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Abstract

Cluster ensembles provide a framework for combining mul-

tiple base clusterings of a dataset to generate a stable and

robust consensus clustering. There are important variants of

the basic cluster ensemble problem, notably including cluster

ensembles with missing values, as well as row-distributed or

column-distributed cluster ensembles. Existing cluster en-

semble algorithms are applicable only to a small subset of

these variants. In this paper, we propose Bayesian Cluster

Ensembles (BCE), which is a mixed-membership model for

learning cluster ensembles, and is applicable to all the pri-

mary variants of the problem. We propose two methods,

respectively based on variational approximation and Gibbs

sampling, for learning a Bayesian cluster ensemble. We com-

pare BCE extensively with several other cluster ensemble

algorithms, and demonstrate that BCE is not only versatile

in terms of its applicability, but also outperforms the other

algorithms in terms of stability and accuracy.

1 Introduction

Cluster ensembles provide a framework for combining
multiple base clusterings of a dataset into a single con-
solidated clustering without accessing the features of the
data or base clustering algorithms. Compared to indi-
vidual clustering algorithms, cluster ensembles generate
more robust and stable clustering results [21]. In prin-
ciple, cluster ensembles can leverage distributed com-
puting by calculating the base clusterings in an entirely
distributed manner [20]. In addition, since cluster en-
sembles only need access to the base clustering results
instead of the data itself, they provide a convenient ap-
proach to privacy preservation and knowledge reuse [20].
Such desirable aspects have made the study of cluster
ensembles increasingly important in the context of data
mining.

In addition to generating a consensus clustering
from a complete set of base clusterings, it is highly
desirable for cluster ensemble algorithms to have sev-
eral additional properties suitable for real life applica-
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tions. First, there may be missing values in the base
clusterings. For example, in a customer segmentation
application, while there will be legacy clusterings on
old customers, there will be no result on the new cus-
tomers. Cluster ensemble algorithms should be able to
build consensus clusters with such missing information
on base clusterings. Second, there may be restrictions
on bringing all the base clusterings to one place to run
the cluster ensemble algorithm. Such restrictions may
be due to the fact that the base clusterings are with
different organizations and considered as private infor-
mation so that they cannot be shared. Cluster ensemble
algorithms should be able to work with such “column-
distributed” base clusterings. Third, the data objects
themselves may be distributed over multiple locations;
while it is possible to get a base clustering across the
entire dataset by message passing, base clusterings for
different parts of data will be in different locations, and
there may be restrictions on bringing them together at
one place. For example, for a customer segmentation
application, different vendors may have different sub-
sets of customers, and a base clustering on all the cus-
tomers can be performed using privacy preserving clus-
tering algorithms; however, the cluster assignments of
the customer subsets for each vendor is private informa-
tion which they will be unwilling to share directly for
the purposes of forming a consensus clustering. Again,
it will be desirable to have cluster ensemble algorithms
handle such “row-distributed” base clusterings.

Current cluster ensemble algorithms, such as
the cluster-based similarity partitioning algorithm
(CSPA) [20], hypergraph partitioning algorithm
(HGPA) [20], or k-means based algorithms [14] are
able to accomplish one or two of the above variants of
the problem. However, none of them was designed to
address all of the variants. In principle, the recently
proposed mixture modeling approach to learning cluster
ensembles [21] is applicable to the variants, although
the details have not been reported in the literature.
In this paper, we propose Bayesian cluster ensembles
(BCE), which can solve the basic cluster ensemble
approach using a Bayesian approach, i.e., by effectively
maintaining a distribution over all possible consensus
clusterings. It also seamlessly generalizes to all the
important variants discussed above. Similar to the mix-



ture modeling approach, BCE treats all base clustering
results for each object as a feature vector with discrete
feature values, and learns a mixed-membership model
from such a feature representation. Extensive empirical
evaluation demonstrates that BCE is not only versatile
in terms of its applicability, it mostly outperforms the
other cluster ensemble algorithms in terms of stability
and accuracy.

The rest of the paper is organized as follows. In
Section 2, we give a problem definition. In section
3, we introduce the related work. The model for
Bayesian cluster ensemble is given in Section 4 and two
inference algorithms—variational inference and Gibbs
sampling for BCE—are provided in section 5 and 6
respectively. We report experimental results in section
7, and conclude in section 8.

2 Problem Formulation

Given N objects O = {oi, [i]
N
1 } ([i]N1 ≡ i = 1 · · ·N) and

M base clustering algorithms C = {cj , [j]
M
1 }, we get M

base clusterings of the objects, one from each algorithm.
The only requirement from a base clustering algorithm
is that it generates a cluster assignment or id for each
of the N objects {oi, [i]

N
1 }. The number of clusters

generated by different base clustering algorithms may be
different. We denote the number of clusters generated
from cj by kj , so that the cluster ids assigned by cj

range from 1 to kj . If λij ∈ {1, . . . , kj} denotes the
cluster id assigned to oi by cj , then the base clustering
algorithm cj gives a clustering of the entire dataset,
given by

λj = {λij , [i]
N
1 } = {cj(oi), [i]

N
1 } .

The results from M base clustering algorithms can be
stacked together to form an (N × M) matrix B, whose
jth column is λj , as shown in Figure 1(a). The matrix
can be viewed from another perspective: Each row xi

of the matrix, i.e., all base clustering results for oi,
gives a new feature vector representation of the object
oi (Figure 1(b)). In particular,

xi = {xij , [j]
M
1 } = {cj(oi), [j]

M
1 } .

Given the base clustering matrix B, the cluster en-
semble problem is to combine the M base clustering
results for N objects to generate a consensus cluster-
ing, which should be more accurate, robust, and stable
than the individual base clusterings. The traditional ap-
proach to process the base clustering results is “column-
wise” (Figure 1(a)), i.e., we consider B as a set of M
columns of base clustering results {λj , [j]

M
1 }, and we try

to find out the consensus clustering λ
∗. The disadvan-

tage of the “column-wise” perspective is that it needs

to find out the correspondence between different base
clusters generated by different algorithms. The cluster
correspondence problem is hard to solve efficiently, and
the complexity increases especially when different base
clustering algorithms generate different number of clus-
ters [21].

A simpler approach to cluster ensemble problem,
which is what we use in this paper, is to read the
matrix B in a “row-wise” (Figure 1(b)) way. All base
clustering results for an object oi can be considered
as a feature vector xi with discrete feature values [21],
and we consider base clustering matrix B as a set of N
rows of M -dimensional feature vectors {xi, [i]

N
1 }. From

this perspective, the cluster ensemble problem becomes
the one of finding a clustering λ

∗ for feature vectors
{xi, [i]

N
1 }, where λ

∗ is a consensus clustering over all
base clusterings. Further, by considering the cluster
ensemble problem from this perspective, we naturally
avoid cluster correspondence problem.

Figure 1: Two ways of processing base clustering results
for cluster ensemble.

While the basic cluster ensemble framework as-
sumes all base clustering results for all objects are avail-
able in one place to perform the analysis, real life ap-
plications often need variants of the basic setting. In
this paper, we discuss three important variants: missing
value cluster ensembles, row-distributed and column-
distributed cluster ensembles.

2.1 Missing value cluster ensembles. When sev-
eral base clustering results are missing for several ob-
jects, we have a missing value cluster ensemble problem.
Such a problem appears due to various reasons. For ex-
ample, if there are new objects added to the dataset
after running clustering algorithm cj , these new objects
will not have base clustering results corresponding to
cj . In missing value cluster ensemble, instead of dealing
with a full base clustering matrix B, we are dealing with
a matrix with missing entries.

2.2 Row-distributed cluster ensembles. For row-
distributed cluster ensembles, base clustering results
of different objects (rows) are at different locations.
The corresponding real life scenario is that different



subsets of the original dataset are owned by different
organizations, or cannot be put together in one place
due to size, communication, or privacy constraints.
While distributed base clustering algorithms, such as
distributed privacy preserving k-means [10], can be run
on the subsets to generate base clustering results, due
to the restrictions on sharing, the results on different
subsets cannot be transmitted to a central location for
analysis. Meanwhile, combining the results on different
subsets helps to generate a more reasonable ensemble
clustering. Therefore, it is desirable to learn a consensus
clustering in a row-distributed manner.

2.3 Column-distributed cluster ensemble. For
column-distributed cluster ensemble, different base clus-
tering results of all objects are at different locations.
The corresponding real life scenario is that separate or-
ganizations have different base clusterings on the same
set of objects, e.g., different e-commerce vendors hav-
ing customer segmentations on the same customer base.
The base clusterings cannot be shared with others due
to privacy concerns, but each organization has an incen-
tive to get a more robust consensus clustering. In such
a case, the cluster ensemble problem have to be solved
in a column-distributed way.

3 Related Work

In this section, we give a brief overview of cluster
ensemble algorithms. There are three main classes of
algorithms: graph-based models, matrix-based models,
and probabilistic models.

3.1 Graph-based models. The most popular al-
gorithms for cluster ensemble are graph-based mod-
els [20, 7, 1, 6].The main idea of this class of algorithms
is to convert the results of base clusterings to a hyper-
graph or a graph and then use graph partitioning algo-
rithms to obtain ensemble clusters.

In particular, Strehl et al. [20] presents three graph-
based cluster ensemble algorithms. The cluster-based
similarity partitioning algorithm (CSPA) [20] induces
a graph from a co-association matrix, and the graph
is partitioned by the METIS algorithm [12] to obtain
final clusters. In addition, Hypergraph partitioning al-
gorithm (HGPA) [20] represents each cluster and cor-
responding objects by a hyperedge and nodes respec-
tively, and then minimal cut algorithm HMETIS [11]
is applied for partitioning. Further, hyperedge collaps-
ing operations are used in a meta-clustering algorithm
(MCLA) [20] which determines a soft cluster member-
ship for each object.

Fern et al. [7] propose a bipartite graph partitioning
algorithm, which solves cluster ensemble by reducing

it to a graph partitioning problem and introduces a
new reduction method that constructs a bipartite graph
from the base clusterings. The graph models consider
both objects and clusters of the ensemble as vertices
simultaneously.

Al-Razgan et al. [1] propose a weighted bipartite
partitioning algorithm (WBPA) which maps the prob-
lem of finding a consensus partition to bipartite graph
partitioning.

3.2 Matrix-based models. The second class of al-
gorithms are matrix-based models [8, 15, 13, 16]. The
main idea of this category is converting base clustering
matrix into another matrix such as co-association ma-
trix, consensus matrix or nonnegative matrix, and using
matrix operations to get the results of cluster ensemble.

Fred et al. [8] map various base clustering results
to a co-association matrix, where each entry represents
the strength of association between objects, based on
the co-occurrence of two objects in a same cluster. A
voting algorithm is applied to the co-association matrix
to obtain the final result. Clusters are formed from the
co-association matrix by collecting the objects whose
co-association values exceed the threshold.

Kellam et al. [13] combine results of base cluster-
ings through a co-association matrix, which is an agree-
ment matrix with each cell containing the number of
agreements among the base clustering methods. The co-
association matrix is used to find the clusters with the
highest value of support based on object co-occurrences.
As a result, only a set of so-called “robust clusters” are
produced.

Monti et al. [16] define a consensus matrix for
representing and quantifying the agreement among the
results of base clusterings. For each pair of objects, the
matrix stores the proportion of clustering runs in which
two objects are clustered together.

In the paper [15], Jordan et al. illustrate that
the problem of cluster ensemble can be formulated un-
der the framework of nonnegative matrix factorization
(NMF), which refers to the problem of factorizing a
given nonnegative data matrix X into two matrix fac-
tors, i.e., X ≈ AB, under the constraint of A and B to
be nonnegative matrices.

3.3 Probabilistic models. The third class of clus-
ter ensemble algorithms are based on probabilistic mod-
els [21]. The algorithms take advantage of statistic prop-
erties of base clusterings results to achieve a consensus
clustering. Topchy et al. [21] consider a representation
of multiple clusterings as a set of new attributes char-
acterizing the data items, and a mixture model offers
a probabilistic model of consensus using a finite mix-



ture of multinomial distributions in the space of base
clusterings. A consensus result is found as a solution to
the corresponding maximum likelihood problem using
expectation maximization algorithm.

4 Bayesian Cluster Ensembles

In this section, we propose a novel Bayesian Cluster
Ensemble (BCE) model. The main idea is as follows:
Given a base clustering matrix B as a group of feature
vectors {xi, [i]

N
1 }, we assume there exists a Bayesian

graphical model generating B. In particular, we as-
sume that each object xi has an underlying mixed-
membership to different consensus clusters. Let θi de-
note the latent mixed-membership vector for xi; if there
are k consensus clusters, θi is a discrete distribution over
the k clusters. From the generative model perspective,
we assume that θi is sampled from a Dirichlet distribu-
tion, with parameter α. Further, each latent consensus
cluster h, [h]k1 , has a discrete distribution βhj over the
cluster ids {1, . . . , kj} for base clustering cj . Thus, if an
object truly belongs to consensus cluster h for cj , then
its cluster id xij = r ∈ {1, . . . , kj} according to base
clustering cj will be determined by the discrete probabil-
ity distribution βhj(r) = p(xij |βhj), where βhj(r) ≥ 0,
∑kj

r=1 βhj(r) = 1. The full generative process for each
xi is assumed to be as follows:

1. Choose θi ∼ Dirichlet(α).

2. For the jth base clustering:

(a) Choose a component zij = h ∼ discrete(θi);

(b) Choose the base clustering result xij ∼
discrete(βhj).

Thus, the model contains the model parameters (α, β),
where β = {βhj , [h]k1 , [j]M1 }, the latent variables (θi, zij)
and the actual observations {xij , [i]

N
1 , [j]M1 }. BCE can

be viewed as a special case of mixed-membership naive
Bayes models [2, 19] by choosing a discrete distribution
as the generative model. Further, BCE is closely related
to LDA [4], although the models are applicable to
different types of data.

Given the model parameters α and β, the joint
distribution of latent and observed variables {xi, zi,θi}
is given by:

p(xi,θi, zi|α, β) = p(θi|α)
M
∏

j=1,∃xij

p(zij = h|θi)p(xij |βhj) ,

where ∃xij denotes that there exists a jth base clustering
result for xi, so the product is only over the existing
base clustering results. By integrating over the latent
variables {zi,θi}, the marginal probability for each xi

is given by:

p(xi|α, β)

=

∫

θi

p(θi|α)
M
∏

j=1,∃xij

∑

h

p(zij = h|θi)p(xij |βhj)dθi .

(4.1)

5 Variational Inference for BCE

We have assumed a generative process for the base clus-
tering matrix B = {xi, [i]

N
1 } in Section 4. Given the

observable matrix B, our final goal is to estimate the
mixed-membership {θi, [i]

N
1 } of each object to the con-

sensus clusters. Since the model parameters α and β are
unknown, we have to also estimate the model parame-
ters such that the log-likelihood of observing the base
clustering matrix B is maximized. Expectation max-
imization (EM) algorithms are typically used for such
parameter estimation problems by alternating between
calculating the posterior over latent variables and up-
dating the model parameters until convergence. How-
ever, the posterior distribution

(5.2) p(θi, zi|xi, α, β) =
p(θi, zi,xi|α, β)

p(xi|α, β)
,

cannot be calculated in closed form since the denomi-
nator (partition function) p(xi) as an expansion of (4.1)
is given by

p(xi|α, β)

=

∫

Γ(
∑

h αh)
∏

h Γ(αh)

(

k
∏

h=1

θ
(αh−1)
ih

)

M
∏

j=1

k
∑

h=1

θih

kj
∏

r=1

βhj(r)
1(r|i,j)dθi ,

where 1(r|i, j) is an indicator taking value 1 if the
jth base clustering assigns oi to base cluster r and 0
otherwise, βhj(r) is the rth component of the discrete
distribution βhj for the hth consensus cluster and the
jth base clustering. The coupling between θ and β
in the summation over the latent variable z makes the
computation intractable [4]. There are two main classes
of approximation algorithms to address such problems:
one is variational inference, and the other is Gibbs
sampling. In this section, we present the variational
inference method, and in the next section, a Gibbs
sampling method is presented.

5.1 Variational inference. Since it is intractable to
calculate the true posterior (5.2) directly, in variational
inference, we introduce a family of distributions as
an approximation of the posterior distribution over
latent variables to get a tractable lower bound of
the log-likelihood log(p(xi|α, β)). We maximize this
lower bound to update the parameter estimation. In
particular, following [2, 4], we introduce a family of



variational distributions as

(5.3) q(θi, zi|γi, φi) = q(θi|γi)

M
∏

j=1

q(zij |φij)

as an approximation of p(θi, zi|α, β,xi) in (5.2), where
γi is a Dirichlet distribution parameter, and φi =
{φij , [j]

M
1 } are discrete distribution parameters. We

introduce such an approximating distribution for each
xi, [i]N1 . Now, using Jensen’s inequality [17], we can
obtain a lower bound L(α, β;φi, γi) on log p(xi|α, β)
given by:

L(α, β;φi, γi)=Eq[log p(θi, zi|α, β)]+H(q(θi, zi|γi, φi)),

where H(·) denotes the Shannon entropy. Assuming
each row xi of the matrix B to be statistically indepen-
dent given the parameters (α, β), the log-likelihood of
observing the matrix B is simply
(5.4)

log p(B|α, β) =
N
∑

i=1

log p(xi|α, β) ≥
N
∑

i=1

L(α, β;φi, γi) .

For a fixed set of model parameters (α, β), maxi-
mizing the lower bound with respect to the free varia-
tional parameters (γi, φi) for each xi, [i]

N
1 gives us the

best lower possible bound from this family of approxi-
mations. A direct calculation leads to the following set
of update equations for the variational maximization:

φijh ∝ exp
(

Ψ(γih) − Ψ(
∑

h′

γih′)(5.5)

+

kj
∑

r=1

1(r|i, j) log βhj(r)
)

γih = αh +
M
∑

j=1

φijh ,(5.6)

where [i]N1 , [j]M1 , [h]k1 , φijh is the hth component of the
variational discrete distribution φij for zij , and γih is the
hth component of the variational Dirichlet distribution
γi for θi.

For a given set of variational parameters
(γi, φi), [i]

N
1 , the lower bound (5.4) is maximized

by the point estimate for β:

(5.7) βhj(r) ∝
N
∑

i=1

φijh1(r|i, j) ,

where [h]k1 , [j]M1 , [r]
kj

1 The Dirichlet parameter α can be
estimated via Newton-Raphson updates as in LDA [4].
In particular, the update equation for αh is given by

(5.8) α′
h = αh − gh − c

lh
,

with

gh = N

(

Ψ

(

k
∑

h′=1

αh′

)

− Ψ(αh)

)

+

N
∑

i=1

(

Ψ(γih)−Ψ

(

k
∑

h=1

γih

))

lh = −NΨ′(αh)

c =

∑k
h=1 gh/lh

v−1 +
∑k

h=1 l−1
h

v = NΨ′(

k
∑

h=1

αh) ,

where Ψ is the digamma function, i.e., the first deriva-
tive of the log Gamma function.

5.2 EM algorithms. Given the updating equations
for variational parameters and model parameters, we
can use a variational EM algorithm to find the best-fit
model (α∗, β∗). Starting from an initial guess (α0, β0),
the EM algorithm alternates between two steps until
convergence:

1. E-Step: Given (α(t−1), β(t−1)), for each xi, find the
best variational parameters:

(φ
(t)
i ,γ

(t)
i ) = argmax

(φi,γi)

L(α(t), β(t);φi, γi) .

L(α, β, φ
(t)
i , γ

(t)
i ) serves as a lower bound function

to log p(xi|α, β).

2. M-Step: Maximize the aggregate lower bound with
respect to (α, β) to obtain an improved parameter
estimate:

(α(t), β(t)) = argmax
(α,β)

N
∑

i=1

L(α, β;φ
(t)
i , γ

(t)
i ) .

After (t − 1) iterations, the value of the lower bound

function is L(α(t−1), β(t−1), φ
(t−1)
i , γ

(t−1)
i ). In the tth

iteration,

N
∑

i=1

L(α(t−1), β(t−1), φ
(t−1)
i , γ

(t−1)
i )

≤
N
∑

i=1

L(α(t−1), β(t−1), φ
(t)
i , γ

(t)
i )(5.9)

≤
N
∑

i=1

L(α(t), β(t), φ
(t)
i , γ

(t)
i ) .(5.10)

The first inequality holds because in the E-step, (5.9) is
the maximum of L(α(t−1), β(t−1), φi, γi), and the second
inequality holds because in the M-step, (5.10) is the

maximum of L(α, β, φ
(t)
i , γ

(t)
i ). Therefore, the objective

function is non-decreasing until convergence [17].



5.2.1 Row-distributed EM algorithm. In row-
distributed cluster ensemble, the object set O is par-
titioned into P parts {O(1), O(2), ..., O(P )} and differ-
ent parts are assumed to be at different locations. We
further assume that a set of distributed base cluster-
ing algorithms have been used to obtain the base clus-
tering results {B(1), B(2), ...B(P )}. Now, we outline a
row-distributed variant of the variational inference al-
gorithm. At each iteration t, given the initialization of
model parameters (α(t−1), β(t−1)), row-distributed vari-
ational EM for BCE proceeds as follows:

1. For each partition {B(p), [p]P1 }, we obtain varia-
tional parameters (φ(p), γ(p)) following (5.5) and
(5.6), where φ(p) = {φi|xi ∈ B(p)} and γ(p) =
{γi|xi ∈ B(p)}.

2. To update β following (5.7), we can write the right
term of (5.7) as
∑

xi∈B(1)

φijh1(r|i, j) + ... +
∑

xi∈B(P )

φijh1(r|i, j) .

Each part in the summation corresponds to one
partition of B. To update βhj(r), first, ∆(p) =
∑

xi∈B(p)
φijh1(r|i, j) is calculated for each Bp.

Second, for each B(p)(p∈ [2, P ]), we take
∑p−1

q=1 ∆(q)

from B(p−1), generate
∑p

q=1 ∆(q) by adding ∆(p)

to the summation, and pass it to B(p+1). Finally,
after passing through all partitions, we have the
summation as the right term of (5.7) to update
βhj(r) after normalization.

3. Updating α is a little tricky since it does not have a
closed form solution. However, we notice that the
update equation (5.8) for α′

h only depends on two
variables: αh and {γi, [i]

N
1 }. αh can be obtain from

the last iteration of Newton-Raphson algorithm.
Regarding γ, we only need to know

∑N
i=1 Ψ(γih)

and
∑N

i=1 Ψ(
∑

h γih) for g in (5.8). We use a same
strategy as for updating β: First we calculate Λp =
∑

xi∈B(p)
Ψ(γih) and Ωp =

∑

xi∈B(p)
Ψ(
∑

h γih) on

each partition. Second, for each B(p)(p∈ [2, P ]), we

take
∑p−1

q=1 Λq and
∑p−1

q=1 Ωq from B(p−1), generate
∑p

q=1 Λq and
∑p

q=1 Ωq by adding Λp and Ωp to the
summations respectively, and pass them to B(p+1).
Finally, after going through all partitions, we have
the result for

∑N
i=1(Ψ(γih)−Ψ(

∑

h γih)), so we can
update α′

h following (5.8). For each iteration of
Newton-Raphson algorithm, we need to pass the
summations through all partitions once.

By the end of the tth iteration, we have the updated
model parameters (α(t), β(t)), which are used as the ini-
tialization for the (t + 1)th iteration. The algorithm is

guaranteed to converge since it is essentially the same
with the EM for the general case, except that it works
in a row-distributed way. By running EM distributedly,
neither {O(p), [p]P1 } nor {B(p), [p]P1 } is passed around
different individuals, but only the intermediate summa-
tions; in this sense, we achieve privacy preservation.

As we have noticed, updating α is very expensive
because it needs to pass the summations over all parti-
tions for each Newton-Raphson iteration, which is prac-
tically infeasible for a dataset with a large number of
partitions. Therefore, we next give a heuristic row-
distributed EM, which does not have a theoretical guar-
antee for convergence, but worked well in practice in our
experiments.

At each iteration t, given the initialization of model

parameters (α
(t−1)
(1) , β

(t−1)
(1) ), heuristic row-distributed

variational EM for BCE proceeds as follows:

1. For the first partition B(1), given (α
(t−1)
(1) , β

(t−1)
(1) ),

we obtain variational parameters (φ(1), γ(1)) follow-
ing (5.5) and (5.6). Also, we update (α(1), β(1))

to get (α
(t)
(1), β

(t)
(1)) following (5.8) and (5.7) respec-

tively.

2. For the pth partition B(p), we initialize (α(p), β(p))

with (α
(t)
(p−1), β

(t)
(p−1)) and obtain (φ(p), γ(p)) follow-

ing (5.5) and (5.6). We update (α
(t)
(p), β

(t)
(p)) and pass

them to the (p + 1)th partition.

After going over all partitions, we are done with the tth

iteration; the iterations are repeated until convergence.

The initialization for (α
(1)
(1), β

(1)
(1)) in the first iteration

could be picked by random or by using some heuristics,
and the initializations for (α(1), β(1)) in the tth iteration

are from (α
(t−1)
(P ) , β

(t−1)
(P ) ). The iterations are run till

the net change in the lower bound value is below a
threshold, or when a pre-fixed number of iterations
reached.

5.2.2 Column-distributed EM algorithm. For
column-distributed cluster ensemble, we design a client-
server style algorithm, where each client maintains one
base clustering, and the server gathers partial results
from the clients and performs further processing. While
we assume that there are M different clients, one can
always work with a smaller number of clients by split-
ting the columns among the available clients. Given the
initialization for model parameters (α(t), β(t)), where

(α
(t)
j , β

(t)
j ) is made available to the jth client, the

column-distributed cluster ensemble at iteration t pro-
ceeds as follows:

1. E-step jth client: Given xij and β
(t)
j for [i]N1 , the jth



client calculates
∑kj

r=1 1(r|i, j) log β
(t)
hj (r) for [i]N1 ,

[h]N1 and passes the results to the E-step server.

2. E-step server: Given
∑kj

r=1 1(r|i, j) log β
(t)
hj (r) from

the clients, for [i]N1 , [j]M1 , [h]k1 , the server calculates
variational parameters {φijh, [i]N1 , [j]M1 , [h]k1} fol-
lowing (5.5). Given α(t) and {φijh, [i]N1 , [j]M1 , [h]k1},
the server updates {γih, [i]N1 , [h]k1} following (5.6).
The parameters {φijh, [i]N1 , [h]k1} are passed to the
M-step jth client and {γih, [i]N1 , [h]k1} are passed to
the M-step server.

3. M-step jth client: Given xij and φijh for [i]N1 , [h]k1 ,

β
(t+1)
·,j (·) is updated following (5.7) and passed to

E-step server for the (t + 1)th iteration.

4. M-step server: Given α(t) and γih for [i]N1 , [h]k1 ,
α(t+1) is updated following (5.8) and passed to E-
step server for the next step.

The initialization (α(0), β(0)) is chosen at the beginning
of the first iteration. In iteration t, (α(t), β(t)) are
initialized by (α(t−1), β(t−1)), i.e., the results of the
(t − 1)th iteration. The algorithm is guaranteed to
converge because it is essentially the same as the EM
algorithm for general cluster ensembles except that it is
running in a column-distributed way. The algorithm is
expected to be more efficient than the general cluster
ensemble if we ignore the communication overhead. In
addition, jth client/server only has access to the jth

base clustering results. The communication is only
for the parameters and intermediate results, instead of
base clusterings. Therefore, privacy preservation is also
achieved.

6 Gibbs Sampling for BCE

In this section, we propose a Gibbs sampling [5] method
to obtain the posterior distribution by sampling. Gibbs
sampling is a special case of Markov chain Monte Carlo
(MCMC) [18], and forms a powerful stochastic approx-
imation method for inference in graphical models. To
leverage existing results in the Gibbs sampling literature
[9], we mildly modify the BCE model outlined in Sec-
tion 4, by introducing a prior distribution Dirichlet(ωj)
for each βj , [j]

M
1 . The generative model for BCE could

then be represented as follows:

θi ∼ Dirichlet(α) ,

zi|θi ∼ discrete(θi) ,

βj ∼ Dirichlet(ωj) ,

xij |zij , βj ∼ Dirichlet(βj) ,

where [i]N1 , [j]M1 . For simplicity, here we assume
Dirichlet(α) and Dirichlet(ωj) are symmetric Dirichlet
priors, which are fixed upfront.

Dataset Instances Features Categories

pima 768 8 2
iris 150 4 3
wdbc 569 30 2
balance 625 4 3
glass 214 9 6
bupa 345 6 2
wine 178 13 3
magic04 19020 10 2
ionosphere 351 34 2
segmentation 2100 19 7

Table 1: The number of the instances, features, and
classes in each dataset.

The conditional posterior distribution for zij is
given by

P (zij = h|z−(ij), xij)

∝ P (xij |zij = h, z−(ij), x−(ij))p(zij = h|z−(ij)) .

(6.11)

The first term of (6.11) is given by

P (xij |zij = h, z−(ij), x−(ij)) =
ωj + n

(r)
−(i,j),h

kjωj + n
(·)
−(i,j),h

,

where nr
−(i,j),h is the number of instances of the jth

base clustering results {x(.j) = r, [r]
kj

1 } assigned to
the consensus cluster h, not including the current one,

n
(·)
−(i,j),h is the total number of xij assigned to the

consensus cluster h, not including the current one. The
second term of (6.11) is given by

p(zij = h|z−(ij)) =
α + n−(i,j),h

kα + n−(i,j)
,

where n−(i,j),h is the number of xij from object i as-
signed to consensus cluster h, not including the current
one, and n−(i,j) is the total number of xij from object
i, not including the current one, and from above two
equations, we can get the following formula

P (zij = h|z−(ij), xij) ∝
ωj + nr

−(i,j),h

kjωj + n
(·)
−(i,j),h

α + n−(i,j),h

kα + n−(i,j)
.

7 Experimental Results

In this section, we run experiments on ten datasets from
UCI machine learning repository. The numbers of ob-
jects, features and classes in each data set are listed in
Table 1. For all reported results, there are two steps
leading to the final consensus clustering. First, we use
k-means with different initializations to obtain a set of
(20, unless otherwise mentioned) base clusterings. Sec-
ond, various cluster ensemble algorithms, including mix-
ture model (MM) [21], CSPA, HGPA, MCLA [20] and



Algorithm general miss-v increase-c column-d row-d

K-MEANS
√ × √ × √

CSPA
√ √ √ × ×

HGPA
√ √ √ × ×

MCLA
√ √ √ × ×

MM
√ √ √ √ √

BCE
√ √ √ √ √

Table 2: The applicability of algorithms to different
experimental settings:

√
indicates that the algorithm

is applicable, and × indicates otherwise.

k-Means, are applied to the base clustering results to
generate a consensus clustering. We compare their re-
sults with BCE, which uses both variational approxi-
mation and Gibbs sampling for inference, represented
as V-BCE and G-BCE respectively.

Experiments are divided into five categories as
follows:

1. General cluster ensemble (general).

2. Cluster ensemble with missing values (miss-v).

3. Cluster ensemble with increasing number of
columns (increase-c).

4. Column-distributed cluster ensemble (column-d).

5. Row-distributed cluster ensemble (row-d).

Table 2 shows the five categories of experiments above
and the six algorithms we use. We can see that most of
the algorithms can only accomplish a few tasks among
the five. In principle, MM can be generalized to deal
with all five scenarios; however, the literature does
not have an explicit algorithm for column- or row-
distributed cluster ensembles using MM. As seen from
Table 2, BCE is the most flexible and versatile among
the six algorithms.

For evaluation, we use micro-precision [22] to mea-
sure accuracy of the consensus cluster with respect to
the true labels: the micro-precision MP =

∑k
h=1 ah/n ,

where k is the number of clusters and n is the number
of objects, ah denotes the number of objects in consen-
sus cluster h that are correctly assigned to the corre-
sponding class. We identify the “corresponding class”
for consensus cluster h as the true class with the largest
overlap with the cluster, and assign all objects in cluster
h to that class. Note that 0 ≤ MP ≤ 1 with 1 indicat-
ing the best possible consensus clustering, which has to
be in full agreement with the class labels.

7.1 General cluster ensembles. We present re-
sults for the five categories of experiments listed in Ta-
ble 2, starting from general cluster ensemble in this sub-
section.

Given N objects, by running k-means 2000 times,
we obtain 2000 base clustering results, which are divided
evenly into 100 subsets, with an N × 20 base clustering
matrix each. We run each cluster ensemble algorithm
100 times on each of these 100 base clustering matri-
ces. The maximum and average MP s are reported in
Table 3. The key observations can be summarized as
follows: (1) V-BCE and G-BCE almost always have a
higher max and average MP than base clustering re-
sults, which means the consensus clustering from BCE
is indeed better in quality than the original base clus-
terings. (2) BCE outperforms other cluster ensemble
algorithms for most of the times. In terms of the maxi-
mum MP , V-BCE wins eight out of ten times, whereas
CSPA and MM win once each. In terms of the aver-
age MP , V-BCE wins five out of ten times, CSPA wins
three times, G-BCE wins twice, and MM wins once.
Since the results of MM and V-BCE are rather close
to each other, to make a careful comparison, we run a
paired t-test under the hypothesis

H0 : MP (MM) = MP (V-BCE)

Ha : MP (MM) < MP (V-BCE) .

The results are shown in Table 4. V-BCE outperforms
MM nine out of ten times with a low p-value (< 0.05)
most of the times, indicating that MP (V-BCE) is
significantly better than MP (MM) on these datasets.
In addition, the smaller standard deviation of V-BCE
shows that it is more stable than MM.

7.2 Cluster ensembles with missing values.

Given 20 base clustering results for N objects, we ran-
domly hold out p percent of data as missing values, with
p increasing from 0 to 90 in steps of 4.5. We compare the
performance of different algorithms except k-means, be-
cause k-means cannot handle missing values. Each time
we run the algorithms 10 times and report MP in Fig-
ure 2. Surprisingly, before the missing value percentage
reaches 70%, most algorithms have a stable MP with
increasing number of missing entries, without a distinct
decrease in accuracy. BCE is always among the top one
or two in terms of the accuracy across different percent-
age of missing values, indicating that BCE is one of the
best algorithms to deal with missing value cluster en-
semble. Comparatively, HGPA seems to have the worst
performance in terms of both the accuracy and stability.

7.3 Cluster ensembles with increasing columns.

In order to find out how increasing the number of base
clusterings affects the cluster ensemble accuracy, we
perform experiments for cluster ensemble with columns
(base clusterings) increasing from 1 to 20 in steps of
1. We first generate 20 base clusterings as a pool. At



The results of base 

clusterings K-means 

MCLA       CSPA HGPA MM K-means

cluster ensemble 

G-BCE V-BCE

random initialization 

   algorithms 

dataset Max              average Max average Max average Max average Max average Max average Max average Max average

iris     0.8867 0.6267 0.8867 0.8867 0.9533 0.9167 0.7333 0.7333 0.9067 0.8867 0.5267 0.5267 0.9533 0.8697 0.9600 0.8911 

wdbc       0.8541 0.7595 0.8840 0.8840 0.8840 0.8840 0.5518 0.5188 0.8840 0.8840 0.8840 0.8689 0.8893 0.8893 0.8893 0.8840

ionosphere       0.7123 0.6906 0.7123 0.7046 0.6952 0.6952 0.6353 0.6063 0.7179 0.7111 0.7094 0.7094 0.7236 0.7073 0.7749 0.7123

glass      0.5421 0.5140 0.5187 0.4766 0.4393 0.4393 0.4439 0.4234 0.5748 0.5519 0.5093 0.4363 0.5514 0.4867 0.6121 0.5526

bupa      0.4841 0.4537 0.5652 0.5652 0.5710 0.5710 0.5188 0.5075 0.5710 0.5586 0.5565 0.5164 0.5710 0.5710 0.5942 0.5664

pima      0.6602 0.5751 0.6602 0.6602 0.5065 0.5065 0.5260 0.5163 0.6654 0.6503 0.6029 0.6029 0.6615 0.6445 0.7044 0.6612

wine        0.6629 0.5904 0.7247 0.7247 0.7416 0.7416 0.5562 0.5250 0.7247 0.7129 0.4775 0.4775 0.6966 0.6559 0.7247 0.7247

magic04       0.6491 0.6252 0.6491 0.6491 0.6491 0.6235 0.6530 0.6231 0.6491 0.6250 0.6491 0.6491 0.6531 0.6497

balance        0.5936 0.5114 0.5216 0.5188 0.5408 0.5408 0.4256 0.4256 0.6016 0.5514 0.5824 0.5824 0.5714 0.5150 0.5968 0.5293

segmentation          0.5710 0.5574 0.5657 0.5657 0.5810 0.5810 0.5419 0.4543 0.6233 0.5817 0.5710 0.5142 0.5233 0.5233 0.6362 0.5854

Table 3: Maximum and average MP on different datasets by running different cluster ensemble algorithms.
(Magic04 is too large such that CSPA could not finish its run).

Dataset Mean-D sd-MM sd-V-BCE p-value

pima -0.0117 0.0205 0.0038 0.0089
iris -0.0402 0.0221 0.0103 0.0026
wdbc -0.0009 0.0018 0.0000 0.3256

balance 0.0301 0.0384 0.0061 0.0010
glass -0.0046 0.0110 0.0076 0.0511
bupa -0.0128 0.0377 0.0013 0.0018
wine -0.0240 0.0290 0.0119 0.0239
magic04 -0.0010 0.0023 0.0014 0.4127

ionosphere -0.0013 0.0024 0.0000 0.0169
segmentation -0.0140 0.0331 0.0186 0.2250

Table 4: The paired t-test of MP from MM and BCE.
“Mean-D” is the mean of MP differences obtained by
(MM-BCE), and “sd-MM (BCE)” is standard deviation
of the MP s from MM (BCE).

each step s, we randomly pick s base clusterings from
the pool, which is repeated for 50 times to generate
50 (N × s) base clustering matrices (Note there are
repetitions among these 50 matrices). We then run
cluster ensemble on each of them. The average of MP
over 50 runs at each step is reported in Figure 3.

First, we can see that BCE is again among the top
one or two on all the data sets in our experiments. Sec-
ond, MP s for most of the algorithms increase dramati-
cally when the number of base clusterings increases from
1 to 5. After that, no distinct increase is observed. On
Pima, the accuracy even decreases when the number of
base clustering is larger than 10, which is possibly due
to the poor performance of the base clusterings. The
trends of the curves might be related to the diversity of
the base clusterings. In our experiments, we only use
k-means for all base clusterings, so the cluster informa-
tion may become redundant after a certain number of
base clusterings have been used, and the accuracy does
not increase anymore. The accuracy may keep on in-
creasing with more columns if the base clusterings are
generated by different algorithms.

7.4 Row-distributed cluster ensembles. For ex-
periments on row-distributed cluster ensembles, we di-
vide our 20 base clustering results by rows (approxi-
mately) evenly into P partitions, with P increasing from
1 to 10 in steps of 1. We compare the performance
of row-distributed BCE with distributed k-means [10].
Note that in our experiments, we use the heuristic row-
distributed EM as in Section 5.2.1. Although no the-
oretical guarantee for convergence is provided, in our
observation, the algorithm stops when model parame-
ters do not change anymore within 10 iterations. The
comparative results are presented in Figure 4. It is clear
that row-distributed BCE always has a higher accuracy
than distributed k-means except on Balance. For most
datasets, the performance of row-distributed BCE is
more stable across varying number of partitions, indi-
cating its robustness.

7.5 Column-distributed cluster ensembles. We
run experiments for column-distributed cluster ensem-
bles with increasing number of base clusterings (20, 60,
120, 240, 480, 960, 1440, 1920), which are picked ran-
domly from a pool of 3000 base clustering results. We
run the client-server style algorithm as in Section 5.2.2
with one client maintaining one base clustering, such
that multiple clients could run in parallel. The accu-
racy in the column-distributed case would be the same
as the general cluster ensemble using BCE since they are
using exactly the same algorithm except the fact that
the column-distributed variants run it in a distributed
manner. If we ignore the communication overhead be-
tween the clients and server, the comparison of running
time between the column-distributed and general clus-
ter ensemble is presented in Figure 5. We can see that
column-distributed cluster ensemble is much more effi-
cient than the general case, especially when the number
of base clusterings is large, the column-distributed vari-
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Figure 2: Average MP with increasing percentage of missing values.
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Figure 3: Average MP comparison with increasing number of available base clusterings.
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Figure 4: Average MP with increasing number of distributed partitions.
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Figure 5: The comparison of running time between
column-distributed and general cluster ensemble.

ant is several orders of magnitudes faster. Therefore,
the column-distributed BCE is readily applicable to the
real life settings with large data sets.

8 Conclusion

In this paper, we have proposed Bayesian cluster en-
sembles (BCE), a mixed-membership generative model
for obtaining a consensus clustering by combining mul-

tiple base clustering results. BCE provides a Bayesian
way to combine clusterings, and entirely avoids cluster
label correspondence problems encountered in graph
based approaches to the cluster ensemble problem.
We have proposed two methods, respectively based
on variational approximation and Gibbs sampling, for
learning a Bayesian cluster ensemble. Compared with
existing algorithms, BCE is the most versatile because
of its applicability to several variants of the cluster
ensemble problem, including missing value cluster
ensembles, row-distributed and column-distributed
cluster ensembles. In addition, extensive experimental
results show that BCE outperforms other algorithms in
terms of accuracy and stability. Finally, the proposed
algorithms for BCE can be run in a distributed manner
without exchanging base clustering results, thereby
preserving privacy and/or substantial speed-ups.
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