph. We
also describe an efficient alternate minimization-based
algorithm (MRGC) for multi-way relation graph clus-
tering.

4.1 Relation Graph Model. We begin with a de-
scription of the multi-relational setting. As in Sec-
tion 3, let Ui, [i]n1 indicate random variables that take
values over n different classes of entities indexed by
{1, · · · ,mi}, [i]n1 respectively and let Uall = {Ui}

n
i=1.



Figure 4.2: Relation graph for movie recommendation.

The tensor formulation in Section 3 considers the case
where there is a single relation connecting the entity
classes Ui, [i]n1 . In a multi-relational setting, there ex-
ist multiple such relations between the variables in Uall.
Let f j , [j]l1 denote these relations, each of which corre-

sponds to a set of variables Ufj

⊆ Uall, and also a tensor
Zj whose entries take values in an appropriate domain.
Note that it is possible that a relation f j corresponds to

a singleton set, i.e., Ufj

= {Ui} for some i, (1 ≤ i ≤ n),
in which case f j just maps the entities denoted by Ui

to their intrinsic attributes. Let U fj

denote the random
vector corresponding to the variables in Ufj

. Then, we

can define a new random variable Zj = f j(Ufj

), which
takes values among the elements of the tensor Zj follow-

ing the probability distribution pj(Ufj

) associated with
the relation f j .3 The dependencies between the various
entity classes Ui, [i]n1 , relations f j , [j]l1, data tensors
Zj , [j]l1 and random variables Zj , [j]l1 can be conve-
niently represented in the form of relation graph defined
below.

Definition 3 A relation graph G is a directed (Uall +
F , E)-bipartite graph where Uall = {Ui}

n
i=1 is a set of

random variables and F = {f j}l
j=1 is a set of relations.

Each relation f j is a deterministic mapping defined over

the random vector U fj

determined by all the variables

U ∈ Ufj

⊆ Uall that are linked to f j by an edge
eU,fj ∈ E . Further, each relation node f j ∈ F is

associated with a random variable Zj = f j(Ufj

), whose
support set is the tensor Zj .

Example 4 Figure 4.1 shows the relation graph for the
scenario described in Example 1. First, we observe that
there are four classes of entities corresponding to viewers
(U1), actors (U2), movies (U3) and review words (U4).
We also have four relations between these entity classes:

3Note that the probability distributions are conditioned on the
relations and do not have to be consistent with respect to each
other.

(1) f1: viewer U1’s rating of actor U2 in movie U3, (2)
f2: actor U2’s participation in movie U3, (3) f3: word
U4’s occurrence in description of movie U3, and (4) f4:
viewer U1’s attributes such as gender and age. Each of
these relations f j corresponds to a data tensor Zj . Note
that we view Z4 to be a tensor with a single axis and
elements corresponding to (gender, age) pairs which can
be embedded in S = [0, 1] × R++.

4.2 Multi-way Clustering Formulation. We de-
fine a multi-way clustering ρ = (ρ1, · · · , ρn) for
(k1, · · · , kn) clusters along each dimension and the corre-

sponding random variables Ûi = ρi(Ui), [i]n1 , exactly as
in Section 3. To characterize the “goodness” of a multi-
way clustering, we first observe that the relation graph
G with l relations is described by the l data tensors Zj or
equivalently, the random variables Zj . Hence, a natural
formulation would be in terms of approximating each of
these tensors based on the multi-way clustering. How-
ever, it is often not possible to have a single loss function
to measure the distortion across all the data tensors Zj ,
as they might take values in different domains, e.g., in
the movie recommender system, the entries in Z1 take
real values in the range [-10,10] while those in Z2 take
only binary values.

To handle this, we measure the approximation error
in terms of a weighted combination of the suitable Breg-
man loss functions applied to each of the tensors. More
specifically, let φj be a suitable convex function defined
over the entries in Zj and let νj denote the weight as-
sociated with Zj . In practice, the weights νj , [j]l1 can
be chosen to be proportional to the number of observa-
tions on the corresponding relations or the relevance of
these relations for a specific prediction problem of inter-
est. Let Ẑj be a reconstruction of the original tensor Zj ,
such that Ẑj depends only upon the clustering of the ran-

dom variables in U fj

, and a pre-specified set of summary
statistics derived from the multi-way clustering and Zj .
Further, let Ẑj be a random variable that takes values
in the approximate tensor Ẑj following the distribution

pj(Ufj

). The “goodness” of the multi-way clustering
can now be measured in terms of the weighted expected
distortion between the random vectors (Z1, · · · , Zl) and

(Ẑ1, · · · , Ẑl), i.e.,

(4.5)

l
∑

j=1

νjEpj [dφj (Zj , Ẑj)] .

One can arrive at a more elegant interpretation of
the above cost function by observing that the random
variables Ûi, [i]n1 , and Ẑj , [j]l1 define a new relation

graph Ĝ which has identical structure as the original
relation graph G, but is an approximation in terms of
the data values. Let G = (Z1, · · · , Zl) be the random



vector that captures all information in the relation graph
G and similarly, let Ĝ = Ĝ(ρ) = (Ẑ1, · · · , Ẑl). The cost

function in (4.5) can now be expressed as E[dφ(G, Ĝ)]
where

(4.6) φ(G) =

l
∑

j=1

νjφj(Zj).

The multi-way clustering problem is to find the ρ that
minimizes the expected Bregman distortion E[dφ(G, Ĝ)].

Example 5 In the movie recommendation example,
since Z1 corresponds to ratings in [−10, 10], it is rea-
sonable to have φ(1) as the squared error. For the ten-
sors Z2 and Z3 consisting of co-occurrence values, it is
more appropriate to have φ(2) and φ(3) as I-divergence.
Similarly, φ(4) can be chosen as an appropriate convex
function over a 2-tuple of binary and real values.

Similar to the tensor setting, the choice of Ĝ is crit-
ical to the clustering formulation. Further, as before, it
can be fully described in terms of the summary statis-
tics that need to be preserved and the reconstruction
procedure based on the MBI principle.

4.3 Summary Statistics. As in the case of tensor
formulation, for each relation f j , we consider summary
statistics that are conditional expectations of the random
variables Zj with respect to random variables {V j

s }
rj

s=1,
that correspond to the different partitions of Zj . The
complete clustering basis in this case is the union of
all these sets of random variables, i.e., {{V j

s }
rj

s=1}
l
j=1.

Further, since the random variables Zj , [j]l1 correspond
to different relations, one can consider different set
of conditional expectations for each of these random
variables, as illustrated in the following example.

Example 6 For the movie recommendation example,
we have four relations and corresponding random vari-
ables Z1, . . . , Z4. Following Example 3, we observe that
for the first relation involving viewer ratings, it would be
appropriate to choose the bias-adjusted multi-way clus-
tering (BAMC) basis. Similarly for the relations f 2, f3

based on co-occurrence counts, one could chose either
the BAMC or BMC scheme depending on the promi-
nence of the entity-bias whereas for f4, compression can
be obtained by only choosing the BMC scheme.

4.4 MBI Principle for Relation Graphs. We now
focus on obtaining the approximation Ĝ = (Ẑ1, · · · , Ẑl),
given a fixed multi-way clustering a clustering basis, by
following a similar strategy as in the case of the tensor
formulation.

First, we characterize the Bregman information of
the random vector G = (Z1, · · · , Zl) associated with a

relation graph G using the convex function φ in (4.6),
i.e.,

Iφ(G) = E[dφ(G,E[G])]

=

l
∑

j=1

νjEpj [dφj (Zj , Epj [Zj ])] =

l
∑

j=1

νjIφj (Zj) .

This allows to invoke the minimum Bregman informa-
tion (MBI) principle and pick the “best” approximation
as the one that has the minimum Bregman information,
subject to the linear constraints arising from the sum-
mary statistics to be preserved, i.e.,

(4.7) ĜA ≡ argmin
G′∈SA

Iφ(G′)

where G′ = (Z ′1, · · · , Z ′l) and SA is given by

SA = {G′|Epj [Z ′j |V j
s ] = Epj [Zj |V j

s ], ∀[s]
rj

1 , ∀[j]l1}.

Due to the separability of the convex function φ and
the resulting Bregman information, it can be shown that
the MBI solution ĜA can in fact be readily expressed
in terms of the MBI solutions corresponding to the
component random variables Zj , [j]l1 .

Theorem 6 For any relation graph G, Bregman diver-
gence dφ and multi-way clustering ρ, and clustering basis

{{V j
s }

rj

s=1}
l
j=1, the MBI solution ĜA = (Ẑ1

A, · · · , Ẑl
A),

where ĜA is as in (4.7) and Ẑj
A is the MBI solution for

the tensor Zj with respect to the basis {V j
s }

rj

s=1 and clus-
tering ρ, as defined in (3.3).

Using the above decomposition result and Theorem 1,
one can uniquely determine the MBI solution ĜA. This
reconstruction not only preserves all the specified sum-
mary statistics, but also results in the minimum expected
Bregman distortion with respect to the original G among
a large class of possible reconstructions. Further, the ex-
pected Bregman distortion between the original G and
the MBI approximation ĜA can also be expressed as the
loss in Bregman information due to clustering, i.e.,

(4.8) E[dφ(G, ĜA)] = Iφ(G) − Iφ(ĜA).

Hence forth, we define Ĝ ≡ ĜA so that the multi-way
clustering problem can be posed as that of finding the
optimal multi-way clustering ρ∗ that solves the following
minimization problem,

(4.9) min
ρ

E[dφ(G, Ĝ)] = min
ρ

Iφ(G) − Iφ(ĜA).

4.5 MRGC Algorithm. In order to solve the multi-
way clustering problem for relation graphs, we adopt a
similar alternate minimization strategy as in the case of



tensor clustering. Similar to Section 3, multi-way rela-
tion graph clustering (MRGC) involves an iterative pro-
cess where the cluster assignments of each dimension are
updated followed by the computation of the MBI solu-
tion. The only difference is that the optimal cluster as-
signments and the MBI computation depend on multiple
tensors associated with different relations.

First, we consider the cluster assignment step for

the ith dimension. For any relation f j , let U
fj

−i denote
the random variable over the dimensions other than i
and ρj

−i the corresponding clustering. For any multi-

way clustering ρ, the MBI solution Ĝ = (Ẑ1, · · · , Ẑl)

where Ẑj is the MBI solution associated with the tensor
Zj and is determined by Theorem 1. Now, for any
candidate clustering ρ̃i along the ith dimension, we
can consider a reconstruction G̃ consisting of relation-
wise reconstructions Z̃j similar to the one described in
Section 3.4. In particular, Z̃j = Ẑj when the relation f j

does not involve the ith dimension, i.e., Ui /∈ Ufj

.
As in Section 3.4, the expected distortion

E[dφ(G, G̃)] can be expressed as a sum overs mi terms,
each of which depends on a single ui and its assignment
ρ̃i(ui). Hence, the new clustering ρnew

i can be obtained
by computing the optimal cluster assignments for each
ui (Step B of Algorithm 2). The new cluster assignment
ρ

new = (ρnew
i , ρ−i) has a lower expected distortion, but

the resulting reconstruction G̃new is not the MBI solu-
tion. From Theorems 6 and 4, it can be shown that [18]

the MBI solution Ĝnew corresponding to ρ
new is a bet-

ter approximation that G̃new. Hence, we recompute the
MBI solution Ĝnew, which because of Theorem 6 only
involves recomputing the MBI solutions of the relations
that involve Ui. Algorithm 2 shows the main steps and
is guaranteed to monotonically decrease the multi-way
clustering objective function till it reaches a local opti-
mum [18]. For special cases where the multi-way cluster-
ing basis and the Bregman loss functions (φ1, · · · , φj) are
such that the MBI solutions for all relations have a closed
form, the multi-way relation graph clustering (MRGC)
algorithm only requires linear computational time per
iteration and is highly scalable. Further as noted earlier,
Algorithm 2 can be instantiated for any relation graph
setting with a well defined set of Bregman loss functions
and multi-way clustering basis.

5 Experimental Results

In this section, we provide experimental results that
highlight the flexibility and effectiveness of our multi-
way clustering framework. First, we describe experi-
ments on synthetic data for studying the dependence
of the clustering quality and the resulting approxima-
tion on the choice of Bregman divergence and multi-way
clustering basis. Then, we present results on real world
datasets for document and movie categorization tasks to

Algorithm 2 Multi-way Relation Graph Clustering

Input: Relation graph G = (Z1, · · · ,Zj) based on relations
fj , [j]l1, associated weights νj , [j]l1, probability measures
wj , [j]l1, Bregman divergences dφj : S × int(S) 7→ R+,
num. of clusters (k1, · · · , kn), multi-way clustering basis
{{V j

s }
rj

s=1}
l
j=1.

Output: Multi-way clustering ρ
∗ that (locally) optimize the

objective function in (4.9).
Method:

Initialize with an arbitrary clustering ρ.
repeat

Step A: Pick a dimension i, (1 ≤ i ≤ n) to update.
Step B: Compute cluster assignments ρi

ρi(ui) = argmin
ûi:[ûi]

ki
1

P

j:Ui∈Ufj νjwj
ui

EU−i|ui
[dφ(Zj , Z̃j(ui, ûi))]

where Z̃j(ui, ûi) = hφ(Λj , (ui, U
fj

−i), (ûi, ρ
j
−i(U

fj

−i))

Step C: Compute MBI solution Ĝ for ρ using (4.7).
until convergence

return ρ

Configuration Squared Error nMI

A 55.9 ± 7.7 0.742 ± 0.026
B 71.3 ± 8.9 0.664 ± 0.051
C 190.9 ± 21.2 0.528 ± 0.053

Table 5.1: Performance using different Bregman diver-
gences and clustering bases with k1 = k2 = k3 = 5. nMI
was averaged over U1, U2 and U3 and ν(1) = ν(2).

demonstrate the benefits of tensor and multi-relational
clustering over 2-dimensional co-clustering. We also de-
scribe a case study on performing collaborative filtering
for movie recommendations via a multi-way clustering
approach.

5.1 Choice of Bregman Divergence and Cluster-
ing Basis. As mentioned earlier, the MRGC algorithm
is applicable for any choice Bregman divergence and also
for any valid clustering basis (including, but not limited
to BAMC and BMC). When the choice of the Bregman
divergence and the clustering basis capture the natural
structure of the data, one can obtain a highly accurate
approximation of the original data. To study this de-
pendence, we generated 10 sets of two 50 × 50 matrices
Z1 and Z2 (shown in Figure 5.3), which correspond to
relations between U1, U2 and U1, U3 respectively, where
U1, U2, U3 are three classes of entities. The matrices Z1

and Z2 were obtained from structured Gaussian mix-
ture models [18] corresponding to the BAMC and BMC
scheme respectively with k1 = k2 = k3 = 5. The bi-
jection result between Bregman divergences and regular
exponential families [3] suggests that the squared loss
as the appropriate Bregman divergence in this case. To
validate this, we performed multi-way clustering using
the following three configurations - (A) squared error
and BAMC for Z1/BMC for Z2, (B) I-divergence and
BAMC for Z1/BMC for Z2, (C) squared error and BMC
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Figure 5.3: Multi-way clustering-based reconstruction with
configuration A (bottom row) of relational data consisting of
two 50x50 matrices (top row).

for both Z1 and Z2. Table 5.1 shows the approximation
error/clustering quality (as measured by normalized mu-
tual information (nMI) [20]) with respect to the original
matrices, clearly demonstrating that the right choice of
Bregman divergence and clustering basis (i.e., configu-
ration A) results in better performance. Figure 5.3 also
shows the reconstruction for this case. These result sug-
gest that one could use domain knowledge to identify
a suitable generative distribution (e.g., Gaussian, Pois-
son) and summary statistics (e.g., entity class bias) and
instantiate the multi-way clustering algorithm with the
appropriate Bregman divergence and clustering basis.

5.2 Benefit of Tensor Structure: Newsgroup
Topics. In this experiment, we demonstrate the im-
provement in clustering performance by considering the
tensor structure. We consider a subset of the well-
known 20 Newsgroups[9] data. Following the methodol-
ogy of [16], we create a subset of 100 documents sampled
randomly from 4 newsgroups – sci.space, sci.electronics,
talk.politics.guns, talk.politics.mideast. For each arti-
cle, we extracted information about the author, the
newsgroup, and the words in the post. By aggregat-
ing across all the 400 documents in this collection, we
created a tensor with 3 dimensions: author, newsgroup
category, and words used. The goal of this experiment
is to get good topics from word clusters. Note that in
this dataset, the 4 newsgroups categories form a natu-
ral partitioning into 2 clusters: one related to science
(sci.space and sci.electronics) and the other to politics
(talk.politics.guns and talk.politics.mideast). So we clus-
tered this tensor using BMC with I-divergence to get
2 newsgroup clusters, 20 author clusters, and 20 word
clusters. We compare the performance with matrix co-

Tensor Matrix
Topic 1 Topic 2 Topic1 Topic2

arab nasa arab rocket
land earth space land

jewish space turkish nasa
israel rocket israeli earth
policy international israel jewish

program president
million

Table 5.2: Two sample word clusters each from tensor co-
clustering and matrix co-clustering, representing topics about
Arab-Israel politics and NASA’s space program.

clustering using I-divergence, by considering only the
word distributions in every newsgroup (no author infor-
mation).

Both the algorithms were able to find the clustering
of the newsgroup categories. However, the word clusters
or topics obtained for the tensor structure were much
better than those in the matrix structure. As seen in
Table 5.2, the tensor structure enables the algorithm to
find coherent topic words, whereas the topics obtained
with the matrix structure have some noise words in
them, e.g., “space” in topic about Arab-Israel politics,
“jewish” and “president” in the topic about NASA’s
space program.

5.3 Benefit of Relation Graph: Movie Cate-
gories. This experiment illustrates the utility of clus-
tering over the relation graph structure. We consider
the IMDB-EachMovie dataset [2], which has movies
with descriptions from the IMDB dataset (actors, genre,
etc.) and corresponding user ratings from the EachMovie
dataset. We create a subset of 100 movies on which
39031 users have provided ratings on a scale of 1-5. For
each movie, we consider the actors and the genre labels
from IMDB. Note that movies can be associated with
multiple genre labels. Altogether, the 100 movies have
19 different genre labels, and there are 1177 actors acting
in them.

We created a relation graph comprising of two ma-
trices hinged along the movie dimension: (movie, user
ratings) and (movie, actor). Using BAMC along the user
ratings matrix and BMC along the actor matrix, we par-
titioned the movies into 20 clusters. The quality of the
clusters were evaluated using the pair-wise F-measure
metric [2], which is a useful extrinsic cluster evaluation
measure when data points have multiple class labels. For
the dataset considered, the pairwise F-measure score was
0.4. As a baseline, we considered matrix co-clustering
over the (movie, user ratings) matrix, using BAMC. The
pairwise F-measure was a substantially lower value, 0.13,
illustrating that using the relation graph structure over
the multiple relations of the movie data gives better clus-
tering results.



Algo MRGC COCLUST SVD PLSA CORR

MAE 0.723 0.743 0.754 0.739 0.813

Table 5.3: Mean absolute error (MAE) on MovieLens for
collaborative filtering approaches. For MRGC (νgenre =0.2)
and COCLUST, #clusters on each dimension (movie, user,
genre) = 5, I-divergence loss is used. Rank of SVD and
#topics in PLSA = 5, #neighbors in the correlation method
= 50. Std. devn. in all results is below 0.02.

5.4 Augmented Collaborative Filtering Case
Study. The main task in collaborative filtering is to
predict the preference of a given user for an item us-
ing known preferences of the other users. In this study,
we explore the possibility of obtaining better predic-
tions using additional information via multi-way cluster-
ing. We used a subset of the MovieLens dataset (movie-
lens.umn.edu) consisting of 456 users, 600 movies (13158
ratings in the range [1-5]) as well as the movie-genre (19
genres) information. Our prediction approach involved
performing multi-way clustering on a subset of the user-
movie ratings as well as the movie-genre memberships
in order to obtain a grouping of the users, movies and
the genres. In particular, we used BAMC scheme for
the ratings and BMC for the genre memberships with
I-divergence as the loss function. The multi-way clus-
ters as well as the summary statistics were then used
to make predictions on the test set. To take into ac-
count missing values while clustering, we assumed a uni-
form measure for known values and zero measure for the
missing ones as in [1]. We also tried varying the relative
importance of the genre memberships and ratings by set-
tings νgenre = [0, 0.2, 0.4, 0.6, 0.8] on training sets with
different levels of sparsity in the ratings. We find that
the genre information tends to become more useful as
the sparsity increases, in particular the optimal νgenre

(w.r.t test error) for 20%, 40%, 60% and 80% ratings
was found to 0.6, 0.4, 0.2 and 0.2 respectively.

Table 5.3 shows the average mean absolute error on a
80%-20% train-test split of (456 users × 500 movies) for
the multi-way clustering approach as well as other collab-
orative filtering approaches such as SVD [19], PLSA [13],
Pearson correlation and also co-clustering [1]. From the
table, we note that the multi-way clustering provides
slightly better accuracy than other methods because of
the additional genre information. This becomes even
more evident when we consider the prediction accuracy
on ratings corresponding to the 100 movies that are not
included in the clustering. In the multi-way clustering
approach, the “unseen” movie is assigned to a cluster
based solely on genre and the rating is predicted to be
the user’s average rating for that movie cluster resulting
in (MAE =0.809), whereas in all the other approaches,
the prediction for a “unseen” movie is just the user’s
overall average rating that results in much higher error
(MAE =0.883).

6 Related Work

In this section, we briefly describe how the multi-way
relation graph clustering (MRGC) model is related to
other clustering models as well as graphical models that
have been proposed in the literature.

6.1 Other Multi-way Clustering Models. Long et
al. [16] recently proposed the collective factorization of
related matrices (CFRM) model for joint clustering on
multi-type relational data. The CFRM model is, how-
ever, restricted to only pairwise relations between entity
types. As in the case of MRGC, the CFRM formula-
tion is also motivated from an approximation point of
view, but the distortion is measured using squared loss.
Further, the optimal approximation is obtained via non-
negative factorization of relevant matrices, unlike MRGC
where the approximation is determined in terms of the
conditional expectations via the MBI principle. It can
be shown that the CFRM model corresponds to a real
relaxation of a special case of MRGC model for the block
clustering formulation (BMC) and squared loss. Though
the spectral clustering algorithm is not scalable to large
datasets, it can give better results than alternate mini-
mization in some cases.

A follow-up paper by Long et al. [15] proposed a
relational summary network (RSN) model for clustering
over k-partite graphs using Bregman divergences. The
RSN model considers only pairwise interactions, and
in fact, follows as a special case of the MRGC model
where all the relations are described by matrices and the
summary statistics correspond to the block clustering
(BMC) scheme.

Bekkerman et al. [4] introduce a model of multi-way
distributional clustering (MDC) based on pairwise in-
teractions between variables, which maximizes an objec-
tive function equal to the sum of weighted pairwise mu-
tual information between the clustered random variables.
The MDC formulation can be shown to be a special case
of MRGC assuming only pairwise relations, summary
statistics corresponding to the BAMC scheme and an I-
divergence distortion measure. However, MDC uses an
interleaved top-down and bottom-up algorithm, which
can be more effective at performing correction for local
optimization than the alternate minimization MRGC al-
gorithm. Multivariate information bottleneck [10] is an-
other important work that corresponds to a soft cluster-
ing formulation similar to MRGC for a specific class of
loss functions based on I-divergence.

In addition to the clustering models discussed above,
there are several other “multi-way” clustering tech-
niques, that share the same nomenclature, but address
slightly unrelated problems, some of which are discussed
in [15, 16].



6.2 Matrix Co-clustering and KMeans. As men-
tioned in Section 3, our tensor clustering formulation in a
direct generalization of Bregman matrix co-clustering [1].
In this work, Banerjee et al. [1] demonstrate how Breg-
man matrix co-clustering generalizes a variety of par-
titional co-clustering algorithms: information theoretic
co-clustering [9], minimum sum-square residue cluster-
ing [8], fully-automatic cross-associations [7], as well as
clustering algorithms such as KMeans. Hence, these
methods can be considered as special cases of the MRGC
model as well. There are several related co-clustering for-
mulations that have been proposed in the literature —
[17] contains an extensive survey on various models and
their applications.

6.3 Probabilistic Graphical Models. The MRGC
model is also closely related to probabilistic graphical
models. More specifically, the bijection between expo-
nential families and Bregman divergences [3] suggests
that it is possible to have a probabilistic view of the
multi-way clustering problem as maximum likelihood es-
timation over a structured mixture of exponential distri-
butions. Based on this connection, it can be shown that
the MRGC formulation is associated with a family of
graphical models over the latent cluster variables where
the dependencies are determined by the choice of cluster-
ing basis. This is similar in principle to the recent work
on Bayesian models, e.g., LDA [5], which formulate the
clustering problem in terms of a graphical model with
latent variables. Several papers have proposed various
specific model structures for clustering in particular do-
mains [21]. The MRGC formulation, in particular, has
several commonalities with relational clustering meth-
ods based on Probabilistic Relational Models (PRM) [11]
and Probabilistic Entity-Relationship (PER) [12] mod-
els, which support probabilistic inference over relations.

7 Conclusions

In summary, our current work significantly expands
the applicability of clustering techniques by providing
a broad multi-way clustering framework with flexibility
along two directions —(a) simutaneously clustering of
multiple classes of entities, (b) extension to multiple
relations via a relation-graph model. Furthermore, our
formulation is applicable to all Bregman loss functions
and also allows a large family of structurally different
multi-way clustering schemes based on the summary
statistics that need to be preserved. The proposed
MRGC algorithm is also highly scalable and suitable
for handling high dimensional, sparse data involving
mixed data types. Our formulation can also be shown to
have a natural interpretation in terms of probabilistic
generative model, which in turn allows extensions to
active, online and semi-supervised learning.
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