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Abstract

In recent years, co-clustering has emerged as a power-
ful data mining tool that can analyze dyadic data connect-
ing two entities. However, almost all existing co-clustering
techniques are partitional, and allow individual rows and
columns of a data matrix to belong to only one cluster. Sev-
eral current applications, such as recommendation systems
and market basket analysis, can substantially benefit from
a mixed membership of rows and columns. In this paper,
we present Bayesian co-clustering (BCC) models, that al-
low a mixed membership in row and column clusters. BCC
maintains separate Dirichlet priors for rows and columns
over the mixed membership and assumes each observation
to be generated by an exponential family distribution cor-
responding to its row and column clusters. We propose a
fast variational algorithm for inference and parameter es-
timation. The model is designed to naturally handle sparse
matrices as the inference is done only based on the non-
missing entries. In addition to finding a co-cluster structure
in observations, the model outputs a low dimensional co-
embedding, and accurately predicts missing values in the
original matrix. We demonstrate the efficacy of the model
through experiments on both simulated and real data.

1 Introduction

The application of data mining methods to real life prob-
lems has led to an increasing realization that a considerable
amount of real data is dyadic, capturing a relation between
two entities of interest. For example,usersratemoviesin
recommendation systems,customerspurchaseproductsin
market-basket analysis,geneshave expressions underex-
perimentsin computational biology, etc. Such dyadic data
are represented as a matrix with rows and columns repre-
senting each entity respectively. An important data mining
task pertinent to dyadic data is to get a clustering of each
entity, e.g., movie and user groups in recommendation sys-
tems, product and consumer groups in market-basket anal-

ysis, etc. Traditional clustering algorithms do not perform
well on such problems because they are unable to utilize
the relationship between the two entities. In comparison,
co-clustering [13], i.e., simultaneous clustering of rowsand
columns of a data matrix, can achieve a much better per-
formance in terms of discovering the structure of data [8]
and predicting the missing values [1] by taking advantage
of relationships between two entities.

Co-clustering has recently received significant attention
in algorithm development and applications. [10], [8], and
[12] applied co-clustering to text mining, bioinformatics
and recommendation systems respectively. [3] proposed a
generalized Bregman co-clustering algorithm by consider-
ing co-clustering as a matrix approximation problem. While
these techniques work reasonably on real data, one impor-
tant restriction is that almost all of these algorithms are
partitional [16], i.e., a row/column belongs to only one
row/column cluster. Such an assumption is often restrictive
since objects in real world data typically belong to multiple
clusters possibly with varying degrees. For example, a user
might be an action movie fan and also a cartoon movie fan.
Similar situations arise in most other domains. Therefore,a
mixed membership of rows and columns might be more ap-
propriate, and at times essential for describing the structure
of such data. It is also expected to substantially benefit the
application of co-clustering in such domains.

In this paper, we propose Bayesian co-clustering (BCC)
by viewing co-clustering as a generative mixture modeling
problem. We assume each row and column to have a mixed
membership respectively, from which we generate row and
column clusters. Each entry of the data matrix is then gen-
erated given that row-column cluster, i.e., the co-cluster.
We introduce separate Dirichlet distributions as Bayesian
priors over mixed memberships, effectively averaging the
mixture model over all possible mixed memberships. Fur-
ther, BCC can use any exponential family distribution [4]
as the generative model for the co-clusters, which allows
BCC to be applied to a wide variety of data types, such
as real, binary, or discrete matrices. For inference and pa-
rameter estimation, we propose an efficient variational EM-



style algorithm that preserves dependencies among entries
in the same row/column. The model is designed to natu-
rally handle sparse matrices as the inference is done only
based on the non-missing entries. Moreover, as a useful
by-product, the model accomplishesco-embedding, i.e., si-
multaneous dimensionality reduction of individual rows and
columns of the matrix, leading to a simple way to visualize
the row/column objects. The efficacy of BCC is demon-
strated by the experiments on simulated and real data.

The rest of paper is organized as follows: In Section 2,
we present a brief review of generative mixture models. In
Section 3, we propose the Bayesian co-clustering model. A
variational approach for learning BCC is presented in Sec-
tion 4. The experimental results are presented in Section 5,
and a conclusion is given in Section 6.

2 Generative Mixture Models

In this section, we give a brief overview of existing gen-
erative mixture models (GMMs) and co-clustering models
based on GMMs as a background for BCC.

Finite Mixture Models. Finite mixture models (FMMs) [9,
4] are one of the most widely studied models for discovering
the latent cluster structure from observed data. The density
function of a data pointx in FMMs is given by:

p(x|π,Θ) =

k
∑

z=1

p(z|π)p(x|θz) ,

whereπ is the prior overk components, andΘ = {θz, [z]
k
1}

([z]k1 ≡ z = 1, . . . , k) are the parameters ofk component
distributionsp(x|θz), [z]k1 . p(x|θz) is an exponential fam-
ily distribution [6] with a form ofpψ(x|θ) = exp(〈x, θ〉 −
ψ(θ))p0(x) [4], whereθ is the natural parameter,ψ(·) is the
cumulant function, andp0(x) is a non-negative base mea-
sure. ψ determines a particular family, such as Gaussian,
Poisson, etc., andθ determines a particular distribution in
that family. The parameters could be learned by maximum-
likelihood estimation using an EM style algorithm [20, 17].

Latent Dirichlet Allocation. One key assumption of
FMMs is that the priorπ is fixed across all data points. La-
tent Dirichlet allocation (LDA) [7] relaxes this assumption
by assuming there is a separate mixing weightπ for each
data point, andπ is sampled from a Dirichlet distribution
Dir(α). For a sequence of tokensx = x1 · · ·xd, LDA with
k components has a density of the form

p(x|α,Θ) =

∫

π

Dir(π|α)

(

d
∏

l=1

k
∑

zl=1

p(zl|π)p(xl|θzl
)

)

dπ .

Getting a closed form expression for the marginal density
p(x|α,Θ) is intractable. Variational inference [7] and Gibbs
sampling [11] are two most popular approaches proposed to
address the problem.

Bayesian Naive Bayes. While LDA relaxes the assump-
tion on the prior, it brings in a limitation on the conditional
distribution: LDA can only handle discrete data as tokens.
Bayesian naive Bayes (BNB) generalizes LDA to allow the
model to work with arbitrarily exponential family distribu-
tions [5]. Given a data pointx = x1 · · ·xd, the density
function of the BNB model is as follows:

p(x|α,Θ, F )=

∫

π

p(π|α)

(

d
∏

l=1

k
∑

zl=1

p(zl|π)pψ(xl|zl, fl,Θ)

)

dπ ,

whereF is the feature set,fl is the feature for thelth non-
missing entry inx, pψ(xl|zl, fl,Θ) could be any exponen-
tial family distribution for the componentzl and featurefl.
BNB is able to deal with different types of data, and is de-
signed to handle sparsity.

Co-clustering based on GMMs. The existing literature
has a few examples of generative models for co-clustering.
Nowicki et al. [19] proposed a stochastic blockstructures
model that builds a mixture model for stochastic relation-
ships among objects and identifies the latent cluster via
posterior inference. Kemp et al. [14] proposed an infinite
relational model that discovers stochastic structure in re-
lational data in form of binary observations. Airoldi et
al. [2] recently proposed a mixed membership stochastic
blockmodel that relaxes the single-latent-role restriction in
stochastic blockstructures model. Such existing models
have one or more of the following limitations: (a) The
model only handles binary relationships; (b) The model
deals with relation within one type of entity, such as a so-
cial network among people; (c) There is no computationally
efficient algorithm to do inference, and one has to rely on
stochastic approximation based on sampling. The proposed
BCC model has none of these limitations, and actually goes
much further by leveraging the good ideas in such models.

3 Bayesian Co-Clustering

Given ann1 × n2 data matrixX , for the purpose of
co-clustering, we assume there arek1 row clusters{z1 =
i, [i]k11 } andk2 column clusters{z2 = j, [j]k21 }. Bayesian
co-clustering (BCC) assumes two Dirichlet distributions
Dir(α1) and Dir(α2) for rows and columns respectively,
from which the mixing weightsπ1u andπ2v for each rowu
and each columnv are generated. Row clusters for entries in
row u and column clusters for entries in columnv are sam-
pled from discrete distributions Disc(π1u) and Disc(π2v)
respectively. A row clusteri and a column clusterj to-
gether decide a co-cluster(i, j), which has an exponential
family distributionpψ(x|θij), whereθij is the parameter of
the generative model for co-cluster(i, j). For simplicity, we
dropψ from pψ(x|θij), and the generative process for the
whole data matrix is as follows (Figure 1):
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Figure 1. Bayesian co-clustering model.

1. For each rowu,[u]n1

1 , chooseπ1u ∼ Dir(α1).

2. For each columnv,[v]n2
1 , chooseπ2v ∼ Dir(α2).

3. To generate an entry in rowu and columnv,

(a) choosez1 ∼ Disc(π1u), z2 ∼ Disc(π2v),

(b) choosexuv ∼ p(x|θz1z2).

For this proposed model, the marginal probability of an
entryx in the data matrixX is given by:

p(x|α1, α2,Θ) =

∫

π1

∫

π2

p(π1|α1)p(π2|α2)

∑

z1

∑

z2

p(z1|π1)p(z2|π2)p(x|θz1z2)dπ1dπ2 .

The probability of the entire matrix is, however, not the
product of all such marginal probabilities. That is because
π1 for any row andπ2 for any column are sampled only once
for all entries in this row/column. Therefore, the model
introduces a coupling between observations in the same
row/column, so they are not statistically independent. Note
that this is a crucial departure from most mixture models,
which assume the joint probability of all data points to be
simply a product of the marginal probabilities of each point.

The overall joint distribution over all observable and la-
tent variables is given by

p(X,π1u, π2v, z1uv, z2uv, [u]
n1

1 , [v]n2

1 |α1, α2,Θ) (1)

=

(

∏

u

p(π1u|α1)

)(

∏

v

p(π2v|α2)

)

(

∏

u,v

p(z1uv|π1u)p(z2uv|π2v)p(xuv |θz1uv,z2uv
)δuv

)

,

whereδuv is an indicator function which takes value 0 when
xuv is missing and 1 otherwise, so only the non-missing en-
tries are considered,z1uv ∈ {1, . . . , k1} is the latent row
cluster andz2uv ∈ {1, . . . , k2} is the latent column clus-
ter for observationxuv. Since the observations are con-
ditionally independent given{π1u, [u]

n1

1 } for all rows and
{π2v, [v]

n2

1 } for all columns, the joint distribution
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p(X,π1u, π2v, [u]
n1

1 , [v]n2

1 |α1, α2,Θ)

=

(

∏

u

p(π1u|α1)

)(

∏

v

p(π2v|α2)

)(

∏

u,v

p(xuv|π1u, π2v,Θ)δuv

)

,

where the marginal probability

p(xuv|π1u, π2v,Θ)

=
∑

z1uv

∑

z2uv

p(z1uv|π1u)p(z2uv|π2v)p(xuv|θz1uv ,z2uv
) .

Marginalizing over {π1u, [u]
n1

1 ,} and {π2v, [v]
n2

1 }, the
probability of observing the entire matrixX is:

p(X |α1, α2,Θ) = (2)
∫

π1u

u=1,...,n1

∫

π2v

v=1,...,n2

(

∏

u

p(π1u|α1)

)(

∏

v

p(π2v|α2)

)

(

∏

u,v

∑

z1uv

∑

z2uv

p(z1uv|π1u)p(z2uv|π2v)p(xuv|θz1uv ,z2uv
)δuv

)

dπ11 · · ·dπ1n1
dπ21 · · · dπ2n2

.

It is easy to see (Figure 1) that one-way Bayesian clus-
tering models such as BNB and LDA are special cases of
BCC. Further, BCC inherits all the advantages of BNB and
LDA—ability to handle sparsity, applicability to diverse
data types using any exponential family distribution, and
flexible Bayesian priors using Dirichlet distributions.

4 Inference and Learning

Given the data matrixX , the learning task for the
BCC is to estimate the model parameters(α∗

1, α
∗

2,Θ
∗) such

that the likelihood of observing the matrixX is maxi-
mized. A general way is using the expectation maximiza-
tion (EM) family of algorithms [9]. However, computa-
tion of log p(X |α1, α2,Θ) is intractable, implying that a
direct application of EM is not feasible. In this section,
we propose a variational inference method, which alter-
nates between obtaining a tractable lower bound of true log-
likelihood and choosing the model parameters to maximize
the lower bound. To obtain a tractable lower bound, we con-
sider an entire family of parameterized lower bounds with



a set of free variational parameters, and pick the best lower
bound by optimizing the lower bound with respect to the
free variational parameters.

4.1 Variational Approximation

To get a tractable lower bound forlog p(X |α1, α2,Θ),
we introduce q(z1, z2,π1,π2|γ1,γ2,φ1,φ2) (q for
brevity) as an approximation of the latent variable distribu-
tion p(z1, z2,π1,π2|α1, α2,Θ):

q(z1, z2,π1,π2|γ1,γ2,φ1,φ2) =

(

n1
∏

u=1

q(π1u|γ1u)

)

(

n2
∏

v=1

q(π2v |γ2v)

)(

n1
∏

u=1

n2
∏

v=1

q(z1uv|φ1u)q(z2uv|φ2v)

)

,

whereγ1 = {γ1u, [u]
n1

1 } andγ2 = {γ2v, [v]
n2

1 } are varia-
tional Dirichlet distribution parameters withk1 andk2 di-
mensions respectively for rows and columns, andφ1 =
{φ1u, [u]

n1

1 } and φ2 = {φ2v, [v]
n2

1 } are variational dis-
crete distribution parameters withk1 andk2 dimensions for
rows and columns. Figure 2 shows the approximating dis-
tribution q as a graphical model, wheremu andmv are the
number of non-missing entries in rowu andv. As com-
pared to the variational approximation used in BNB [5] and
LDA [7], where the cluster assignmentz for every single
feature has a variational discrete distribution, in our approx-
imation there is only one variational discrete distribution for
an entire row/column. There are at least two advantages of
our approach: (a) A single variational discrete distribution
for an entire row or column helps maintain the dependencies
among all the entries in a row or column; (b) The inference
is fast due to the smaller number of variational parameters
over which optimization needs to be done.

By a direct application of Jensen’s inequality [18], we
obtain a lower bound forlog p(X |α1, α2,Θ):

logp(X |α1, α2,Θ)≥Eq[log p(X, z1, z2,π1,π2|α1, α2,Θ)]

− Eq[log q(z1, z2,π1,π2|γ1,γ2,φ1,φ2)] . (3)

We useL(γ1,γ2,φ1,φ2;α1, α2,Θ), or L for brevity, to
denote the lower bound.L could be expanded as:

L(γ1,γ2,φ1,φ2;α1, α2,Θ)

=Eq[log p(π1|α1)]+Eq[log p(π2|α2)]+Eq[log p(z1|π1)]

+Eq[log p(z2|π2)]+Eq[p(X |z1, z2,Θ)]−Eq[log q(π1|γ1)]

−Eq[log q(π2|γ2)]−Eq[log q(z1|φ1)]−Eq[log q(z2|φ2)] .

The expression for each type of term inL is listed in Ta-
ble 1; the forms ofEq[log p(π2|α2)], Eq[log p(z2|π2)],
Eq[log q(π2|γ2)], andEq[log q(z2|φ2)] are similar. Our
algorithm maximizes the parameterized lower bounds with
respect to the variational parameters(γ1,γ2,φ1,φ2) and
the model parameters(α1, α2,Θ) alternately.

4.1.1 Inference

In the inference step, given a choice of model parameters
(α1, α2,Θ), the goal is to get the tightest lower bound to
log p(X |α1, α2,Θ). It is achieved by maximizing the lower
boundL(γ1,γ2,φ1,φ2;α1, α2,Θ) over variational param-
eters(γ1,γ2,φ1,φ2). While there is no closed form, by
taking derivative ofL and setting it to zero, the solution can
be obtained by iterating over the following set of equations:

φ1ui∝exp

(

Ψ(γ1ui)+

∑

v,j δuvφ2vj log p(xuv |θij)

mu

)

(4)

φ2vj∝exp

(

Ψ(γ2vj)+

∑

u,i δuvφ1ui log p(xuv |θij)

mv

)

(5)

γ1ui = α1i +muφ1ui (6)

γ2vj = α2j +mvφ2vj (7)

where[i]k11 , [j]
k2
1 , [u]

n1

1 , [v]n2

1 , φ1ui is theith component of
φ1 for row u, φ2vj is thejth component ofφ2 for column
v, and similarly forγ1ui andγ2vj , andΨ(·) is the digamma
function [7]. From a clustering perspective,φ1ui denotes
the degree of rowu belonging to clusteri, for [u]n1

1 and
[i]k11 ; and similarly forφ2vj .

We use simulated annealing [15] in the inference step to
avoid bad local minima. In particular, instead of using (4)
and (5) directly for updatingφ1ui andφ2vj , we use

φ
(t)
1ui ∝ (φ1ui)

1/t, φ
(t)
2vj ∝ (φ2vj)

1/t

at each “temperature”t. At the beginning,t = ∞,
so the probabilities of rowu/column v belonging to all
row/column clusters are almost equal. Whent slowly de-
creases, the peak ofφ(t)

1ui andφ(t)
2vj gradually show up until

we reacht = 1, whereφ(1)
1ui andφ(1)

2vj becomeφ1ui andφ2vj ,
as in (4) and (5). We then stop decreasing the temperature
and keep on updatingφ1 andφ2 until convergence. After
that, we go on to updateγ1 andγ2 following (6) and (7).

4.1.2 Parameter Estimation

Since choosing parameters to maximizelog p(X |α1, α2,Θ)
directly is intractable, we useL(γ∗

1,γ
∗

2,φ
∗

1,φ
∗

2;α1, α2,Θ),
the optimal lower bound, as the surrogate objective func-
tion to be maximized, where(γ∗

1,γ
∗

2,φ
∗

1,φ
∗

2) are the op-
timum values obtained in the inference step. To estimate
the Dirichlet parameters(α1, α2), one can use an efficient
Newton update as shown in [7, 5] for LDA and BNB. One
potential issue with such an update is that an intermediate
iterateα(t) can go outside the feasible regionα > 0. In our
implementation, we avoid such a situation using an adaptive
line search. In particular, the updating function forα1 is:

α′

1 = α1 + ηH(α1)
−1g(α1) ,

whereH(α1) andg(α1) are the Hessian matrix and gradient
at α1 respectively. By multiplying the second term byη,



Term Expression
Eq[log p(π1|α1)]

∑n1

u=1

∑k1
i=1(α1i − 1)(Ψ(γ1ui) − Ψ(

∑k1
l=1 γ1ul)) + n1 log Γ(

∑k1
i=1 α1i) − n1

∑k1
i=1 log Γ(α1i)

Eq[log p(z1|π1)]
∑n1

u=1

∑k1
i=1muφ1ui(Ψ(γ1ui) − Ψ(

∑k1
l=1 γ1ul))

Eq[log q(π1|γ1)]
∑n1

u=1

∑k1
i=1(γ1ui − 1)(Ψ(γ1ui) − Ψ(

∑k1
l=1 γ1ul)) +

∑n1

u=1 log Γ(
∑k1

i=1 γ1ui) −
∑n1

u=1

∑k1
i=1 log Γ(γ1ui)

Eq[log q(z1|φ1)]
∑n1

u=1

∑n2

v=1

∑k1
i=1

∑k2
j=1 δuvφ1uiφ2vj logφ1ui

Eq[log p(X |z1, z2,Θ)]
∑n1

u=1

∑n2

v=1

∑k1
i=1

∑k2
j=1 δuvφ1uiφ2vj log p(xuv|θij)

Table 1. Expression for terms inL(γ
1
, γ

2
, φ

1
, φ

2
; α1, α2, Θ).

we are performing a line search to preventα1 to go out the
feasible range. At each updating step, we first assignη to be
1. If α′

1 goes out of the feasible range, we decreaseη by a
factor of0.5 until α′

1 becomes valid. The objective function
is guaranteed to be improved since we do not change the
update direction but only the scale. A similar strategy is
performed onα2.

For estimatingΘ, in principle, a closed form solution is
possible for all exponential family distributions. We first
consider a special case when the component distributions
are univariate Gaussians. The update equations forΘ =
{µij , σ

2
ij , [i]

k1
1 , [j]

k2
1 } are:

µij =

∑n1

u=1

∑n2

v=1 δuvxuvφ1uiφ2vj
∑n1

u=1

∑n2

v=1 δuvφ1uiφ2vj
(8)

σ2
ij =

∑n1

u=1

∑n2

v=1 δuv(xuv − µij)
2φ1uiφ2vj

∑n1

u=1

∑n2

v=1 δuvφ1uiφ2vj
. (9)

Following [4], we note that any regular exponential family
distribution can be expressed in terms of its expectation pa-
rameterm asp(x|m) = exp(−dφ(x,m))p0(x), whereφ
is the conjugate of the cumulant functionψ of the family
andm = E[X ] = ∇ψ(θ), whereθ is the natural parame-
ter. Using the divergence perspective, the estimated mean
M = {µij , [i]

k1
1 , [j]

k2
1 } parameter is given by:

mij =

∑n1

u=1

∑n2

v=1 δuvxuvφ1uiφ2vj
∑n1

u=1

∑n2

v=1 δuvφ1uiφ2vj
, (10)

andθij = ∇φ(mij) by conjugacy [4].

4.2 EM Algorithm

We propose an EM-style alternating maximization algo-
rithm to find the optimal model parameters(α∗

1, α
∗

2,Θ
∗)

that maximize the lower bound onlog p(X |α1, α2,Θ). In

particular, given an initial guess of(α
(0)
1 , α

(0)
2 ,Θ(0)), the al-

gorithm alternates between two steps till convergence:
1. E-step: Given (α

(t−1)
1 , α

(t−1)
2 ,Θ(t−1)), find the varia-

tional parameters

(γ
(t)
1 ,γ

(t)
2 ,φ

(t)
1 ,φ

(t)
2 )

= argmax
(γ

1
,γ

2
,φ

1
,φ

2
)

L(γ1,γ2,φ1,φ2;α
(t−1)
1 , α

(t−1)
2 ,Θ(t−1)) .

Then, L(γ
(t)
1 ,γ

(t)
2 ,φ

(t)
1 ,φ

(t)
2 ;α1, α2,Θ) serves as the

lower bound function forlog p(X |α1, α2,Θ).

2. M-step: An improved estimate of the model parameters
can now be obtained as follows:

(α
(t)
1 ,α

(t)
2 ,Θ

(t))= argmax
(α1,α2,Θ)

L(γ
(t)
1 ,γ

(t)
2 ,φ

(t)
1 ,φ

(t)
2 ;α1,α2,Θ) .

After (t − 1) iterations, the objective function becomes

L(γ
(t−1)
1 ,γ

(t−1)
2 ,φ

(t−1)
1 ,φ

(t−1)
2 ;α

(t−1)
1 ,α

(t−1)
2 ,Θ(t−1)). In the

tth iteration,

L(γ
(t−1)
1 ,γ

(t−1)
2 ,φ

(t−1)
1 ,φ

(t−1)
2 ;α

(t−1)
1 ,α

(t−1)
2 ,Θ(t−1))

≤ L(γ
(t)
1 ,γ

(t)
2 ,φ

(t)
1 ,φ

(t)
2 ;α

(t−1)
1 ,α

(t−1)
2 ,Θ(t−1)) (11)

≤ L(γ
(t)
1 ,γ

(t)
2 ,φ

(t)
1 ,φ

(t)
2 ;α

(t)
1 ,α

(t)
2 ,Θ

(t)) . (12)

The first inequality holds because from the variational E-
step,L(γ1,γ2,φ1,φ2;α

(t−1)
1 ,α

(t−1)
2 ,Θ(t−1)) has its maximum

as in (11), and the second inequality holds because from the
M-step,L(γ

(t)
1 ,γ

(t)
2 ,φ

(t)
1 ,φ

(t)
2 ;α1,α2,Θ) has its maximum as

in (12). Therefore, the objective function is non-decreasing
until convergence. [18].

5 Experiments

In this section, we present extensive experimental results
on simulated datasets and on real datasets.

5.1 Simulated Data

Three80 × 100 data matrices are generated with 4 row
clusters and 5 column clusters, i.e., 20 co-clusters in total,
such that each co-cluster generates a20 × 20 submatrix.
We use Gaussian, Bernoulli, and Poisson as the generative
model for each data matrix respectively and each submatrix
is generated from the generative model with a predefined
parameter, which is set to be different for different subma-
trices. After generating the data matrix, we randomly per-
mute its rows and columns to yield the final dataset.

For each data matrix, we do semi-supervised initializa-
tion by using5% data in each co-cluster. The results in-
clude two parts: parameter estimation and cluster assign-
ment. We compare the estimated parameters with the true
model parameters used to generate the data matrix. Fur-
ther, we evaluate the cluster assignment in terms of cluster
accuracy. Cluster accuracy (CA) for rows/columns is de-
fined as:CA = 1

n

∑k
i=1 nci, wheren is the number of
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Figure 3. Parameter estimation for Gaussian.

Gaussian Bernoulli Poisson
Row 100% 99.5833% 100%
Column 100% 98.5833% 100%

Table 2. Cluster accuracy on simulated data.

rows/columns,k is the number of row/column clusters and
nci is for theith row/column result cluster, the largest num-
ber of rows/columns that fall into a same true cluster. Since
the variational parametersφ1 and φ2 give us the mixing
weights for rows and columns, we pick the component with
the highest probability as its result cluster.

For each generative model, we run the algorithm three
times and pick the estimated parameters with the highest
log-likelihood. Log-likelihood measures the fit of the model
to the data, so we are using the model that fits the data best
among three runs. Note that no “class label” is used while
choosing the model. The comparison of true and estimated
parameters after alignment for Gaussian case is in Figure 3.
The color of each sub-block represents the parameter value
for that co-cluster (darker is higher). The cluster accuracy
is shown in Table 2, which is the average over three runs.
From these results, we observe two things: (a) Our algo-
rithm is applicable to different data types by choosing an ap-
propriate generative model; (b) We are able to get an accu-
rate parameter estimation and a high cluster accuracy, with
semi-supervised initialization by using only5% of data.

5.2 Real Data

Three real datasets are used in our experiments—
Movielens, Foodmart, and Jester: (a)Movieles:1 Movie-
lens is a movie recommendation dataset created by the
Grouplens Research Project. It contains 100,000 ratings
(1-5, 5 the best) in a sparse data matrix for 1682 movies
rated by 943 users. We also construct a binarized dataset
such that entries whose ratings are higher than 3 become1
and others become0. (b) Jester:2 Jester is a joke rating
dataset. The original dataset contains 4.1 million continu-
ous ratings (-10-+10, +10 the best) of 100 jokes from 73,421
users. We pick 1000 users who rate all 100 jokes and use
this dense data matrix in our experiment. We also binarize
the dataset such that the non-negative entries become1 and

1http://www.grouplens.org/node/73
2http://goldberg.berkeley.edu/jester-data/

the negative entries become0. (c) Foodmart: Foodmart
data comes with Microsoft SQL server. It contains trans-
action data for a fictitious retailer. There are 164,558 sales
records in a sparse data matrix for 7803 customers and 1559
products. Each record is the number of products bought by
the customer. Again, we binarize the dataset such that en-
tries whose number of products are below median are 0 and
others are 1. Further, we remove rows and columns with
less than 10 non-missing entries. For all three datasets, we
use both the binarized and original data in our experiments.

5.2.1 Methodology

For binarized data, we use bernoulli distribution as the gen-
erative model. For original data, we use Discrete, Poisson,
and Gaussian as generative models for Movielens, Food-
mart and Jester respectively. For Foodmart data, there is
one unit right shift of Poisson distribution since the valueof
non-missing entries starts from 1 instead of 0, so we sub-
stract 1 from all non-missing entries to shift it back.

Starting from a random initialization, we train the model
by alternating E-step and M-step on training set as de-
scribed in Section 4 till convergence, so as to obtain model
parameters(α∗

1, α
∗

2,Θ
∗) that (locally) maximize the vari-

ational lower bound on the log-likelihood. We then use
the model parameters to do inference, that is, inferring the
mixed membership for rows/columns. In particular, there
are two steps in our evaluation: (a) Combine training and
test data together and do inference (E-step) to obtain vari-
ational parameters; (b) Use model parameters and varia-
tional parameters to obtain theperplexityon the test set. In
addition, we also report the perplexity on the training set.
Recall that theperplexity[7] of a datasetX is defined as:
perp(X) = exp(− log p(X)/N), whereN is the number
of non-missing entries. Perplexity monotonically decreases
with log-likelihood, implying thatlower perplexity is bet-
ter since higher log-likelihood on training set means that
the model fits the data better, and a higher log-likelihood
on the test set implies that the model can explain the data
better. For example, in Movielens, a low perplexity on the
test set means that the model captures the preference pat-
tern for users such that the model’s predicted preferences
on test movies for a user would be quite close to his actual
preferences; on the contrary, a high perplexity indicates that
the user’s preference on test movies would be quite differ-
ent from model’s prediction. A similar argument works for
Foodmart and Jester as well.

Let Xtrain andXtest be the original training and test
sets respectively. We evaluate the model’s prediction per-
formance as follows: We compute variational parame-
ters (γ1,γ2,φ1,φ2) based on(Xtrain, Xtest), and use
them to computeperp(Xtest). We then repeat the pro-
cess by modifying a certain percentage of the test set to
createX̃test (noisy data), compute the variational parame-
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Figure 4. Perplexity comparison of BCC, BNB and LDA with varying number of clusters on binarized Jester.
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Figure 5. Perplexity comparison of BCC and BNB with varying number of clusters on original Movielens.

0 0.02 0.04 0.06 0.08 0.1
1.815

1.82 

1.825

1.83 

2.84 

2.845

2.85 

2.855

2.86 

Percentage of Noise

P
er

pl
ex

ity Jester
Foodmart
Movielens

Figure 6. Perplexity curves for Movielens, Foodmart and
Jester with increasing percentage of noise.

ters(γ̃1, γ̃2, φ̃1, φ̃2) corresponding to(Xtrain, X̃test), and
computeperp(X̃test) using these variational parameters.
If the model yields a lower perplexity on the true test set
than on the modified one, i.e.,perp(Xtest) < perp(X̃test),
the model explainsXtest better thanX̃test. If used for
prediction based on log-likelihood, the model will accu-
rately predictXtest. For a good model, we would expect
the perplexity to increase with increasing percentages of
test data being modified. Ideally, such an increase will
be monotonic, implying that the true test dataXtest is
the most-likely according to the model and a higher per-
plexity could be used as a sign of more noisy data. In
our experiments, sinceXtrain is fixed, instead of com-
paringperp(Xtest) with perp(X̃test) directly, we compare
perp(Xtrain, Xtest) with perp(Xtrain, X̃test).

We compare BCC with BNB and LDA in terms of per-
plexity and prediction performance. Each user/customer is
treated as one data point in a row. The comparison with
BNB is done on both binarized and original datasets. The
comparison of BCC with LDA is done only on binarized
datasets since LDA is not designed to handle real values. To
apply LDA, we consider the features with feature value 1 as
the tokens appearing in each data point, like the words in a
document. For simplicity, we use “row cluster” or “cluster”
to refer to the user/customer clusters, and use “column clus-
ter” to refer to the movie, product and joke clusters for BCC
on Movielens, Foodmart and Jester respectively. To ensure
a fair comparison, we do not use simulated annealing for
BCC in these experiments because there is no simulated an-
nealing in BNB and LDA either.

5.2.2 Results

In this section, we present three main experimental results:
(a) Perplexity comparison among BCC, BNB and LDA; (b)
The prediction performance comparison between BCC and
LDA; (c) The visualization obtained from BCC.

Perplexity Comparison. We compare the perplexity
among BCC, BNB and LDA with varying number of row
clusters from 5 to 25 in steps of 5, and a fixed number of
column clusters for BCC to be 20, 10 and 5 for Movie-
lens, Foodmart and Jester respectively. The results are re-
ported as an average perplexity of 10-cross validation in
Figures 4, 5 and Table 3.



Train set Test set Test set
perplexity perplexity p-value

LDA BNB BCC LDA BNB BCC
BCC BCC
-LDA -BNB

Movielens 439.6 1.70 1.98 1557.0 3.93 2.86 <0.001 <0.001
Foodmart 1461.7 1.87 1.95 6542.9 6.48 2.11 <0.001 <0.001
Jester 98.3 1.79 1.82 98.9 4.02 2.55 <0.001 <0.001

Train set Test set Test set
perplexity perplexity p-value

BNB BCC BNB BCC
BCC
-BNB

Movielens 3.15 0.81 38.24 1.03 <0.001
Foodmart 4.59 4.59 4.66 4.60 <0.001
Jester 15.46 18.25 39.94 24.82 <0.001

(a) On binarized datasets (b) On original datasets

Table 3. Perplexity of BCC, BNB, and LDA on binary and original datasets with 10 clusters. The p-value is obtained from a paired
t-test on the differences of test set perplexities between BCC and LDA, as well as between BCC and BNB.
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Figure 7. Perplexity curves of BCC and LDA with in-
creasing percentage of noise on binarized Jester.

Figure 4 compares the perplexity of BCC, BNB, and
LDA on binarized Jester, and Figure 5 compares the per-
plexity of BCC and BNB on original Movielens dataset,
both with varying number of clusters. Note that due to the
distinct differences of perplexity among three models, y-
axes are not continuous and the unit scales are not all the
same. Table 3 presents the perplexities on both binarized
and original datasets with fixed 10 row clusters. From these
results, there are two observations: (a) For BCC and LDA,
the perplexities of BCC on both training and test sets are
2-3 orders of magnitude lower than that of LDA, and the
pairedt-test shows that the distinction is statistically signif-
icant with an extremely small p-value. The lower perplexity
of BCC seems to indicate that BCC fits the data and explains
the data substantially better than LDA. However, one must
be careful in drawing such conclusions since BCC and LDA
work on different variants of the data; we discuss this aspect
further at the end of the next subsection. (b) For BCC and
BNB, although BNB sometimes has a lower perplexity than
BCC on training sets, on test sets, the perplexities of BCC
are lower than BNB in all cases. Again, the difference is sig-
nificant based on the pairedt-test. BNB’s high perplexities
on test sets indicate over-fitting, especially on the original
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Figure 8. Perplexity curves of BCC and LDA with in-
creasing percentage of noise on binarized Movielens.

Movielens data. In comparison, BCC behaves much better
than BNB on test sets, possibly because of two reasons: (i)
BCC uses much less number of variational parameters than
BNB, so as to avoid overfitting; (ii) BCC is able to capture
the co-cluster structure which is missing in BNB.

Prediction Comparison. To evaluate the prediction perfor-
mance, we test the perplexity on(Xtrain, Xtest), as well as
on (Xtrain, X̃test), whereX̃test is constructed as in Sec-
tion 5.2.1, by modifying a certain percentage of data in
Xtest. We only compare the prediction on the binarized
data, which is a reasonable simplification because in real
recommendation systems, we usually only need to know
whether the user likes (1) the movie/product/joke or not (0)
to decide whether we should recommend it. To add noise
to binarized data, we flip the entries of 1 to 0 and 0 to 1.
We record the perplexities with the percentage of noisep
increasing from1% to 10% in steps of1% and report the
average perplexity of 10 cross validation at each step. The
perplexity curves are shown in Figure 6.

At the starting point, with no noise, we have perplexity
of data with the true test setXtest. At the other extreme
end, 10% of the entries in the test set have been modified.
As shown in Figure 6, all three lines go up steadily with
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Figure 9. Co-cluster parameters for Movielens.

an increasing percentage of test data modified. This is a
surprisingly good result, implying that our model is able
to detect increasing noise and convey the message through
increasing perplexities. The most accurate result, i.e., the
one with the lowest perplexity, is exactly the true test set at
the starting point. Therefore, BCC can be used to accurately
predict missing values in a matrix.

We add noise at a finer step of modifying0.1% and
0.01% test data each time, and compare the prediction per-
formance of BCC with LDA. The results on binarized Jester
and Movielens are presented in Figure 7 and 8. In both fig-
ures, the first row is for adding noise at steps of0.01% and
the second row is for adding noise at steps of0.1%. The
trends of the perplexity curves show the prediction perfor-
mance. On Jester, we can see that the perplexity curves for
BCC in both Figure 7(a) and 7(c) go up steadily at almost all
times. However, the perplexity curves for LDA go up and
down from time to time, especially in Figure 7(b), which
means that sometimes LDA fits the data with more noise
better than that with less noise, indicating a lower predic-
tion accuracy compared with BCC. The difference is even
more distinct on Movielens. When adding noise at steps of
0.01%, there is no clear trend in perplexity curves in Fig-
ure 8(a) and 8(b), implying that neither BCC nor LDA is
able to detect the noise at this resolution. However, when
the step size increases to0.1%, perplexity curve of BCC
starts to go up as in Figure 8(c) but the perplexity curve of
LDA goes down as in Figure 8(d). The decreasing perplex-
ity with addition of noise indicates LDA does not have a
good prediction performance on Movielens.

While extensive results give supportive evidence to
BCC’s better performance, we should be cautious of the
conclusion we draw from the direct perplexity comparison
between BCC and LDA. Given a binary dataset, BCC
works on all non-missing entries, but LDA only works on
the entries with value 1. Therefore, BCC and LDA actually
work on different data, and hence their perplexities cannot
be compared directly. However, the comparison gives us a
rough idea of these two algorithms’ behavior, such as the
distinct difference in perplexity ranges, similar perplexity
trends with increasing number of clusters. Moreover, the
result of prediction shows that BCC indeed does much bet-
ter than LDA, no matter which part of dataset they are using.

Visualization. The co-clustering results give us a com-
pressed representation of the original matrix. We can vi-
sualize it to study the relationship between row and column
clusters. Figure 9 is an example of user-movie co-clusters
on Movielens. There are10 × 20 sub-blocks, correspond-
ing to 10 user clusters and 20 movie clusters. The shade
of each sub-block is determined by the parameter value of
the bernoulli distribution for each co-cluster. A darker sub-
block indicates a larger parameter. Since the parameter of
a bernoulli distribution implies the probability of generat-
ing an outcome 1 (rate 4 or 5), the darker the sub-block is,
the more the corresponding movie cluster is preferred by
the user cluster. Based on Figure 9, we can see that users
in cluster 2 (U2) are a big fan of all kinds of movies, and
users in U5 seem uninterested in all movies except those in
movie cluster 13 (M13). Moreover, movies in M18 are very
popular and preferred by most of the users. In comparison,
movies in M4 seem to be far from best sellers. We can also
tell that users in U1 prefer M18 the best and M8 the worst.
U2 and U6 share several common favorite types of movies.

The variational parametersφ1, with dimensionk1 for
rows, andφ2, with dimensionk2 for columns, give a low-
dimensional representation for all the row and column ob-
jects. They can be considered as the result of a simultane-
ous dimensionality reduction over row and column feature
vectors. We call the low-dimensional vectorsφ1 andφ2

a “co-embedding” since they are two inter-dependent low-
dimensional representations of the row and column objects
derived from the original data matrix. Co-embedding is a
unique and novel by-product of our algorithm, which ac-
complishes dimensionality reduction while preserving de-
pendencies between rows and columns. None of partitional
co-clustering algorithms is able to generate such an embed-
ding, since they do not allow mixed membership to row and
column clusters. To visualize the co-embedding, we apply
ISOMAP [21] onφ1 andφ2 to further reduce the space to
2 dimensions.3

The results of co-embedding for users and movies on
binarized Movielens are shown in Figure 10(a) and 10(c).
Each point in the figure denotes one user/movie. We mark
three clusters with red, blue and green for users and movies
respectively; other points are colored pink. By visualiza-
tion, we can see how the users/movies are scattered in the
space, where the clusters are located, and how far one clus-
ter is from another, etc. Such information goes far beyond
clusters of objects only. In addition, we choose several
points from the co-embedding to look at their properties. In
Figure 10(a) and 10(c), we mark four users and four movies,
and extract their “signatures”. In general, we can use a va-
riety of methods to generate signature. In our experiment,
we do the following: For each user, we get the number of

3An alternative approach would be to setk1 andk2 to 2, so thatφ
1

andφ
2

are themselves 2 dimensional.
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Figure 10. Co-embedding and signatures for users (φ1) and movies (φ2) on Movielens dataset.

movies she rates “1” in movie cluster 1-20 respectively. Af-
ter normalization, this 20-dim unit vector is used as the sig-
nature for the user. Similarly, for each movie, we get the
number of users giving it rate “1” in user cluster 1-10 re-
spectively. The normalized 10-dim unit vector is used as the
signature for the movie. The signatures are shown in Fig-
ure 10(b) and 10(d) respectively. The numbers on the right
are user/movie IDs corresponding to those marked points in
co-embedding plots, showing where they are located. We
can see that each signature is quite different from others in
terms of the value on each component.

6 Conclusion

In this paper, we have proposed Bayesian co-clustering
(BCC) which views co-clustering as a generative mixture
modeling problem. BCC inherits the strengths and robust-
ness of Bayesian modeling, is designed to work with sparse
matrices, and can use any exponential family distribution as
the generative model, thereby making it suitable for a wide
range of matrices. Unlike existing partitional co-clustering
algorithms, BCC generates mixed memberships for rows
and columns, which seem more appropriate for a variety of
applications. A key advantage of the proposed variational
approximation approach for BCC is that it is expected to be
significantly faster than a stochastic approximation based
on sampling, making it suitable for large matrices in real
life applications. Finally, the co-embedding obtained from
BCC can be effectively used for visualization, subsequent
predictive modeling, and decision making.
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