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Keep It Simple with Time: A Re-examination of
Probabilistic Topic Detection Models
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Abstract—Topic detection (TD) is a fundamental research issue in the Topic Detection and Tracking (TDT) community with practical
implications; TD helps analysts separate the wheat from the chaff among the thousands of incoming news streams. In this paper, we
propose a simple and effective topic detection model called the temporal Discriminative Probabilistic Model (DPM), which is shown to
be theoretically equivalent to the classic vector space model with feature selection and temporally discriminative weights. We compare
DPM to its various probabilistic cousins ranging from mixture models like von-Mises Fisher (vMF) to mixed membership models like
Latent Dirichlet Allocation (LDA). Benchmark results on the TDT3 dataset show that sophisticated models such as vMF and LDA do
not necessarily lead to better results; in the case of LDA, notably worse performance was obtained under variational inference, which
is likely due to the significantly larger number of LDA model parameters involved for document-level topic detection. On the contrary,
using a relatively simple time-aware probabilistic model such as DPM suffices for both offline and online topic detection tasks, making
DPM a theoretically elegant and effective model for practical topic detection.

Index Terms—topic detection, probabilistic model, time-aware, bursty feature, online, DPM, TFIDF
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1 INTRODUCTION

T OPIC detection (TD) enables the automatic discovery
of new topics from a news corpus and the subsequent

assignment of news documents to discovered topics. A new
topic typically corresponds to a newsworthy incident such as
the 2008 US presidential elections. Relationships among the
discovered topics can be flat or hierarchical. Moreover, since
a topic is more specific than a news category such as sports
or finance, most work on TD naturally assumes a simple flat
topical structure. Other than topic structural differences, the
TD process can be further divided into online (real-time) and
offline (batch) modes, which are also known as new event
detection [2] and retrospective event detection [40], respec-
tively. Online TD incrementally examines each incoming news
document to assess whether it belongs to an existing topic or if
a new topic should be created based on it. Offline TD examines
the entire corpus of news documents to simultaneously unravel
topics and their associated news documents.

From a data-mining perspective, online and offline TD may
seem no different from incremental and offline document
clustering, respectively. However, there are a number of subtle
TD characteristics, which if not taken into due consideration,
can adversely affect practical clustering performances: 1) time
plays a pivotal role, with every news document bearing a time
stamp, 2) news topics are naturally bursty, i.e., new topics
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are constantly generated while old topics die off, 3) news
documents with semantically similar content but disparate
time-frames most likely originated from different topics, e.g.,
hurricane Mitch of October 1998 and hurricane Georges of
September 1998 are two distinct topics that share many
common words. TD can thus be viewed as a special case of
stream clustering [17], with the clustering portfolio at any time
point akin to a concept that drifts with time [38], [18].

Despite the fact that time plays an important role, the vast
majority of existing TD solutions [40], [3], [35], [41], [12],
[26] do not explicitly incorporate time into their formula-
tions; each news document is represented as a vector with
time-agnostic static weights, with just one minor procedural
modification: news vectors are processed in time-stamp order,
i.e., online TD, as opposed to batch TD, is used to handle
the temporal factor. The entire setup smacks of ad hocism
that builds upon the TFIDF (term frequency inverse document
frequency) vector space model [34], which itself is lacking in
mathematical formalism1. Fortunately, this simple procedural
modification over static text representation model seems to
work quite well in practice.

The question to ask is then this: can a concise text rep-
resentation model be formulated to explicitly capture the
temporal element in news streams, and yet remain practical
and effective for both online and offline TD? In this paper, we
seek to answer this question by evaluating several time-aware
probabilistic formulations for TD, and proposing our temporal
and discriminative probabilistic framework called DPM.

DPM is a Bayesian probabilistic framework that considers
each news document as a point in discriminative word and
time vector space. The posterior topic probability given a
document and time is computed and subsequently used to

1. The reformulation of TFIDF in a probabilistic framework by
Joachims [24] does however help improve the standing of TFIDF.



TABLE 1
Probabilistic Topic Detection models.

Model Document Topic TD approach
Deterministic point point k-means
Discriminative Probabilisticpoint probability DPM
Mixture point distribution mixture of {Gaussian, vMF}
Mixed Membership distribution distribution LDA

assign a document to multiple fitting topics. One unique
feature of DPM is that it only needs to operate on a subset
of topical and temporally discriminative words instead of the
full vocabulary space, making DPM very efficient for practical
implementation.

Disregarding the time component for now, DPM actually
belongs to a more general class of probabilistic mixture frame-
work that ranges from naive Bayesian models to generative
mixture models like mixture of Gaussians [13] or von-Mises
Fisher (vMF) [7] distributions, and finally to full Bayesian
generative ones like Latent Dirichlet Allocation (LDA) [10]
hierarchical topic models. Table 1 positions DPM among the
different topic detection models. From Table 1, we can see
that probabilistic models like DPM are simple extensions of
deterministic models; it estimates the posterior probability of
a topic given observed documents from the class-conditional
document probabilities. Going one step further, mixture gen-
erative models treat each topic as a distribution over points
(documents). Mixed membership generative models like LDA
treat both documents and topics as distributions; documents
are distributions over topics, topics are distributions over
words, and words originate independently from documents.

Why did we choose to incorporate time into a simple prob-
abilistic model instead of the more sophisticated generative
models? In fact, we have tried adding the temporal element
to mixture generative models like vMF, but that did not result
in any significant improvements in TD performance. On the
other hand, mixed membership generative models like LDA
have already been extended to handle time [11]. In general,
we found that simple probabilistic models seem to achieve the
best balance in terms of model complexity and performance,
validating the principal of Occam’s Razor [6].

Formulating DPM using a probabilistic framework makes it
more amenable to statistical analysis and practical deployment.
For example, using an approach similar to Joachims [24], we
show that DPM is equivalent to a temporal version of TFIDF
with discriminative feature selection, which can be trivially
implemented. Lastly, soft topic assignment is a natural and
practical application of DPM that can be enabled at will; useful
for TD in practice. In contrast, deterministic approaches like
k-means hard-clustering assign all documents into a set of
disjoint clusters, where each cluster represents one topic. The
contributions of this paper are thus summarized below:

1) A temporal discriminative probabilistic model, DPM, is
proposed and carefully evaluated for both offline and
online topic detection performance.

2) The theoretical link between DPM and temporal TFIDF
is shown, which helps explain why TFIDF has been
fairly successful for topic detection.

3) An investigation of four types of TD models (cf. Table

1) is conducted, including offline (soft partition) and
online (point assignment) topic detection benchmarks.
To the best of our knowledge, the soft topic assignment
benchmarks are the first of its kind for topic detection.

4) Bursty words, which are temporal in nature, are used as
topic-discriminative features.

2 RELATED WORK

We briefly review the plethora of TD research from the TDT
research community, along with recent advances in probabilis-
tic topic models.

2.1 Topic Detection in TDT and Clustering
An overview of TDT research can be found in [4]. The overall
goal of TDT is to understand news content across different
languages, and to develop a system to process news streams
from a variety of sources. A formal definition of a topic was
given in [36] as follows: A topic is defined to be a seminal
event or activity, along with all directly related events and
activities. The definition of a topic may be ambiguous at times.
For example, “US attacked Iraq” can be a topic, which can
be further divided into events or sub-topics like “US declared
war with Iraq”, “US sent Marine Corps to Iraq”, etc. In fact, a
hierarchical topic/event structure may gradually evolve [42],
[18]. Detection of relationships among topics or events is
beyond the scope of this paper, i.e., we will only consider a
flat structure of topics, where every topic is equally important.
In addition, we shall adopt the TDT definition of topic, and
equate new event detection with online topic detection. This
definition naturally puts classical document clustering into the
batch or offline topic detection genre.

Non-probabilistic models like deterministic clustering have
achieved significant success on topic detection in the past.
For example, Yang et al. [40] successfully used hierarchical
clustering for offline topic detection. Allan et al. [5] showed
that Single-Link and Single-Pass clustering, which assigns the
cluster label of the nearest neighbor (1-NN), achieved the best
online topic detection performance. In fact, if we only consider
a flat topic structure and ignore time, there exists extensive
work on batch or offline topic detection, including the rich
family of k-means clustering [14].

Our work is different from the vast majority of TDT
approach in that we explicitly include time in our model, and
we focus on the family of probabilistic topic detection models,
which is surveyed in the next section.

2.2 Probabilistic Models for Topic Detection
There exists a plethora of literature on probabilistic models for
unsupervised text clustering, most of which can be directly
applied to offline topic detection, ignoring the time factor.
Probabilistic models consider topics as distributions over either
documents or words. Models that use the vector space word
representation of documents typically model a topic as a distri-
bution over documents, i.e., the Gaussian mixture model [13]
and von-Mises Fisher (vMF) mixture model [8], which models
a topic as a Gaussian or vMF distribution of documents in



word vector space, respectively. Other probabilistic models
such as naive-Bayes [33], Dirichlet Compound Multinomial
(DCM) mixtures [15], probabilistic Latent Semantic Indexing
(pLSI) [22], and Latent Dirichlet Allocation (LDA) [10] treat
each topic as a multinomial distribution of words. We can
also simplify the topic distribution by modeling each topic as
a discrete probability over documents, which is exactly what
our DPM model assumes. We categorize the above work as
“offline probabilistic models”.

There are but few probabilistic models specifically geared
for online topic detection, which as we emphasized before,
depends strongly on time. Zhang et. al. [43] were the first
to apply LDA to online topic detection. However, training on
existing known topics is needed to model a new topic prior,
which makes this approach supervised.

Simple online extensions of vMF mixture and LDA have
been proposed in [8] and [11] respectively, where the focus
has been on incrementally updating existing cluster topic
parameters (assuming a fixed number of clusters), rather than
detecting new topics. Wang and McCallum [39] presented an
LDA-style document timestamp-aware topic model. However,
their method was also used to track the evolution of existing
topics in an offline manner. We categorize the above work
into the task of “topic evolution”, not online topic detection.
In these work, the number of topics has to be predefined and
no new topic would be found.

Recently, Dirichlet processes have been used to determine
the number of topics automatically [32], [37], [29], with hy-
perparameters specifying the rate at which topics grows with
data. These so-called non-parametric Dirichlet process mixture
models are in fact variations of generative topic models (i.e.,
LDA) for offline topic detection, where document orderings
are not utilized at all. More recently, an online version of
Dirichlet process mixture model was proposed in [1], where
the temporal order of documents is maintained across time
and the number of topics at each time instance is unbounded.
Similarly, He et. al. [21] used a simple cosine similarity
comparison to determine the death/birth of old/new topics.
However, these approaches still follow along the lines of
“topic evolution” and are not suitable for online topic detection
because: 1) topic evolution models were only assessed on
pairwise sequential document sets (time t and t − 1); and
2) In online topic detection, we have to decide if a new
topic needs to be created upon the arrival of every new
document. It is impractical to conduct offline probabilistic
model evaluation for each incoming document (against all
previous documents), or overkill to run the topic evolutionary
model on each incoming document.

Our work has fundamental differences from the above
probabilistic models: 1) we proposed a temporal discriminative
probabilistic model DPM by removing the topic distribution
assumptions made by other more sophisticated probabilistic
models and incorporating the time element; 2) we compre-
hensively benchmarked various probabilistic models including
DPM on both offline and online topic detection, making our
work one of the most comprehensive TD benchmarks to date.

TABLE 2
Comparisons between offline and online TD models.

Type Document ordering Applications # topics k Topic
assignment

offline Irrelevant for all t Post analysis of topics Fixed Distribution
online Relevant for different t Identify new topics in

real time
Increasing Point

3 TOPIC DETECTION PROBLEM

Topic detection aims to group thematically-related documents
from a temporal text stream into an unknown number of
topics. Formally, let D be a news stream starting at time t0,
with varying number of documents N(t) published at each
discrete time point t ≥ t0 and total number of documents
N =

∑
t N(t) in D. The ordering of documents does not

matter for documents published at the same discrete time
point. Let Z be a set of document-level gold-standard topics
for text stream D and P (z|d), z ∈ Z be the ground-truth
posterior probability distribution for any document d ∈ D.

Our goal is to find a set of document-level clusters C as well
as the hypothesis distribution P (c|d), c ∈ C to approximate
the ground truth as closely as possible. If P (c|d) is learnt at
one go using all documents throughout the text stream D for
all time t ≥ t0, the process is called offline topic detection. The
objective is a soft partition that aims to recover the underlying
true class labels Z for the complete corpus D. If P (c|d) is
learnt using only documents up till the time stamp of the
newest incoming document d, the process is called online topic
detection. The objective is a point assignment that aims to
identify the cluster c for document d at time t, referred to as
arg maxc P (c|d, t).

Online topic detection is modeled as a point assignment
process (irrevocable once assigned) rather than a distribution
because the total number of topics/clusters is unknown and
increases over time; the distributional space is incomplete at
any time. Table 2 summarizes the differences between offline
and online topic detection models.

4 TOPIC DETECTION MODELS

Topic detection models can be broadly classified into two types
in our context: non-probabilistic (Section 4.1) and probabilistic
(Sections 4.2 and 4.3). Non-probabilistic topic detection mod-
els based on hard clustering have achieved decent offline topic
detection performances in the past, yet probabilistic models
have never been specifically applied to topic detection.

4.1 Non-probabilistic Models
Non-probabilistic models cluster documents directly, which
are modeled as vectors in high-dimensional word space, where
the relationship between documents and words are explicitly
linear and independent[34].

4.1.1 Offline Topic Detection
We picked the spherical k-means (SPK) clustering [14] as
the representative non-probabilistic topic detection model for
offline topic detection. Suppose there are N document vectors



d1,d2, . . . ,dN in Rn (n is the number of distinct words) from
D, and each document vector has been normalized to lie on
the unit hypersphere, i.e. ‖di‖ = 1 ∀i. The TFIDF vector
space model is used to generate each document vector as

di = [w1i, w2i, . . . , wni]T , wji =
1

‖di‖fji log(1 +
N

Nj
),

where fji is the term frequency of word xj in document di

and Nj is document frequency of word xj , i.e., number of
documents containing word xj . SPK seeks a partitioning of
D into k disjoint clusters c1, c2, . . . , ck that maximizes the
following objective function

∑k
j=1

∑
d∈cj

dT cj , where cj is
the centroid of cluster cj and defined as cj =

∑
d∈cj

d/N(cj),
and N(cj) is the number of documents in cluster cj .

However, finding the optimal solution to the above objective
function is NP-complete. SPK thus uses a k-means type of
approximation algorithm, which is an iterative procedure:

1) Start with an initial clustering by arbitrarily partitioning
documents. Compute the cluster centroids accordingly.

2) Update the posterior distribution by assigning each doc-
ument vector d to the cluster with the nearest centroid,

P (c|d) =
{

1 if c = arg maxcj dT cj ,
0 otherwise. (1)

3) Update the new cluster centroids based on the new
posterior topic distribution.

4) If the difference between the objective function of new
clusters and old clusters is less than a threshold, new
clusters are output as the solution. Otherwise, go to 2).

4.1.2 Online Topic Detection
One of the most common non-probabilistic models for online
topic detection in TDT is the single-link and single-pass
clustering [5]. Each document is represented as a bag-of-words
vector based on cumulative TFIDF, which is given by [5]

wx,d =
fx,d · log((0.5 + N(τ))/Nx(τ))

log(1.0 + N(τ))
, (2)

where τ means up to time t ≤ τ , Nx(τ) is the number of
documents up to time τ in which word x appears, and N(τ) is
the total number of documents seen to date. For each incoming
document d at time t, compute its cosine similarity to every
previous document (≤ t) in the collection. If its similarity to
the nearest neighbor (1-NN) is above a threshold ε, assign
d to the nearest cluster; otherwise, a new singleton cluster
containing d is created. We shall call this non-probabilistic
model Single-Link-All.

In fact, short of any domain knowledge such as the prior
probability of generating a new topic, the threshold-based
process of Single-Link-All is the most efficient and effective
way for discovering new topics in an unsupervised manner.
Throughout the paper, we will use this topic discovery process.

4.2 Mixture Generative Models
The vMF mixture model [7] is a mixture generative probabilis-
tic model that has worked quite well for document clustering.
More specifically, vMF mixture estimation can be viewed as a

generalized version of SPK clustering. vMF mixtures assume
that each topic/cluster is represented by a von-Mises Fisher
distribution over all member documents, and the entire set of
document distribution is a mixture of k vMF distributions.

4.2.1 vMF Mixture on Offline Topic Detection
Given a unit-length document vector d ∈ Rn and ‖d‖ = 1, we
assume that d is generated by an n-variate vMF distribution
with the following probability density function,

f(d|c, κ) = Rn(κ)eκdT c, (3)

where c plays the role of the mean vector of a latent topic,
‖c‖ = 1, κ > 0, and Rn(κ) is a normalizing constant. Clearly,
the probability of d given c will be high if they are similar,
as shown in Eq. 3. The concentration parameter κ is similar
to the classical variance parameter in Gaussian distributions,
since it modulates the similarity between document vector d
and topic centroid vector c.

In the vMF mixture model, a document vector d is modeled
by a mixture of k vMF distributions as

f(d|Θ) =
k∑

j=1

αjfj(d|θj), (4)

where αj > 0 is the topic prior and
∑k

j=1 αj = 1, θj =
(cj , κj), and Θ = {α1, . . . , αk, θ1, . . . , θk}.

Given a dataset D, assume that each document sample di

is i.i.d. (independently and identically distributed) following
the mixture distribution of Eq. 4, we can use the standard
Expectation Maximization (EM) algorithm to estimate the
parameters of the vMF mixtures. The M-step (update the
parameters) can be found in [7]. The E-step, allocating the
document, is given by

P (cj |di,Θ) =
αjfj(di|Θ)∑k
l=1 αlfl(di|Θ)

. (5)

Eq. 5 computes the individual probability of assigning doc-
ument dj to cluster (topic) cj , which depends on two factors:
1) the topic prior, i.e., larger clusters generally have a higher
affinity compared to smaller ones; 2) the cosine similarity
between document and cluster centroid (mean direction of
vMF distributions).

4.2.2 vMF Mixture on Online Topic Detection
An online extension of vMF mixture was proposed in [8]. The
basic idea is to incrementally update each cluster centroid as
new documents are added while keeping the cluster concentra-
tion parameter κ and mixing proportions unchanged, as below,

c(t+1) = c(t) +
1

t + 1
(d− c(t)), (6)

where d is the new document vector, c(t) and c(t+1) are
centroid vectors of the cluster to which d is assigned before
and after the arrival of document d.

Since we assume online topic detection to be a point
assignment process, the new topic discovery procedure for
both vMF mixtures and Single-Link-All is similar. The only
difference between them is that vMF mixture compares a



new document with all existing vMF topic distributions, while
Single-Link-All uses the 1-NN as the topic of reference.

We simply use the cosine similarity dT c (which is propor-
tional to the generative probability of d given c) to estimate a
document’s similarity to every generated cluster. If the maxi-
mum similarity is below a threshold ε, a new cluster centered
at the document d is created. If there are more documents
assigned to a newly created topic later, we update the centroid
of this new topic by simply averaging all documents assigned
to it. This simple strategy enables us compare various online
topic detection methods using the same scale of threshold ε.

4.3 Mixed Membership Generative Models
Mixed membership generative models represent documents as
mixtures of topics, where a topic is a probabilistic distribution
over words. For each word in a document, a topic is sampled
according to the document’s topic distribution, and the word
is drawn from this topic with a given probability. In this paper,
LDA [10] is used to invert this process by inferring the set of
topics responsible for generating a collection of documents.

4.3.1 LDA on Offline Topic Detection
Latent Dirichlet Allocation (LDA), a generalization of Proba-
bility Latent Semantic Indexing (pLSI), is a static generative
topic model that represents each document as a mixture of
topics. In general, the number of topics k for LDA must be pre-
specified, making it more suitable for offline topic detection.
As we discussed in Section 2.2, although the number of topics
can automatically grow with the data using Dirichlet processes,
the Dirichlet process mixture models are still designed for
offline topic detection/evolution, and not the online topic
detection problem emphasized in this paper. Estimating the
number of topics is not a crucial issue in offline topic detection,
and thus for simplicity we will use LDA as the baseline.

Formally, the LDA generative process is described as below.
• draw k multinomials φ ∼ Dirichlet(β), one for each topic c.
• for each document d:

– draw a topic distribution θ ∼ Dirichlet(α) for d.
– for each word w ∈ d:
∗ draw a topic c ∼ Multinomial(θ).
∗ draw a word w from topic c, w ∼ Multinomial(φc).

In LDA, two hyperparameter vectors α and β are used
to initialize the parameters of the document-topic mix θ and
topic-word weights φ. The key part of learning the topic model
hypothesis is to compute the posterior probabilities of topics
given d, which is in turn the inference of LDA, as follows:

P (θ, φ|d, α, β) =
P (θ, φ,d|α, β)

P (d|α, β)
.

Variational inference or Gibbs sampling can be used to ap-
proximate the above intractable posterior probabilities, which
are beyond the scope of this paper. We will simply adopt the
variational inference previously elaborated in [10].

4.3.2 LDA on Online Topic Detection
There exists no simple extension of LDA for online topic
detection. As discussed in Section 2.2, both Dynamic Topic
Models (DTM) [11] and non-parametric Dirichlet process

mixture models [32], [37], [29], [1] were designed for topic
evolution. In topic evolution, documents are grouped into dis-
crete epochs. Documents in the current epoch are used to train
a topic model. A topic evolution model will gradually evolve
from the current topic space into the next newly generated
topic space. For example, DTM conducts k-component LDA
analysis at each time slice t sequentially, and conditionally
defines the natural parameters of each topic φj(t + 1) to
be a Gaussian distribution centered upon the previous value
φj(t + 1)|φj(t) ∼ N(φj(t), σ2I), where φij(t) = P (xi|cj , t)
and I is the identity matrix.

In online topic detection, it is impractical to conduct either
k-component LDA or unbounded Dirichlet process mixture for
each incoming document. What we can do is to periodically
rerun the topic model after observing/processing a bunch of
new documents.

In the irrevocable online detection phase, we have to assign
a topic label for each incoming document only based on the
historical topic space. Since there are no similar approaches
to update the topic model parameters for each incoming
document as in vMF [8], we will preserve the existing topic
model parameters until the next round of global optimization.
There are a number of methods to assign an existing topic
label to a new document. First, for each word in the new
document, we can model it as a mixture of existing topics
since the latter will likely have non-zero generative probability
with respect to the word. The standard EM algorithm can be
used to compute the mixture weights for every word while
maximizing the likelihood for the document. Subsequently, by
summing over all words, we can assign to the document the
topic that has the largest influence as the final document label.
Second, we can simply use the maximum likelihood method
to assign initial topic labels for every word and then choose
the topic assigned to the largest number of words. The first
method is impractical since it can take several minutes to make
a decision for each new document while the second one is fast.
However, neither of them is suitable for creating a new topic.
Given a new document, the weights of existing topics would
sum to 1 using either of the two methods, which means using
an absolute threshold to determine if a new topic should be
created is infeasible.

The simplest solution to tackle the above problem might
be to use some global measures like cosine similarity. This
is consistent with our previous choices for other online topic
detection methods. We can easily map both topics and doc-
uments from the the n − 1 dimensional simplex to the n di-
mensional Euclidean space using the natural parameterization
approach [11], so that the cosine similarity can be calculated
properly. If the maximum similarity falls below a user defined
threshold ε, a new topic is created and centered at d. A
new topic can be simply centered at all documents assigned
to it while leaving the LDA parameters of each old topic
unchanged.

5 DISCRIMINATIVE PROBABILISTIC MODELS
In this section, we shall propose our discriminative proba-
bilistic model (DPM) for both offline and online topic detec-
tion. There are a number of driving factors that led to the



formulation of the DPM model. First, existing probabilistic
models, especially LDA, seem to be overly complex for the
problem of topic detection. Second, although non-probabilistic
models have worked fairly well for topic detection in practice,
up till now there has been no corresponding mathematical
justification. For example, the TFIDF weighting formula (Eq.
2) adopted by Single-Link-All is tuned empirically, without
any theoretical basis or mathematical insight.

We therefore come up with the simple discriminative models
(DPM) for topic detection, with two goals: 1) simplify the
overly complicated probabilistic models by removing the dis-
tribution assumption, and 2) provide a compelling theoretical
framework to support the non-probabilistic models. In fact we
will show in later sections that the posterior topic probability
given document is a variation on the classical TFIDF formu-
lation for both online and offline topic detection, given the
condition that a set of discriminative words can be found.

5.1 Offline Discriminative Model

We assume that there exists a feature set X ∈ F in the
text collection D, with which all documents can be top-
ically discriminated from each other, where F is the full
word/vocubulary feature space. Any feature x ∈ X can
become a discriminative feature for a latent topic. For example,
for the “Hurricane Mitch” topic, the words wind, hurricane,
Mitch and storm might be a set of discriminative features.
However, stop words like the will not contribute to any latent
topic and are thus treated as non-discriminative features. We
use non-discriminative features instead of stop words because
given a data collection D, there might exist word features
that are neither in the common stop word list nor relevant to
any latent topic in D. Defining discriminative features is thus
data-dependent.

Given a new document vector d and an existing topic label
cj , we are effectively assuming cj and d are conditionally
independent given x ∈ X . The conditional independence
implies p(cj ,d|x) = p(cj |x)p(d|x) so that

p(cj |x,d) =
p(cj ,d|x)
p(d|x)

=
p(cj |x)p(d|x)

p(d|x)
= p(cj |x).

As a result
∑

x∈X

p(cj |x,d)p(x|d) =
∑

x∈X

p(cj |x)p(x|d).

The objective discriminative probability is then given by

P (cj |d) =
∑

x∈F

P (cj |x,d)P (x|d)

=
∑

x∈X

P (cj |x,d)P (x|d) +
∑

x∈F\X
P (cj |x,d)P (x|d)

=
∑

x∈X

P (cj |x)P (x|d) + P (cj |d) ·
∑

x∈F\X
P (x|d),

where we assume that P (cj |x,d) = P (cj |d) for those
non-discriminative features that do not contribute to any
latent topic. We further assume that for any document d,∑

x∈F\X p(x|d) = R, which is a constant. In other words,

the total probability mass on the non-discriminative words is
a constant for all documents. With this, we have

P (cj |d) =
1

1−R

∑

x∈X

P (cj |x)P (x|d). (7)

Accordingly, the point assignment (assigning the most likely
topic) of document d is given by arg maxcj P (cj |d).

Property 1: Eq. 7 defines a valid probability distribution
over all offline topics so that we can directly use it as the
posterior discriminative probability.

Proof:

∑

j

P (cj |d) =
1

1−R

∑

j

∑

x∈X

P (cj |x)P (x|d)

=
1

1−R

∑

x∈X


∑

j

P (cj |x)


 P (x|d)

=
∑

x∈X P (x|d)
1−R

=
1−∑

x∈F\X P (x|d)

1−R
= 1,

where
∑

j P (cj |x) = 1 for all offline topics.
Finally, note that the above calculation does not require R

to be a global constant across all documents. The value R
is document dependent, R(d) =

∑
x∈F\X P (x|d). For topic

assignment, we simply use R instead of R(d) in the following.

5.1.1 Estimation of Offline Discriminative Model

In the work of [24], the right-hand-side of Eq. 7 has been
shown to be equivalent to the Rocchio classifier by allowing
for reasonable variations on the popular TFIDF document rep-
resentation. We re-apply this seminal result onto a clustering
framework as follows.

The probability distribution defined in Eq. 7 could be
rewritten as

P (cj |d) =
1

1−R

∑

x∈X

P (cj |x)P (x|d)

=
1

1−R

∑

x∈X

P (x|cj)P (cj)∑
cl∈C P (x|cl)P (cl)

· P (x|d),

where P (x|d) is estimated as fx,d/|d|, P (cj) is esti-
mated as N(cj)/N and P (x|cj) is estimated as 1/N(cj) ·∑

d′∈cj
P (x|d′). Accordingly, P (cj |d) is reformulated as

P (cj |d) =
1

1−R

∑

x∈X

1
N

∑
d′∈cj

fx,d′
|d′|∑

cl∈C
1
N

∑
d′′∈cl

fx,d′′
|d′′|

· fx,d

|d| .

By defining the term frequency and inverse document fre-
quency of x as

TF ′(x, d) =
fx,d

|d| , IDF ′(x) =

√
N∑

d∈D
fx,d

|d|
, (8)



P (cj |d) is further reformulated as

P (cj |d) =
1

1−R
· N(cj)

N

∑

x∈X

( 1
N(cj)

∑

d′∈cj

TF ′(x, d′) · IDF ′(x)
)
·
(
TF ′(x, d) · IDF ′(x)

)

=
1

1−R
· N(cj)

N
· dT cj , (9)

where

cj =
1

N(cj)
·

∑

d′∈cj

d′,

and we can express each word in the document vector as

wi = TF ′(xi, d) · IDF ′(xi).

From Eq. 9, after embedding documents into the discrimina-
tive feature space X , we see that the topic probability distribu-
tion of a document is proportional to both the absolute size of
the topic and the distance (inner product) from the document to
the topic’s centroid. This process is equivalent to each iteration
of the k-component centroid-based soft clustering based on the
TFIDF vector space model, except that in our case, a larger
cluster has a higher affinity compared to a smaller one.

It is interesting to take a closer look at Eq. 8, which
redefines TF and IDF. Traditionally, IDF only counts term
presence/absence in documents. Here, we factor the term
frequency of a word for the redefined IDF. Thus, rare common
words (appearing infrequently within a document but across
many documents) will be assigned a reasonably high IDF
value, as opposed to their traditional IDF values, which are
typically low. Considering that topical words (discriminative
features) are often rare common words, our model can thus
effectively enhance their weights. Lebanon [28] had a similar
conclusion while explaining the Riemannian metric as TFIDF-
like score on the multinomial simplex. The Riemannian metric
outperformed TFIDF in general text classification. In essence,
our IDF variation is suitable for offline topic detection in text
corpus as well as online topic detection in text streams, as
shown later.

5.1.2 Applying to Offline Topic Detection
An iterative process is needed to locally optimize the clustering
process for the discriminative model. For hard partitioning,
the process can exactly follow the SPK algorithm. During
each iteration, point assignment of each document is used to
determine the cluster label. For soft partitioning, the process
can mimic the vMF algorithm, where the topic probability
distribution in Eq. 7 is used to assign documents, and the
clusters are updated as a mixture of all documents weighed
by the posterior cluster probability P (cj |d). The constant R
is estimated using a bag of well-known stop words.

5.2 Online Discriminative Model
In this section, we shall extend the static discriminative model
to a dynamic version, where documents at different times

are not exchangeable. In an online model, both topics and
discriminators (word feature) are time-dependent. That is to
say, the topical meaning of discriminator shifts over time, and
a topic has different representations at different times.

We first compute the posterior probability of assigning a
new document vector d to class cj as

P (cj |d, t) =
∑

x∈F

P (cj |x,d, t)P (x|d, t) =

∑

x∈X

P (cj |x,d, t)P (x|d, t) +
∑

x∈F\X
P (cj |x,d, t)P (x|d, t)

=
∑

x∈X

P (cj |x, t)P (x|d, t) + P (cj |d, t) ·
∑

x∈F\X
P (x|d, t),

where we, as in offline DPM, we assume that cj and d
are conditionally independent given x ∈ X and time t, and
P (cj |x,d, t) = P (cj |d, t) for non-discriminative features.
Similar to the offline model, we further assume that for any
document d,

∑
x∈F\X p(x|d, t) = R is a constant. As a result

P (cj |d, t) =
1

1−R

∑

x∈X

P (cj |x, t)P (x|d, t). (10)

The point assignment of document vector d is given by
arg maxcj P (cj |d, t).

Property 2: Eq. 10 defines a valid probability distribution
over all topics, assuming that topics are global variables until
the current time, but they could have zero probabilities at birth.

Proof:
∑

j

P (cj |d, t) =
1

1−R

∑

j

∑

x∈X

P (cj |x, t)P (x|d, t)

=
1

1−R

∑

x∈X


∑

j

P (cj |x, t)


P (x|d, t).

Note that only when all topics including the future ones are
global variables, we can have

∑
j P (cj |x, t) = 1. As a result

∑

j

P (cj |d, t) =
1−∑

x∈F\X P (x|d, t)

1−R
= 1.

For online topic detection, let Co be the set of old top-
ics and Cn be the set of unseen (new) topics. Sup-
pose that d belongs to some new topic, we have∑

cj∈Co
P (cj |x, t)+

∑
cj∈Cn

P (cj |x, t) = 1 for those discrim-
inative features belonging to the new topic. Apparently, now∑

cj∈Co
P (cj |d, t) < 1. Although we cannot directly calculate

the posterior probability of d belonging to its new topic, we
can use

1−
∑

cj∈Co

P (cj |d, t)

to estimate its probability of belonging to any new topic.

5.2.1 Estimation of Online Discriminative Model
We assume there is no explicit dependency between document
d and time t given the temporal descriptor x.

This conditional independence between d and t is reason-
able because given d, its publication time t is also given



explicitly, and its generative probability only relies on the bag
of words, which leads to P (d, t|x) = P (d|x)P (t|x).

In the following, we use all seen documents assigned to cj

as its representation,

P (cj |x, t) =
P (cj , x, t)
P (x, t)

=
P (x|cj , t)P (cj |t)

P (x|t)

=
1

N(cj ,τ)

∑
d′∈cj(τ) P (x|d′, t)P (cj |t)

P (x|t) , (11)

where τ indicates the time period t′ ≤ t, N(cj , τ) is the
number of documents in cluster cj up to time t.

Inserting Eq. 11 to Eq. 10, we have

P (cj |d, t) =
1

1−R
·

∑

x∈X

1
N(cj ,τ)

∑
d′∈cj(τ) P (x|d′, t)P (cj |t)

P (x|t) P (x|d, t).

It is easy to estimate both P (x|t) and P (cj |t) as follows:

P (x|t) =

∑
d′∈D(t) TF ′(x, d′)

N(t)
, P (cj |t) =

N(cj , τ)
N(τ)

,

where TF ′(x, d′) is the normalized term frequency of word x
in document d′ as given in Equation 8, N(t) is the number of
documents at time t, N(τ) is the number of documents up to
time t. Apparently, 1/

√
P (x|t) works as the IDF and P (cj |t)

could be used to normalized the topic size.
The remaining task is to derive P (x|d, t) or P (x|d′, t), both

of which has the same form. Intuitively, we can treat P (x|d, t)
as dynamic term frequency which incorporates the temporal
information into the static term frequency, P (x|d). Following
Bayes’ rule, we have

P (x|d, t) =
P (x,d, t)
P (d, t)

=
P (d, t|x)P (x)∑

x′∈F P (d, t|x′)P (x′)

=
P (d|x)P (t|x)P (x)∑

x′∈F P (d|x′)P (t|x′)P (x′)

=
P (x|d)P (d)

P (x)
P (x|t)P (t)

P (x) P (x)
∑

x′∈F
P (x′|d)P (d)

P (x′)
P (x′|t)P (t)

P (x′) P (x′)

=
P (x|d)P (x|t) 1

P (x)∑
x′∈F P (x′|d)P (x′|t) 1

P (x′)

,

where P (x|d) is the static TF, P (x|t) is the inverse IDF at
time t, and P (x) is the normalized cumulative inverse IDF up
to time t, defined as follows,

P (x) =

∑
d′′∈D(τ) TF ′(x, d′′)

N(τ)
.

We can further simplify P (x|d, t) to be

P (x|d, t) =
P (x|d)P (x|t) 1

P (x)∑
x′∈X P (x′|d)P (x′|t) 1

P (x′) + RS

, (12)

since RS =
∑

x′∈F\X P (x′|d)P (x′|t) 1
P (x′) can be a constant.

Similarly, by defining the dynamic term frequency and
dynamic inverse document frequency of x as

TF ′′(x, d) = P (x|d, t), IDF ′′(x) =
1√

P (x|t) , (13)

P (cj |d, t) can be reformulated as

P (cj |d, t) =
1

1−R
·
∑

x∈X

1
N(τ)

·
( ∑

d′∈cj(τ)

TF ′′(x, d′) ·

IDF ′′(x)
)
·
(
TF ′′(x, d) · IDF ′′(x)

)
=

1
1−R

·
N(cj , τ)
N(τ)

·
∑

x∈X

(∑
d′∈cj(τ) TF ′′(x, d′) · IDF ′′(x)

N(cj , τ)

)

·
(
TF ′′(x, d) · IDF ′′(x)

)

=
1

1−R
· N(cj , τ)

N(τ)
· dT cj(τ), (14)

where d is the document vector and cj(τ) is the topic mean
vector up to time t as shown below,

cj(τ) =
1

N(cj , τ)

∑

d′∈cj(τ)

d′, (15)

and each word of the document vector is expressed as

wi = TF ′′(xi, d) · IDF ′′(xi).

From Eq. 14, we see that by only using discriminative
features, the online discriminative model is equivalent to a
variation of incremental TFIDF clustering, with the following
observations:

1) Both TF and IDF are time-dependent. The TF part
considers the generative probability of a given document
and the IDF part accounts for the document frequency
(DF), both at the current time;

2) Topics must be global variables until the current time,
but they could have zero probabilities initially. Once a
topic is created, it will always be valid;

3) Larger clusters have a higher affinity to new documents
compared to smaller ones.

5.2.2 Applying to Online Topic Detection
Property 2 defines an effective way to directly estimate the
probability of announcing a new topic for each incoming
document. However, for a consistent comparison with other
methods like vMF and LDA, we compare the maximum
value from {P (cj |d, t), cj ∈ Co} with the user defined
threshold ε. Note that with fixed number of existing topics, this
maximum value is inversely proportional to the probability that
d indicates any new topic. If this maximum value is below ε,
a new topic is created and its topic vector is set to be the new
document’s vector. Finally, Eq. 15 defines an efficient way for
updating the topic vectors for both existing topics and newly
created topics.

5.3 Exploring Discriminative Features
Both the online and offline DPM models make one key
assumption, that documents can be represented by topic-
discriminative features. However, there is no general definition
for a discriminative word. We can use Linear Discriminative
Analysis [31] or other techniques to find discriminators, and
compare their performances on topic detection accordingly.
However, this is beyond the scope of the paper. For simplicity,
we select bursty words as discriminative words in this paper.
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Fig. 1. Document frequency signal for three word exam-
ples. The x-axis shows the publication date, and the y-axis
gives the normalized document frequency at each day.

5.3.1 Definition of Bursty Words
Definition 1: (burstiness) A word in a news stream is bursty

if it appears in a large number of documents over a finite time
window.
In practice, a bursty word exhibits high document frequency
over a finite time window, which is distinct from rare words
(low document frequency) and stop words (consistently high
document frequency).

To illustrate typical “burstiness” behavior, consider the
following time series plots of document frequency for three
words in the TDT3 dataset as shown in Figure 1: common
word “the”, rare word “acrid”, and topical word “hurricane”
that is highly related to the topic “Hurricane Mitch”. We
see that only the topical word “hurricane” has the burstiness
behavior as expected, and its bursts is related to two Hurricane
topics: Hurricane George in Oct, 1998 and Hurricane Mitch
in Nov, 1998. We thus hypothesize that, there exists three
categories of words in a text stream: common words, rare
words, and bursty words, of which only bursty words are
potentially discriminative with respect to latent topics.

5.3.2 Incorporating Bursty Words
Bursty word identification from text streams have recently
been investigated by a number of researchers [25], [44], [16],
[20]. Since our goal is to utilize bursty words and not to
develop a new bursty word identification algorithm, we simply
adopt the word trajectory energy approach proposed in our
previous work [20] to identify the bursty weight of each word.

We treat each and every word as a document frequency
trajectory, i.e., yx = [yx(1), yx(2), . . . , yx(T )], where each
element yx(t) is a measure of word feature x at time t, which
could be defined using the normalized DF score

yx(t) =
Nx(t)
N(t)

,

where Nx(t) is the number of documents containing word x
at day t, and N(t) is the number of documents for day t.

We decompose the word trajectory yx =
[yx(1), yx(2), ..., yx(T )] into a sequence of T complex
numbers [X(1), . . . , X(T )] via the discrete Fourier transform:

X(k) =
T∑

t=1

yx(t)e−
2πi
T (k−1)t, k = 1, 2, . . . , T.

TABLE 3
Bursty score examples.

word bx(T )
hurricane 9.1608
the 0.0990
acrid 0.0011

We define the word trajectory energy as the bursty weight until
time T , by using the dominant power spectrum of a given word
feature x

bx(T ) = ‖X(k)‖2, with ‖X(k)‖2 ≥ ‖X(j)‖2, ∀j 6= k.
(16)

Given the word corpus F , where µb and σb are the mean and
standard deviation of bursty weights of all words respectively,
the normalized bursty weight b′x(T ) is written as,

b′x(T ) =
1 + 2

π arctan bx(T )−µb

σb

2
.

Table 3 lists the raw bursty scores for the three sample
words: hurricane, the, and acrid. Compared to their trajec-
tories as shown in Figure 1, we see that the bursty word
hurricane has a significantly larger bursty score, while both
common (e.g.,the) and rare words (e.g.,acrid) have very low
bursty scores.

For offline topic detection, the simplest way of simulating
the discriminative features is to set a normalized bursty score
threshold. Words with normalized bursty scores above the
threshold are chosen as discriminative features. Such a thresh-
old can be empirically determined. For online topic detection,
in the early stage the bursty scores of words are not accurate.
We thus use a simple heuristic to enhance discriminative words
by incorporating the bursty score into the original cumulative
TFIDF score as TFIDF + λ × b′x(T ), where the optimal
parameter λ can be estimated via cross-validation on a subset
of the seen data.

6 EXPERIMENTS

6.1 Dataset and Data Preprocessing
We use the standard TDT3 dataset, one of the few news
datasets with both class labels and timestamps, released by the
TDT community as the testbed. The TDT3 dataset includes
51,183 multilingual news documents collected during the
three month period (92 days) of October through December
1998. We extracted all on-topic English news documents first.
Among these, 6,502 documents covering 116 topics consist of
TDT3-Single, with each document labeled with a single topic.
The other 928 on-topic English news documents are treated
as TDT3-Multiple covering 73 topics where each document
belongs to multiple topics.

We used TDT3-Single as the testbed for online topic
detection, and TDT3-Multiple as the testbed for offline topic
detection. The distribution of document count in each topic for
TDT3-Single is shown in Figure 2 (a). TDT3-Single is rather
unbalanced, wherein only 60 topics contain more than 20
documents, and 15 topics contain more than 100 documents.
In TDT3-Single, new topics are created continuously from the
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Fig. 2. Analysis of TDT3-Single.

TABLE 4
The distribution of # topics for documents in

TDT3-Multiple.

# topics 2 3 4 5 6
# documents 837 84 6 0 1

first day until the 85th day. The cumulative count of topics
over time is depicted in Figure 2 (b). In TDT3-Multiple, the
majority of the documents (90%) belong to exactly two topics
and the remaining documents are labeled with up to 6 topics.
The topic distribution is illustrated in Table 4.

After stemming, 36,521 distinct words (set F ) are retained
in TDT3-Single and TDT3-Multiple without removing stop
words. We did not remove the stop words because stop word
removal is one of the functionalities of our discriminative word
identifying method. A total of 1,473 discriminative words (set
X) are identified over the whole corpus by setting the normal-
ized bursty score threshold to 0.1; this is the discriminative
feature that will be used in our DPM model for offline topic
detection. For online topic detection, the parameter λ was
estimated to be around 1. For parameter settings of vMF and
LDA, κ = 1, α = 0.1, β = 0.01. Version 2 of the open
source indexing software Lucene was used to tokenize/index
each document into a document-word vector.

6.2 Offline Topic Detection - Soft Partition

6.2.1 Methodology

In many cases a document could belong to multiple topics.
Given a document d, we would like to generate a set of
probabilities P (cj |d) for various cj . In general, only the top
m probabilities are meaningful. We shall compare the soft
partitioning performances between vMF2, LDA and DPM.
Many methods have been proposed to decide the optimal k for
clustering [23], and we can also apply non-parametric Dirichlet
process mixture models to automatically grow k with the data.
However, this is not the focus of this paper. For simplicity, here
we only examine the external performances of soft partition
by varying m and fixing k = 73 to be the correct number
of clusters for TDT3-Multiple. In the extended version of the
paper, we tested a simple yet popular method, which produces
the optimal k by identifying a “knee” in the plot of MSE (mean
squared error) vs. k [23].

2. vMF can be viewed as a generalized version of SPK for soft-clustering.

6.2.2 Evaluation Metrics
Since a document can be assigned to all clusters, the traditional
contingency table is thus meaningless. Even if we only select
the top m (m > 1) clusters for each document, the classical
purity/entropy measures is unable to capture the ordering. For
example, a low class entropy does not necessarily indicate a
high recall, since documents originating from this class may
belong to other classes as well. We thus need to devise new
external evaluation measures.

Given a document d, we cannot find one-to-one relationship
between its clusters and category labels. Alternatively, we
consider pairwise scores given to a pair of documents. In [9],
the pairwise F-measure was defined where each document can
only belong to one cluster. Here we introduce an extension to
the metric where each document can belong to a subset of
clusters, and define the pairwise score similarly to Rand index
as follows.

Given a pair of documents di and dj , there are three types
of class/cluster membership counts:
• a: number of class/cluster containing both di and dj ;
• b: number of class/cluster containing only di or only dj ;
• c: number of class/cluster containing neither di nor dj .

Accordingly, for each document pair we have the ground truth
vector z(di, dj) =< az, bz, cz > tallying class memberships,
and the clustering result vector c(di, dj) =< ac, bc, cc >
tallying cluster memberships. We can define a general pairwise
metric by weighing different types of class/cluster membership
counts as

y(di, dj) =
wa min(az, ac) + wb min(bz, bc) + wc min(cz, cc)
max(waaz + wbbz + wccz, waac + wbbc + wccc)

,

where wa, wb, wc ≥ 0 are weights on the three types of
similarities. It is easy to see that y(di, dj) ∈ [0, 1], and y = 1
means a perfect match and y = 0 indicates the worst case. The
advantage of this general weighted metric lies in the flexibility
of setting the weights (wa,wb,wc).

In this paper, for simplicity we set wa = wb = wc = 1 and
have

y(di, dj) =
min(az, ac) + min(bz, bc) + min(cz, cc)

k
,

where az + bz + cz = ac + bc + cc = k. The pairwise score
not only considers the “right” classes/clusters where di and
dj should behave identically (a and c), but also takes those
classes/clusters where they repel each other into account (b).
If we only consider one number like a, for each cluster where
di and dj appear together, the other documents in this cluster
would have nothing to do with the ground truth labels of di and
dj . However, after collectively considering all three numbers,
if the class memberships of the other documents do not match
the ground truth labels of di and dj , putting them together in
the same cluster would reduce the value of bc (compared to bz)
and increase the value of cc (compared to cz), although az and
ac might still be the same. Therefore, the final performance
would be penalized by b and c. Hence, only putting documents
sharing the same class label into the same cluster and finding
out the correct number of clusters k could satisfy az = ac,
bz = bc and cz = cc at the same time, which leads to the



Fig. 3. Average pairwise scores across various top m soft
clusters.

optimal score y = 1. The pairwise score thus seems fairly
intuitive and reasonable, though a theoretical proof will be
nice, and is left as future work.

In our experiment, m is meaningful only at small values
because the average number of topics assigned to any doc-
ument is small (cf. Table 4). Since k = 73 is much larger
than m, the value of c would dominate the composition of k
for both ground truth and clustering results, which results in
a consistently large y. For a better comparison across various
m, we set wa = wb = 1, wc = 0 to obtain

y(di, dj) =
min(az, ac) + min(bz, bc)

max(az + bz, ac + bc)
.

Note that this new pairwise score definition still maintains the
properties discussed above as az +bz +cz = ac +bc +cc = k.

For the document corpus, we define the overall measure as
the average pairwise score over all pairs of documents as

y(D) =
2

N(N − 1)

N−1∑

i=1

N∑

j=i+1

y(di, dj).

6.2.3 Result Analysis
The running time of all models except LDA grows supra-
linearly with k. Since the time efficiency of offline topic
detection is not as crucial as online topic detection, the details
are omitted. Figure 3 illustrates the average pairwise scores
by varying m from 1 to 6 (the maximum possible number of
topics assigned to one document). All results were averaged
over 10 runs. To evaluate the bursty feature selection aspect of
DPM separately, we created a DPM version based on all word
features (set F ) and denoted it by DPM (F). The DPM based
only on selected bursty word features is denoted by DPM (X).
Not surprisingly, all models achieved the best performance at
m = 2 since about 90% of the documents have 2 assigned
topics according to Table 4. For m > 2, the performance
drops gradually, as expected.

Overall, LDA yielded the worst performance. For example,
it has the lowest average pairwise score of 0.84 at m = 2 (the
most important position; also the optimal value after using
the internal similarity to automatically determine m) while
every other models scored more than 0.9. It is not hard to
understand why DPM and vMF showed vast improvements
over LDA on soft clustering; since we evaluate the soft clus-
tering performance based on the multiple categorical labels of

documents, not words. On average, vMF slightly outperformed
DPM (F) (0.92 versus 0.91 at m = 2). This is not surprising
because vMF has been shown to be an effective document-
level soft clustering algorithm in the past [8]. After working
on the discriminative features, DPM (X) in turn outperformed
vMF (0.94 versus 0.92 at m = 2). We also tested vMF on
the same set of discriminative features of DPM (X), with
slightly worse results (i.e., 0.9 at m = 2). This means that
discriminative features are more suitable for discriminative
probabilistic models like DPM. For a generative model like
vMF, due to its generative smoothing process, the utility
of discriminative features is attenuated. We also note that
while using bursty words helped, DPM (X) did not enjoy a
remarkable improvement, probably because bursty words goes
only so far as universal discriminative words. We believe that a
more systematic selection of discriminative features based on
class labels could further improve soft clustering performance.

Moreover, from Figure 3 we observe that as m increases,
DPM (X) starts to break away from the pack including DPM
(F). This is interesting because with increasing m, the quality
of the late topic assignments (remaining clusters are equally far
away for high m) tend to deteriorate quickly. It is precisely for
these late topic assignments that bursty words start to play an
important role; related documents are pulled closer together by
the common bursty words in the farther (high m) clusters [19].

6.3 Online Topic Detection - Point Assignment

6.3.1 Methodology
Compared to offline topic detection, online topic detection is
a more challenging problem. Our goal here is to devise an
efficient and effective algorithm for online topic detection.
We shall adopt the non-probabilistic model, Single-Link-All,
as our topic-detection strategy [4]. The major problem of
deploying Single-Link-All in practice [5] is that the size of
detected cluster is frequently either too large or too small. In
other words, cluster quality is typically very poor. Allan et
al. [5] suggested two possible remedies: hierarchical cluster-
ing and increasing the threshold ε. Both solutions could break
large clusters into pieces. However, to avoid producing too
many small clusters, additional strategies should be considered
simultaneously.

We focus on the second remedy since we deal only with
a flat topic structure in this paper. Increasing the threshold
ε will increase the difficulty of inserting a new document
into an existing cluster. Accordingly, it is easier to create new
clusters, as well as false alarms. Our target is then very clear:
reduce the false alarms. Allan et al. [5] further considered
two engineering solutions for reducing the false alarms. First,
the clusters have “age” so that it is difficult to add new
documents to an “aged” cluster. Second, each existing cluster
is represented by its averaged centroid (not corresponding to
any real document) rather than the single most representative
document. Accordingly, we define two more baseline models,
Single-Link and Incre-Mean, for online topic detection. In
Single-Link, every new incoming document is compared to
documents published within the last 7 days. We simply used
the sliding window of 7-day because most of topics in the



real news don’t last for more than one week. In Incre-mean,
each cluster is represented by its centroid, which is continually
updated with new member documents. Clusters that have not
been updated for a certain time period, i.e., 7 days, will be
effectively discarded and archived, and not considered during
new topic detection. Every new document is thus compared to
the centroid of a valid existing cluster.

All three baseline models incrementally increase the number
of clusters k, but none of them perform any global opti-
mizations at any time. For practical online topic detection,
some modifications are necessary. First, global clustering is
periodically conducted on the latest set of documents. Second,
the number of clusters k has to be reduced to remove false
alarms. These modifications are summarized in Algorithm 1,
which will be used for the different online topic detection
models.

Algorithm 1 (Online Topic Detection) (D, ε)
Input: News stream D, and threshold ε;
Output: detected (new) clusters on the fly;

1: create the first topic (k = 1, ck ← d1) and announce it;
2: repeat
3: if a new day begins then
4: remove those obsolete clusters which have not been updated

for the past 7 days (reduce k at the same time);
5: run k-component topic detection model on the past 7-day

data: a divide and conquer strategy is used to optimize k
by comparing the internal similarity of clustering results;

6: end if
7: Compute the similarity of new document d with the k existing

cluster centroids (or, compute the posterior probabilities of k
existing topics given d);

8: if the largest similarity is greater than ε then
9: assign d to the nearest cluster, and update this cluster’s

parameters if allowed by model;
10: else
11: create a new topic (k = k + 1, ck ← d) and announce it;
12: end if
13: until no new document comes.

Algorithm 1 is indeed an extension of Single-Link and
Incre-mean, with two major changes: 1) a global clustering
is conducted every day; 2) a simple “divide and conquer”
strategy is adopted to reduce the number of clusters k.

6.3.2 Evaluation Metrics
The performance of online topic detection largely relies on
the threshold ε. We adopt the Detection Error Tradeoff (DET)
curve [30] which has been widely used in TDT [26] to measure
the miss and false alarm values at each threshold. Tracing the
DET curve, TDT defines the official evaluation measure as a
cost function, which is a weighted combination of miss and
false alarm values, as follows [5],

Cost = CmissP (miss)P (target) + CfaP (fa)P (offtarget),
(17)

where P (target) = 1−P (offtarget) is the prior probability
that a document will be a new topic (0.02, derived from the
TDT training data), Cmiss = 10 and Cfa = 1 are user-
specified penalty factors, and P (miss) and P (fa) are the
empirical miss and false alarm probabilities by comparing
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Fig. 4. Online topic detection time (log-scaled).

clusters announced by Algorithm 1 with the ground truth. The
cost function is further normalized because the system would
get a default score of 0.2 if it fails to detect any new topic, and
a score of 0.98 if it accepts each and every new document as
the new topic. The final cost is divided by 0.2, indicating the
system with a detection cost of 1.0 is no better than a system
that does not detect any new topic.

The above TDT evaluation metric actually still allows for
a large proportion of misses, despite it already penalizing
misses more than false alarms. We have discussed before that
increasing the threshold ε could help remove those overly large
clusters. In fact, increasing the threshold ε could also reduce
the miss rate, at the cost of producing more false alarms. In
practice, we are more interested in whether topic detection
models could reduce the false alarms under a very low miss
rate, i.e., P (miss) = 0.

6.3.3 Result Analysis
We only use TDT3-Single as the testbed for online topic
detection as it is neither straightforward nor meaningful to
evaluate the miss/false alarm for a document with multiple
topic labels. Figure 4 shows the running time of the various
online topic detection models.

As the threshold ε increases, the non-probabilistic models
tend to be constant because: 1) all documents are detected as
new topics (false alarm rate is maximized) after a certain value
of ε, i.e., for Single-Link-All; 2) the number of documents
used for comparison maintains stable after introducing the
sliding window (size of 7 days), i.e., for Single-Link and Incre-
mean. Single-Link and Incre-mean are the fastest methods
among all models because no iterations are involved and
the fewest number of documents (within the sliding window)
need to be compared. On the contrary, the running time of
probabilistic models grows significantly as the number of
clusters k increases largely (induced by the increment of
ε), except for vMF which converges so quickly that it is
comparable to non-probabilistic models. More specifically, the
online running time of LDA increases the most dramatically.
Without feature selection for online topic detection, DPM
also needs considerable time. Its discrete probabilistic topic
assignment required a bit more time compared to the point
topic assignment adopted by SPK. However, considering that
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TABLE 5
Minimal DET cost values of all online models.

Single-Link-All Single-Link Incre-mean
cost 0.4326 0.4133 0.4702

SPK vMF LDA DPM
cost 0.7680 0.7069 0.8428 0.4008

a reasonably small value of ε is often selected in practice, both
DPM and SPK are even faster than the traditional Single-Link-
All method. Therefore, we conclude that our proposed DPM
probabilistic model combined with Algorithm 1 to be highly
efficient for online topic detection.

Figure 5 illustrates the log-scaled DET curve for all models
on TDT3-Single. The DET curves in Figure 5 are a bit
complicated. In the upper left region, Single-Link-All and
Incre-mean have the best miss/false alarm balance. Afterwards,
DPM and Single-Link lead the pack respectively. Finally, DPM
has the lowest false alarms under very low miss rates. That
is to say, different models have their own bias/edges towards
different DET regions. For example, Incre-mean works well
under a small threshold ε (very few false alarms) by producing
the largest number of correct topics, and DPM has the best
performance under a large threshold ε (very low miss rate),
where the fewest number of false alarms are produced. The
other three models, SPK, vMF and LDA, always perform not
well along the whole DET curve.

Table 5 lists the minimal DET cost values of all seven
models. Not surprisingly, DPM achieved the minimal3 cost
value of 0.4008, followed by Single-Link which achieved a
close second at 0.4133. Comparing Single-Link with Single-
Link-All, we see that the sliding window did not increase
the cost (even a slight improvement), yet contributed a lot in
speeding up the probabilistic models (largely reduced the num-
ber of documents on clustering). Incre-mean did not improve
the performance, which is consistent to the early finding that
representing clusters of documents by their centroid was not
effective [4]. This further verifies our hypothesis that a global
clustering process is necessary from time to time. Although

3. The best TDT system achieves about a 0.3 cost value, with a 28% miss
rate and a 0.3% false alarm rate on average [5].

TABLE 6
Compare false alarms under the zero miss rate.

Single-Link-All Single-Link Incre-mean
false alarm (%) 63.97 49.83 62.72

SPK vMF LDA DPM
false alarm (%) 85.08 61.42 94.31 24.15

DPM has not improved a lot on the cost value, it achieved a
much smaller false alarm rate (less than half of others) under
the zero miss rate, as shown in Table 6.

All in all, Algorithm 1 can significantly reduce false alarms
by merging small clusters, and periodic global clustering
based on flat topic detection models can enhance the overall
clustering for online topic detection. However, partially due to
the simplicity of Algorithm 1, not all topic detection models
could achieve the goal. For example, if we only consider
the cumulative TFIDF without paying attention to the DF or
the bursty properties of words/topics, SPK and vMF cannot
cluster documents well on-the-fly, which will often lead to
huge clusters. The LDA topic model, on the other hand,
performed poorly for online topic detection since it was
primarily designed for offline word clustering.

7 CONCLUSIONS

In this paper we studied a set of topic detection models on both
offline and online topic detection problems for news streams.
We first investigated the traditional non-probabilistic models,
along with their limitations on topic detection, i.e, no theoret-
ical explanation, documents cannot belong to multiple topics,
and it is hard to tune the parameters of online topic detection,
etc. We then proposed a discriminative model (DPM) for topic
detection in news streams, which is a simple and effective
probabilistic model without the assumptions made by more
complicated generative models like vMF mixture and LDA.
We show the equivalence of DPM to the clustering process
of a variation of TFIDF under the condition that only dis-
criminative words are used. A simple heuristic of utilizing the
bursty phenomenon of words is used to extract discriminative
features. DPM in fact provides a theoretical explanation to the
classical non-probabilistic models for topic detection. More-
over, we also benchmarked DPM soft-clustering performance
on offline topic detection. The experimental results show that
DPM is surprisingly good in assigning multiple topics to a
document (offline topic detection), and reducing the overall
false alarm rate (online topic detection). Our results thus lead
to the main conclusion of this paper. Sophisticated models
like vMF or LDA may shine when there are enough training
data for accurate parameter estimation, but for the problem of
topic detection, a simple and mathematically elegant model
like DPM can be surprisingly effective and practical (fast). As
future work, we will explore using non-parametric Dirichlet
process mixture models from topic evolution. We will also
consider adopting some supervised dimensionality reduction
algorithm like discriminative LDA [27] for extracting discrim-
inative features for our online topic detection model.
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