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Abstract

The problem of overlapping clustering, where a point is
allowed to belong to multiple clusters, is becoming increas-
ingly important in a variety of applications. In this paper,
we present an overlapping clustering algorithm based on
multiplicative mixture models. We analyze a general setting
where each component of the multiplicative mixture is from
an exponential family, and present an efficient alternating
maximization algorithm to learn the model and infer over-
lapping clusters. We also show that when each component
is assumed to be a Gaussian, we can apply the kernel trick
leading to non-linear cluster separators and obtain better
clustering quality. The efficacy of the proposed algorithms
is demonstrated using experiments on both UCI benchmark
datasets and a microarray gene expression dataset.

1 Introduction

The problem of finding overlapping clusters, where an
object can potentially belong to one or more clusters, has
been gaining importance in a wide variety of application do-
mains. For example, in social network analysis, since actors
can potentially belong to multiple communities, community
extraction algorithms should be able to detect overlapping
clusters; in computational biology, overlapping clustering is
a necessary requirement in the context of microarray analy-
sis and protein function prediction, since a protein can po-
tentially have multiple functions.

In this paper, we present Multiplicative Mixture Models
(MMMs) as an appropriate framework for overlapping clus-
tering. MMMs are designed to generate overlapping clus-
ters and they can work with a variety of conditional distribu-
tions, including all exponential families. We propose an ef-
ficient EM-style alternating maximization algorithm for es-
timation and inference, whereas related models in literature
primarily rely on stochastic approximation based on sam-
pling, which can be slow for large scale problems. Further,
we show that the proposed model can be kernelized thereby

allowing non-linear cluster separators as well as extending
its applicability to non-vector data on which a kernel can be
suitably defined. We demonstrate that the proposed MMMs
can be useful for overlapping clustering and the algorithm
scales to large datasets.

The rest of the paper is organized as follows: In Sec-
tion 2, we present MMMs using exponential family distri-
butions as mixture components. In Section 3, we present
an efficient overlapping clustering algorithm that alternates
between inference and parameter estimation. In Section 4,
we propose a kernelized overlapping clustering algorithm
based on Gaussian MMMs. In Section 5, we present exper-
imental results to demonstrate the efficacy of MMMs for
overlapping clustering. We present related work in Sec-
tion 6 and conclude in Section 7.

2 Multiplicative Mixture Models

Consider the traditional additive mixture model with k
components whose density function is given by:

p(x|Θ) =
k∑

j=1

πjpj(x|θj) , (1)

where πj is the mixing weight for component j, pj(x|θj) is
the probability density function for component j parameter-
ized by θj and x is the data point under consideration. From
a generative model perspective, one first samples a compo-
nent j with probability πj , and then sample x ∼ pj(.|θj).
The model assumes each x to have been generated from one
component, making the model unsuitable for overlapping
clustering.

A few alternative approaches to mixture modeling
based overlapping clustering have been proposed in recent
years [3, 1, 12]. In this paper, we consider a multiplicative
mixture model motivated by the product-of-experts model
of [9], more recently presented in the context of mixture
modeling by [8]. For k mixture components, we assume a
(latent) binary vector z = [z1, . . . , zk] such that the condi-
tional probability



p(x|z,Θ) =
1
c(z)

k∏
j=1

pj(x|θj)zj , (2)

where c(z) is a normalization constant. The latent boolean
vector z indicates which components participated in gener-
ating x, and zj ∈ {0, 1} without any restrictions. If π(z)
defines an appropriate prior over z, then we have

p(x|Θ) =
∑
z

π(z)
c(z)

k∏
j=1

pj(x|θj)zj . (3)

From a generative model perspective, one samples z with
probability π(z), and then samples x ∼ p(x|z,Θ). Since
z can have multiple components as 1, the model is clearly
well suited for overlapping clustering.

There are, however, two issues with the above multi-
plicative model. First, the model may not be well defined
when z = 0, the all zeros vector. We emphasize that
this case should not be ignored by setting π(0) = 0, or
something equivalent. In several real life datasets, there are
points which do not naturally belong to any cluster. Rather
than forcing them into an existing cluster, it may be more
meaningful to have a model which can potentially leave a
few points un-clustered. Secondly, since z is a boolean vec-
tor of size k, inference methods may need to go over all
2k possible states for each data point. Even with k = 20,
it amounts to considering a million states for each point in
each iteration. In practice, we want inference algorithms
that are a few orders of magnitude faster, while maintaining
reasonable accuracy. We focus on the modeling issues in
the rest of this section, and develop efficient algorithms in
Section 3.

2.1 Exponential Family Mixtures

To make the discussion concrete, we focus on multiplica-
tive mixture models (MMMs) where the components are ex-
ponential family distributions. Recall that a distribution is
in the exponential family if the density function with respect
to a base measure can be written in the form:

p(x|θ) =
dP (x|θ)
dP0(x)

= exp{s(x)T θ − ψ(θ)} , (4)

where θ is the natural parameter, s(x) is the sufficient statis-
tic, and ψ(θ) is the cumulant function, which is a convex
function of Legendre type [11]. Without loss of generality,
we assume ψ(0) = 0. With the component distributions be-
ing from the same exponential family, the conditional prob-
ability in (2) becomes

p(x|Θ, z) =
1
c(z)

exp


k∑

j=1

zjs(x)T θj − zjψ(θj)

 .

(5)

A direct calculation shows that:

c(z) = exp

ψ
 k∑

j=1

zjθj

−
k∑

j=1

zjψ(θj)

 .

Making use of the closed form for c(z), we have

p(x|Θ, z) = exp

s(x)T
∑

j

zjθj − ψ

 k∑
j=1

zjθj

 .

(6)
So p(x|Θ, z) is in the same exponential family as the com-
ponent distributions, with natural parameter

∑
j zjθj .

2.2 The Noise Component

When z = 0, from (5) it follows that p(x|z,Θ) = 1,
which may not be a well defined density function depending
on the domain of x as well as the choice of the base measure
P0(x). Intuitively, the points corresponding to z = 0 may
be considered as “noise” in that they do not follow the clus-
ter structure implied by the multiplicative mixture model.
To incorporate this into the generative model, we introduce
another parametric exponential family as the noise compo-
nent. The noise component does not necessarily come from
the same exponential family as other base components.

Introducing another (latent) boolean variable zk+1 for
the noise component, which is 1 only when z = 0, and
0 otherwise, the conditional probability for the new model
is given by

p(x|z, zk+1,Θ) =
1
c(z)

k+1∏
j=1

pj(x|θj)zj . (7)

2.3 Generative Model

A complete specification of the model requires an ap-
propriate prior π(z) over z. Since z is a boolean vector, we
assume each component zj to be sampled from a Bernoulli
distribution φj , which itself has been drawn from a Beta dis-
tribution Beta(αj , βj). The generative model for a sample
x can be described as follows:

1. Draw φj |{αj , βj} ∼ Beta(αj , βj), for j = 1, . . . , k.

2. Draw zj |φj ∼ Bernoulli(φj), for j = 1, . . . , k.

3. If z = 0, zk+1 = 1, else zk+1 = 0.

4. Draw x|{z, zk+1,Θ} ∼ 1
c(z)

∏k+1
j=1 pj(x|θj)zj .

Based on the above model, the joint distribution

p(x, z,φ|α,β,Θ)

=
1
c(z)

 k∏
j=1

p(φj |αj , βj)p(zj |φj)

k+1∏
j=1

p(x|θj)zj

 .



The marginal distribution p(x|α,β,Θ) can be obtained by
integrating out the latent variables (φj , zj), j = 1, . . . , k.

3 Overlapping Clustering Algorithm

Given a set of data points {x1, . . . ,xn}, the task in over-
lapping clustering based on MMMs is to simultaneously
estimate the set of parameters (α,β,Θ) in the model, as
well as infer the latent cluster assignment vector z for each
data point x. In this paper, we formulate the problem as
one of finding the mode of the joint distribution of the ob-
servable and the corresponding latent cluster assignment
p(x, z|α, β,Θ). Noting that (x, z) for different data points
are conditionally independent, the problem can be posed as
maximizing the following objective function:

L(z,α,β,Θ) =
n∑

i=1

log p(xi, zi|α,β,Θ)

=
n∑

i=1

log p(zi|α,β) +
n∑

i=1

log p(xi|zi,Θ)

=
n∑

i=1

k∑
j=1

log

(∫
φi,j

p(zi,j |φi,j)p(φi,j |αj , βj) dφi,j

)

+
n∑

i=1

k+1∑
j=1

zi,j log p(xi|θj)− log c(zi)

 . (8)

Based on the above objective function, we propose an EM-
style alternating maximization algorithm to do inference
and estimation. In the E- or inference step, given a set of
parameter values (α,β,Θ), we optimize L with respect to
zi, i = 1, . . . , n. In the M- or estimation step, for a given
set of overlapping clusterings z, we optimize L over the pa-
rameters (α,β,Θ). The alternating iterations are assumed
to have converged when either no zi changes in the infer-
ence step, or when the maximum absolute change over all
parameters in the estimation step is below a threshold.

3.1 Inference

First, we focus on the inference step, which maximizes
L over z given the parameters. A naive approach to opti-
mizing over z is to try every possible value of z, and choose
the one which gives the highest log-likelihood. Such an ap-
proach has to go over 2k possibilities for each x in each
iteration. As a result, such an approach will be computa-
tionally inefficient and impractical even for moderate k. An
alternative approach is to use a fast heuristic which ensures
that the log-likelihood is non-decreasing. We follow this
strategy by adopting an idea from the literature [1].

For any x, let z0 be the assignment vector from the pre-
vious inference step, let ej , j = 1, . . . , k, be the boolean

vector with the jth component being 1, and all else zero,
and E be the set of all such vectors. The heuristic tries k
threads tj , j = 1, . . . , k, each starting with z1j = (z0 +
ej) mod 2, j = 1, . . . , k. In any thread, the algorithm first
computes the log-likelihood for z1j ; then, the algorithm
finds the best assignment among z2jj′ = (z1j +ej′) mod 2,
where ej′ ∈ E \ {ej}; in the next step, the best as-
signment among z3jj′j′′ = (z2jj′ + ej′′) mod 2, where
ej′′ ∈ E \ {ej , ej′}; and so on. If the best z at any step
is better than the best at the next step, the thread terminates
setting zj∗ = z. Finally, the algorithm picks the best zj∗
among j = 1, . . . , k. Since there are k threads, each thread
has at most k steps, and each step has at most k evalua-
tions of the log-likelihood, the complexity of the heuristic is
O(k3) (the number of evaluations is at most k

(
k
2

)
). Further-

more, it is guaranteed to give an assignment z that is at least
as good as the old assignment, so that the log-likelihood
is non-decreasing over iterations. In practice, the heuristic
takes much less than k

(
k
2

)
and is very fast, making it appro-

priate for large datasets with moderate to large k.

3.2 Estimation

In the estimation step, for a given set of overlapping
cluster assignments, we optimize L over the parameters
(α,β,Θ). The optimization can be broken into two inde-
pendent parts—one over the parameters (α,β) of the Beta
distributions, and one over the natural parameters Θ of the
component exponential family distributions. For a given set
of z, let mj be the total number of zi,j that are 1, so that
(n − mj) is the total number of zi,j that are 0. A direct
calculation based on taking derivatives w.r.t. (αj , βj) and
setting it to 0 shows that the optimal parameters satisfy the
following equation:

αj

βj
=

mj

n−mj
.

Setting βj = 1, we only update αj = mj/(n −mj), j =
1, . . . , k in each iteration.

The dependency on the component model parameters is
captured by the second term in (8). We show that for any
exponential family distribution, the objective function L is
concave in each θj given all other parameters are held con-
stant. Using (6) in (8), the second term of the objective
function can be written as a function of Θ given by

f(Θ) =
n∑

i=1

k+1∑
j=1

zi,j log p(xi|θj)− log c(zi)


=

n∑
i=1

s(xi)T
k+1∑
j=1

zi,jθj − ψ

k+1∑
j=1

zi,jθj

 .



Since ψ is the cumulant of an exponential family, it is a
convex function of Legendre type [4], implying that it is in
C∞. Computing the second derivative of f(Θ) with respect
to θj , we have

∇2
θj
f(Θ) = −

n∑
i=1

zi,j∇2
θj
ψ

(
k+1∑
h=1

zi,hθh

)
,

which is negative, since ψ is a convex function implying
∇2ψ is positive. Hence, f(Θ) is a concave function of θj .
In order to find the maximizer θ∗j given all the other param-
eters θh, h 6= j, taking gradient and setting it to 0, we obtain

θ∗j =
∑

i:zi,j=1

k+1∑
h=1
h6=j

zi,hθh +(∇ψ)−1

 ∑
i:zi,j=1

s(xi)

 . (9)

Sinceψ is a Legendre function, the function (∇ψ)−1 will be
well defined and equal to ∇φ, where φ = ψ∗, the conjugate
of the cumulant function ψ. The actual update equation for
any exponential family can be derived by plugging in the
specific cumulant function ψ and sufficient statistics s(x).

4 Kernelized Overlapping Clustering

In this section, we show that the proposed multiplica-
tive model can be kernelized, and the overlapping clustering
algorithm can be extended to the general case. There are
two key advantages to the kernelized extension: (i) Individ-
ual base clusters can be separated by non-linear boundaries,
making the approach applicable to more complex data, and
(ii) Overlapping clustering can be applied to structured data,
such as strings, trees, graphs, etc., for which a meaningful
kernel can be defined [13]. To make the kernelized exten-
sion, we implicitly map the data points to a high dimen-
sional space and assume that in the high dimensional space
there are k spherical Gaussian clusters. If φ(.) is the map-
ping function, a Gaussian in the high dimensional space can
be represented as :

p(φ(x)|µ,Σ) =
exp

(
− 1

2 (φ(x)− µ)T Σ−1(φ(x)− µ)
)

(2π)D/2|Σ|1/2

=
exp

(
−a

2 〈φ(x), φ(x)〉+ a〈φ(x),µ)〉 − a
2 〈µ,µ〉

)
(2π)D/2a−D/2

,

where a = 1
σ2 is the inverse of the Gaussian variance so

that Σ−1 = aI, µ is the mean of the Gaussian and D is
the feature dimension. Plugging the above expression into
(7), the log-likelihood of MMM with respect to a single data
point x becomes :

log p(φ(x)|z, µ̄, Σ̄) = −D
2

log(2π) +
D

2
log(ā)

− ā

2
〈φ(x), φ(x)〉+ ā〈φ(x), µ̄〉 − ā

2
〈µ̄, µ̄〉 , (10)

where ā =
∑k+1

j=1 zjaj , µ̄ =
Pk+1

j=1 zjajµj

ā and Σ̄−1 = āI.
A direct calculation for the estimation step shows when

each component in MMM is a Gaussian, the mean of each
Gaussian µj , j = 1, . . . , k can be estimated using an appro-
priate linear combination of all the data points φ(xi), i =
1, . . . , n. Let µj =

∑n
i=1 ci,jφ(xi) and ci,j ∈ R, we have:

〈φ(x), µ̄〉 =
1
ā

k+1∑
j=1

〈φ(x), zjajµj〉 =
1
ā

k+1∑
j=1

n∑
i=1

zjajci,j〈φ(x), φ(xi)〉 ,

〈µ̄, µ̄〉 =
1
ā2
〈
k+1∑
j=1

zjajµj ,
k+1∑
j′=1

zj′aj′µj′〉

=
1
ā2

k+1∑
j=1

k+1∑
j′=1

zjzj′ajaj′

n∑
i=1

n∑
i′=1

ci,jci′,j′〈φ(xi), φ(xi′)〉 .

Suppose the kernel similarity matrix is K, replacing the in-
ner product 〈φ(xi), φ(xi′)〉 with K(xi,xi′), and plugging
in the kernelized terms back in (10), we obtain the objective
function for kernelized overlapping clustering algorithm.
The inference and estimation step remains the same, except
that we need to estimate ci,j , j = 1, . . . , k + 1, instead of
µj , j = 1, . . . , k + 1.

5 Experimental Results

5.1 UCI Datasets

We run the overlapping clustering algorithm on 8 UCI
datasets (Table 1). For all experiments reported, we set k
to be the true number of classes, and use multivariate Gaus-
sian with diagonal covariance matrix to model each cluster.
We adopt the semi-supervised seeding approach [2] to do
initialization: we randomly select 10% of the data points
from each class and each base cluster is initialized using the
means and variances of the selected data points from the
class. We run the algorithm on each dataset 5 times with
different initialization and report the result based on the one
which has the highest log-likelihood.

To make comparisons, we use 2 baseline algorithms. The
first one is the overlapping clustering algorithm described
in [3], which we refer to as BSK algorithm. The second
one is the EM algorithm based on Gaussian additive mix-
ture models. To get overlapping clustering, we threshold
the posterior probability: for a given threshold t, if for any
cluster j the posterior probability p(j|x) ≥ t, we consider
x belongs to cluster j. The initialization and convergence
criterion are the same for all the algorithms.

Since the UCI datasets do not have overlapping labels,
we evaluate the algorithms using predictions based on the
overlapping clustering. We study the overlapping data
points, which belong to more than one clusters, with the



Ratio 1
Ratio 2 (Precision) Ratio 3 (Recall)

MMM BSK Thresholded EM MMM BSK Thresholded EM
0.01 0.1 0.2 0.01 0.1 0.2

Iris 0.1800 0.6250 N/A 0.5172 0.6250 0.6364 0.5556 0 0.5556 0.3704 0.2592
Ionosphere 0.7493 0.9223 0.7778 0.8462 0.7143 0.6667 0.3612 0.0266 0.0418 0.0190 0.0076
Vowel 0.6913 0.8537 N/A 0.6892 0.7609 0.7778 0.1918 0 0.2795 0.0959 0.0575
Wdbc 0.1002 0.2857 N/A 0.6000 0.7000 0.7778 0.6667 0 0.1579 0.1228 0.1228
Pima 0.5208 0.6626 N/A 0.6049 0.7226 0.6629 0.2700 0 0.4975 0.2475 0.1475
Segment 0.1242 0.1338 0.6667 0.2289 0.2157 0.1818 0.5958 0.0139 0.0662 0.0383 0.0209
Landsat 0.2810 0.3872 N/A 0.5582 0.5882 0.5645 0.7129 0 0.0769 0.0387 0.0194
Pendigits 0.0890 0.0658 N/A 0.0687 0.0622 0.0388 0.1779 0 0.0327 0.0133 0.0051

Table 2. Overlapping points have larger fraction of support vectors, i.e, Ratio 2 > Ratio 1. MMM performs substantially better than BSK.
Thresholded EM can have reasonable precision for some (high) thresholds, but gives poor recall on many datasets.

Iris Ionosphere Vowel Wdbc Pima Segment Landsat Pendigits
k 3 2 11 2 2 10 6 10
d 4 32 10 30 8 16 36 15
n 150 351 528 569 768 2310 6435 10922

Table 1. Data Sets.

following hypothesis—overlapping points lie close to the
boundary of classes, and have higher chance of becoming
support vectors in a SVM classifier. We also expect that the
set of overlapping data points has a reasonable intersection
with that of support vectors. To test the hypothesis, we train
a SVM classifier, based on LIBSVM [5], using linear kernel
and default parameter settings on each dataset, and obtain
the support vectors. Then, for each dataset, we compute
the following three ratios: Ratio 1 is the fraction of support
vectors in the data set, i.e., |Support Vectors|

n . Ratio 2 (Preci-
sion) is the fraction of overlapping points that are support
vectors, i.e., |Overlapping∩Support Vectors|

|Overlapping| and Ratio 3 (Recall) is
the fraction of support vectors that are overlapping points,
i.e., |Overlapping∩Support Vectors|

|Support Vectors| .
Based on our hypothesis, we expect Ratio 1 < Ratio 2

and a reasonable Ratio 3. The result is listed in Table 2.
For the overlapping clustering algorithm, the hypothesis is
valid on 7 datasets. However, BSK algorithm either fails to
find any overlapping points on 6 datasets (Ratio 2 is N/A)
or finds only few overlapping data points (9 for Ionosphere
and 6 for Segment). For EM algorithm, Ratio 2 is larger
than Ratio 1 in most cases, but Ratio 3 is usually very small,
which indicates that additive mixture model tends to give
few overlapping points. This observation can be explained
as follows: if one of the posterior probabilities p(j|x) is
large, all the other posterior probabilities will become rela-
tively smaller since

∑k
j=1 p(j|x) = 1. So when we thresh-

old on the posterior probability, we get very few overlap-
ping data points. The phenomenon is obvious for datasets
with larger values of k, such as Landsat, Vowel, and Seg-
ment.

5.2 Microarray Gene Expresssion Dataset

The microarray gene expression dataset [14] consists of
4062 yeast genes and 215 experimental conditions. Our
goal is to cluster the genes into multiple biological pro-

cesses based on the expression profiles. Since many genes
are known to be multi-functional, we would expect that
some genes participate in more than one biological pro-
cesses, thus overlapping clustering is a natural approach for
the problem. We report results on 1354 genes that have sig-
nificant changes in the gene expression, i.e., 1/3 of the genes
that have the highest variances of gene expression over the
215 experimental conditions. The number of clusters k is
fixed to be 30. We still compare our algorithm with BSK
algorithm [3] and EM based on Gaussian additive mixture
models. We initialize all the algorithms based on the pre-
liminary clustering result given by kmeans.

Overall, our overlapping clustering algorithm predicts
that 556 genes participate in only one process, 552 in two,
219 in three and 27 in four or more, while BSK algorithm
discovers that 95 genes do not belong to any process and
397 participate in only one process, 383 in two, 255 in three
and 224 in four or more. For EM algorithm, we set the pos-
terior probability threshold to be 0.01. The additive mixture
model gives very few overlapping genes even under this low
threshold: it predicts 1324 genes participate in only one pro-
cess, 27 in two and 3 in three or more. This result further
illustrates that additive mixture models may not be appro-
priate for overlapping clustering on complex datasets.

To evaluate whether the cluster assignments for the genes
are reasonable from a biological perspective, we check if
the genes in each learned biological process show any en-
richment for known annotations. We make use of Gene On-
tology Term Finder1 online tool, which searches for shared
annotations given a set of genes and computes an associated
p-value. The p-value measures the probability of observing
a group of genes to be annotated with a certain annotation
purely by chance. If a cluster of genes indeed correspond
to known biological processes, we would expect a low p-
value. We consider an annotation to be significant if the
p-value associated with it is less than 10−4. Both the over-
lapping clustering algorithm and BSK algorithm discover
94 different significant annotations. Among the 62 com-
mon significant annotations, the overlapping clustering al-
gorithm performs better in 37 (60%) of them with lower
p-values. In case a significant annotation presents in more

1http://db.yeastgenome.org/cgi-bin/GO/goTermFinder.pl



Kernels # Significant Anno. BSK Unkernelized Algo.

exp(−‖x−y‖2
250 ) 107 67% (43/64) 67% (48/72)

exp(−‖x−y‖2
500 ) 109 68% (43/63) 63% (54/86)

exp(−‖x−y‖2
750 ) 101 75% (42/56) 60% (49/82)

Table 3. Kernelized overlapping algorithm consistently finds
more significant enrichments than both BSK and the unkernelized
overlapping clustering algorithm. For the fractions (a/b), b is the
number of common significant annotations, and a is the number of
times the kernelized algorithm has lower p-values for those com-
mon significant annotations.

than one learned processes in any algorithm, we pick the
one with the lowest p-value.

We also test the kernelized overlapping clustering algo-
rithm. To satisfy the assumption of using spherical Gaus-
sians, we z-score the dataset. We try three different RBF
kernels and specify the feature dimension D to be 1354, the
number of genes we use in the experiment2. The detailed re-
sult is listed in Table 3. As the results show, the kernelized
overlapping clustering algorithm performs favorably com-
pared to the baseline overlapping clustering algorithms in
terms of enrichment.

6 Related Work

Our MMMs are closely related to the Product of Experts
(PoE) model proposed by [9]. The PoE model with k com-
ponents has p(x|Θ) = 1

c

∏k
j=1 pj(x|θj). If z is the all 1

vector in MMMs, then we exactly obtain the PoE model.
For general z, p(x|z,Θ) is a PoE model over a subset of
experts, chosen according to z.

A non-parametric Bayesian model for overlapping clus-
tering, due to [8], is also closely related to the proposed
MMMs. The treatment in [8], focuses on the use of non-
parametric priors based on the Indian Buffet Process [7],
and uses Metropolis-Hastings to sample the model parame-
ters Θ. The analysis for the case when z is all zero was not
explicitly handled.

Another class of overlapping clustering models com-
bines the expectation parameters of component distribu-
tions, rather than the natural parameters as in MMMs. For
example, [3] use such an idea to discover overlapping pro-
cesses from gene expression data. Their algorithm works
with the observed real gene expression profiles X (genes ×
experiments), a hidden binary membership matrix Z (genes
× processes) containing the membership of each gene in
each process, and a hidden real activity matrix A (pro-
cesses × expriments) containing the activity of each pro-
cess for each experimental condition. The assumption of
their model is E[xi] = Azi, i.e., each xi is generated from
a Gaussian distribution with mean Azi, which is sum of the
activity levels of the processes that contribute to the genera-
tion of xi. Several related models with a similar generative

2As it is proved in [13], the largest possible D is the size of the dataset.

structure have appeared in the literature in the form of fac-
torial, multi-cause, or overlapping models [6, 12, 10, 1].

7 Conclusions

We have presented an overlapping clustering approach
based on multiplicative mixture models (MMMs). The pro-
posed MMMs inherently assume that each point is gener-
ated from a product of a subset of the component distri-
butions. When each component distribution in a MMM is
from an exponential family, we show that there is an effi-
cient alternating maximization algorithm that converges to
a (local) maxima of the joint likelihood of the observations
and their assignments. We also show that when each com-
ponent in a MMM is a multivariate Gaussian, we can use
kernel techniques to get non-linear separators and obtain
better clustering quality. In practice, the algorithms are ac-
curate, fast, and scale to large datasets.
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