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Abstract—This paper presents a generalized version of the
linear threshold model for simulating multiple cascades on a
network while allowing nodes to switch between them. The
proposed model is shown to be a rapidly mixing Markov
chain and the corresponding steady state distribution is used
to estimate highly likely states of the cascades’ spread in
the network. Results on a variety of real world networks
demonstrate the high quality of the estimated solution.
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I. INTRODUCTION

Cascading processes are models of network diffusion used
to study phenomenon concerning the spread of new trends
and innovations in social networks. Each node can be in one
of two states: infected (i.e., supports an idea or a product) or
uninfected. Every infected node can infect its neighbors and
thus, the infection, formally called a cascade, propagates
through the network. These processes have been studied
in many applications such as viral marketing [10], blog
networks [24] and contagion models [8].

Broadly two theoretical models of diffusion have been
explored: the linear threshold model [14], [29] and the
independent cascade model [12], [13]. In the former, every
infected neighbor for a node contributes certain weights
and if their sum is greater than a threshold, the node is
infected. The weights depend often on the edge strength
between the node and its neighbors. In the latter, each
infected node is allowed one chance to infect a neighbor with
some probability generally depending on the edge strength
between the nodes.

Existing literature has primarily focused on single cascade
models but this assumption breaks down in many real world
scenarios when there are many competing products, different
political messages, ideas etc. It is also possible for nodes’
affinities towards certain cascades to evolve with those of
their neighbors’. This situation has different dynamics and
requires more sophisticated models. Research in multiple
cascades has looked at variations of the independent cascade
model [5], [3], [22]. However, the models do not allow nodes
to change their cascade states once infected. To the best of
our knowledge, the research presented in this paper is the
first to discusses multiple cascades while allowing nodes to
switch between them.

The proposed model is a generalized version of the linear
threshold model. It assumes that edges in the network
are symmetric and carry non-negative edge-weights. For &
cascades propagating in graph G(V| E), a node can be in
k + 1 states (any one of the casacades or uninfected) and
there are (k+1)!V! possible states for G. The key challenge
is estimating the most likely state of the cascades’ spread in
the network. A stochastic graph coloring process is presented
and is shown to be a rapidly mixing Markov chain. This
allows efficient simulation based algorithms for deducing the
steady state distribution, and consequently the likely states
of cascades’ spread in the network.

The rest of the paper is divided as follows - Section 2 dis-
cusses related work. Section 3 presents the generalized linear
threshold model along with an algorithm for estimating the
most likely cascades’ spread in a given network. In Section 4
results using the proposed algorithm are investigated on real
world networks from a variety of applications and Section
5 concludes the paper along with future directions.

II. RELATED WORK

Apart from the linear threshold and independent cascade
models, Markov random field [9], [28] and game theory
based methods [26] for network diffusion have also been
studied. One of the more interesting problems in cascading
processes is that of influence maximization [9], [20]. In [19]
Kempe et al. prove that it is NP-hard and show performance
guarantees for greedy hill climbing strategies. A method for
simulating propagation of a single cascade, while allowing
nodes to switch between infected and uninfected states, for
finite time segments is presented along with a general model
that subsumes both the linear threshold and independent
cascade models. In [11] the traditional independent cascade
model is extended to allow nodes more than one chance to
infect its neighbors. A comprehensive review on network
diffusion processes and their applications can be found
in [30]. Models for multiple cascades have been studied
as extensions of the independent cascade model for the
progressive case, where once a node is infected with a
cascade, it never change its state [5], [4], [3], [22].

III. PROPOSED APPROACH

In the literature, graph coloring is the problem of labeling
vertices, with k colors, so that no two adjacent vertices



Figure 1. (a) G with 3 partitions, (b) Coloring the graph with cascades
induces the same partitioning as (a), note that endemic regions appear as
smooth regions of colors, (c) Endemic regions with a coloring that merges
p2 and p3 with the third cascade dying out, (d) Another coloring that splits
p1 into two regions, allowing a fourth cascade in the network

have the same color. In the context of this paper, a general
definition of graph coloring is considered which includes
problems of labeling vertices with k colors subject to a given
set of constraints, not necessarily requiring adjacent vertices
to have different colors.

A. Simulating cascades using graph coloring

Consider an undirected graph G(V, E), with non-negative

edge-weights w;; > 0 for each edge (i,7) € E and no
self-loops w;; = 0,Vv; € V. Weight w;; represents the
similarity and/or affinity between nodes 7 and j. Nodes in
G are colored using |C| number of colors from the set
C = {c1,¢2,...,¢cl}. The state space S of all possible
colorings is of size |C|lVI and each colored state G¢ € S
induces a corresponding partitioning on G.
Nodes in each partition are a maximal subgraph in G¢,
such that they are all connected and have the same color.
Semantically, the colors correspond to different states a
node can be in, one of the cascades or uninfected. The
partitions are the subgraphs, in GG, where different cascades
are endemic (Figure 1).

Consider the following process: In each step, node v; € V'
is sampled uniformly and then a color ¢, is sampled for it. If
G is the current colored state of the graph and n; € N(v;)
is the jth neighbor of v;, then probability of assigning color
¢p to node v;, given colors for all other nodes is,
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In (1), 6,i(c,) = 1 if node n? is colored with ¢, and 0
otherwise. The process described in (1) is a Markov chain
with state space being the set of all possible colorings of G
using |C| colors. If |C| = 2 in (1) then the vanilla linear
threshold model is obtained. Nodes can be in one of two
states (infected/uninfected) and in each step weights from
a node’s infected neighbors are summed up and used as
a Bernoulli probability to sample a new state for that node.

This is equivalent to sampling a threshold between (0, 1). By

nature of the process, nodes are allowed to switch back and
forth between the two states. For multiple cascades, |C| > 2,
weights from neighbors having different colors are summed
up and one of the colors is sampled as the new state.

This trivial extension to the vanilla linear threshold model
has three problems that make it unsuitable: (i) the trivial state
of coloring all nodes with the same color is favored, (ii) if
a state where some color ¢, is not assigned to any node
is reached, then the chain can never transition to a state
where any of the nodes have color c¢,. Thus, the chain is not
ergodic and will not have a unique steady state distribution,
and (iii) given the state space size |C|IV], it is difficult to
say how many iterations are required to reach steady state.
The next sub-section presents a small modification to (1)
that addresses all of these problems.

B. A generalized linear threshold model for multiple cas-
cades

Consider the graph G(V, E) and set of colors C. In each
step, node v; is sampled according to the fixed distribution
J = UIJ/I”,’ , where w,, is weighted degree of v; and W is the
total weighted degree in G. Then, given colors for all other
nodes, color ¢, is sampled for v; with probability,
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In (2) § € (0,1). This is also a Markov chain with state
space S. In (2), there is a chance [ that node v; ignores
its neighbors and picks a color from a uniform distribution.
The number of colored states corresponding to 1 < p < |V|
number of partitions, is greater than the same for every p’ <
p number of partitions. Consequently, the first term in the
RHS of (2) acts as a regularizer against the second terms
bias to color all nodes with the same color.

For a stochastic process sampling colors for nodes in G
according to (2), (i) there are a finite number of states (|.S| =
|C|IV1), (ii) every state is reachable from every other state,
and (iii) aperiodic states exist. Thus the process is ergodic
and will converge to a unique stationary state distribution.

The nature of the steady state distribution depends on how
the two terms in the R.H.S. of (2) work together. The steady
state distribution tends to favor states in which (i) nodes in
close knit-regions of the graph have the same color, (ii) no
two such close-knit regions with low connectivity between
them have the same color. If a local region in G has high
intra-connectivity then a cascade should be endemic in this
region and appear as a partition having the corresponding
color. However, if two such adjoining colored partitions
have sufficiently low connectivity between them then nodes
within one partition have enough support for each others’
state such that there is significant resistance for the cascade
from the adjoining partition to transition in and take over any
of the nodes. Larger values of § favor states having more



number of tight-knit endemic regions and lower values favor
states with fewer number of coarser (some of the tight-knit
regions are merged) endemic regions.

The most important feature of this process is that it
is a rapidly mixing Markov chain allowing us to place
an upper bound on the number of steps required for the
chain to reach steady state [16]. The following definitions
will be used throughout the rest of the paper: wy;, is the
minimum weighted degree in the graph excluding isolated
nodes. Statistical variation between two distributions 1), and
D5, on the same state space €2, is denoted by ||D; — Ds||
and given by 3 > yicq |[P1(i) —p2(i)|, where pi (i) and pa(7)
are probabilities for ith state in Dy and D5 respectively.

Lemma 1: For a given undirected graph G(V,E) with
non-negative edge-weights and no self-loops, if the Markov
chain proposed in (2) takes t(€) number of steps to reach
the steady state distribution then,
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where € is the statistical variation between the estimated
distribution after t(€) steps and the true steady state distri-
bution.

Proof: Consider two Markov chains M x and My, both
coloring the same graph G. In each step both chains pick the
same node v; € V according to distribution J and each chain
samples a new color for it. Mx picks a new color ¢, for
v; according to distribution Dy ,, and My uses distribution
Dy, to sample color ¢ for the same node. Let 5, denote
the distribution, according to (2), for sampling a color for
node v given the colored graph state s € S.

Define Dx,.,, = kx, . If ¢ is picked by Dx, ,,
then Dy, ,, picks ¢ such that ¢ = ¢ with probability
min{1, ky, v, (¢)/kx, v (c)}, otherwise, sample ¢’ according

e 0.5y v, (€)= Fx, v, (€
to the distribution, D(cs) = max{ ﬁ:; ‘(iixnx“” i(ce)d
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If My is observed independent of M x, then it appears to
be following (2). Thus, a coupling is defined between them.
Assume My is following the true steady state distribution
and their respective states X; and Y; (at some time t), differ
only in the color of a single vertex v, € V. If A, is the
number of nodes having different colors in X; and Y;, then
Ay = 1. According to the path-coupling lemma [16], in
order to prove that (2) is rapidly mixing it is sufficient
to show that the maximum possible value for E[A;14] is
less than one i.e., v = maxx, v,esv,ev E[Aw1] < 1.
Moreover, if the above condition holds then then the mixing
time will be t(e) < log(|V|e™1)/(1 — 7).

We have, E[At+1] = 1- P(At+1 = 0|Xt7Y;:) +
P(A¢11 = 2|X:,Y};) which gives us,
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— Dy, || = ¢! w)wzq for v; € N(vy) and 0
for all other nodes.
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Since, 0 < 5 < 1 we have v < 1 and steady state is achieved
in t(e) < -5 log M steps. [ |

Lemma ] holds even when arbitrary multinomial distribu-
tions are used, instead of the uniform one, in the first term
in the R.H.S. of (2). It also holds when one or more nodes
are acting as sources for any of the cascades.

C. Computing multiple cascade simulation solutions

The steady state distribution corresponding to (2) is used
to estimate the state most representative of the cascades’
spread in the network. The steady state distribution has a
symmetry to it due to the colors being exchangable and any
two states G¢,GS € S, where G can be obtained by
permuting colors in GY', are equivalent. Consequently, the
steady state is a multi-modal distribution and the expectation
is not a good representation of how the different cascades
will be endemic in the network. A preferred approach is to
work with the most likely state instead of the expectation.

The most likely state is estimated using simu-
lated annealing [1] and the complete procedure, called
StochColor, 1is presented in Algorithm 1. Function
getColoredPartitions( G©) uses a breadth first search traver-
sal method, that looks for connected regions having the same
color, to compute partitions corresponding to the most likely
state. Thus, the StochColor algorithm is used to estimate a
solution state for simulating multiple cascades on G, with
time complexity O((5 o7 log W4 v os Ly ‘lﬂ +1C))).

log

D. StochColor parameters

StochColor takes as input: number of colors (|C')), 5, error
€ and simulated annealing parameters final temperature (7),
cooling rate (a). Empirically, results from StochColor were
observed to be robust over large changes in them. Parameter
€ measures error between estimated and true steady state
distributions, in terms of statistical variation. It offers a run-
time vs. accuracy trade-off. Since we are interested in the
most likely state and not the actual steady state distribution
itself, larger errors in the estimated steady state distribution
are tolerable and results are stable over orders of magnitude
of change. Empirically ¢ = 10720 was sufficient for many
applications. For the annealing process empirically it was
observed that o« = 0.99 and Ty = 0.1 worked well for
networks from various domains.



Algorithm 1 StochColor(G,|C|,5,0.,T ,€)
Inputs: Graph G(V, E) with non-negative edge-weights,
number of colors k, simulated annealing parameters
(cooling rate), Ty (final temperature) and error in steady
state distribution €
Output: Endemic regions returned as a partitioning P of
graph G(V, E)
BEGIN
Randomly assign colors from C' = {¢y,..
nodes v; € V
/* Achieve steady state and record samples */
1 W olog I+ 5000
while number of steps iters < I do
Sample node v; € V according to distribution J
Sample color for v; according to (2)
If I — iters < 5000 record color of v;
end while
/* Estimate most likely state */
Initialize colors of all v; € V' according to most sampled
color in last 5000 steps of previous loop
Initialize Tiep < 1
while T, > Ty do
for each v; € V do
sample color for v; according to the distribution
where probability of picking color ¢, is directly
proportional to (py, (c,|GC,,. )1/ Titer
end for
Titer — aTiter
end while
return P = getColoredPartitions(G¢)

€|} to all

As (3 is increased, mixing properties of the chain improve,
and states having more number of smaller tight-knit endemic
regions are favored. On lowering (3, these tight knit endemic
regions begin to merge into coarser ones. On most networks,
£ < 0.2 and 5 > 0.8 for obtaining coarse and finer regions,
respectively, worked well.

Results were robust even over orders of magnitude of
changes in |C| and on increasing |C| a limiting behavior on
the number of partitions in the most likely state, indicative
of a “cascade saturation number”, was also observed. Con-
sequently, overestimating the number of colors is always a
good idea and |C| = 100 served well for most networks.

IV. EXPERIMENTS

In this section, results on real networks demostrate the
quality of the estimated solution along with the impact of
varying |C| and f. Figure 2 illustrates solutions estimated
using StochColor on small social networks.

A. Real Networks

1) Methodology: The endemic regions, estimated using
StochColor are treated as a partitioning of the input graph

(a) A real social network of dolphins [25] has two endemic
regions (green and red). The network is known to have a
two community structure.

(b) A network of co-occurence of characters from Les
Miserables [21] is divided into three parts. Yellow: Fontane
and her friends in Paris, Red: Bishop Myriel and other
characters in the town of Digne, where the story starts.
Green: Rest of the cast

Figure 2. Examples of StochColor on small social networks. Figures were
generated using Pajek [2]

Graph # of # of Type
Nodes Edges

add32 4960 7444 weighted

besstk29 13992 | 302748 weighted
finance256 | 37376 | 130560 | unweighted

brain 998 37926 weighted
NDyeast 1846 2203 unweighted
ca-GrQc 5242 14484 | unweighted

Table I

NETWORKS FROM VARIOUS DOMAINS

and compared to results from state of the art graph par-
titioning methods on a variety of real world datasets: 32-
bit adder (add32), structural engineering (bcsstk29), finance
(finance256), yeast network (NDyeast) [6],human brain net-
work (brain) [17], and General Relativity, Physics, co-
authorship network (ca-GrQc) [23] (Table 1).

For each dataset, results from the following algorithms
were computed:

e StochColor: In all experiments values |C| = 100, 8 =
0.9, e = 10720, Ty = 0.1 and o = 0.99 were used
and the result corresponding to the median of number
of partitions returned over 5 runs was taken.

e Graclus [7]: Graclus with base spectral clustering al-
gorithm and 20 steps of localized search. It requires the
number of partitions as input, which was taken to be



Graph StochColor Graclus | Metis
k ] NCut
add3?2 211 | 18.68 16.53 22.8
besstk29 42 1.39 6.55 6.94
finance256 || 248 | 29.14 38.34 54.8
brain 9 12 1.10 1.62
NDyeast 213 | 10.87 58.16 -
ca-GrQc 467 | 13.28 158.25 186.17
Table II

StochColor COMPARED TO GRACLUS AND METIS USING NCUT

Graph Modularity Graclus | Metis
k [ NCut
add3?2 33 0.36 0.32 0.73
besstk29 31 0.19 4.06 4.25
finance256 22 435 0.71 0.81
brain 15 5.08 2.7 3.62
NDyeast 155 | 90.18 393 -
ca-GrQc 420 | 7.18 130.62 137.91

Table III
Modularity COMPARED TO GRACLUS AND METIS USING NCUT

the number of partitions returned by StochColor.

o Metis [18]: Metis requires number of partitions as input,
which was taken to be the number of partitions returned
by StochColor.

o Modularity [27]: Newman’s algorithm is parameter free
and returns the number of partitions, making it difficult
to compare it with StochColor. Instead, results compar-
ing Modularity with Graclus and Metis are reported.

Normalized Cut (NCut) was used to measure quality of
partitioning. Lower NCut means better partitioning. For a
given set of partitions P = {V;};,=1.., on a graph G(V, E),

edge-cut(V;, V/V;)
totalWeightedDegree(V;)

NCut(P,G) = zp:

i=1

2) Observations: Table 2 compares StochColor with Gr-
aclus and Metis on datasets in Table 1. StochColor is doing a
little worse on add32, comparable on brain and significantly
better for all other graphs. The observations regarding NCut
performances were consistent when varying |C/| and 3. Metis
had memory issues with NDyeast and so the results are not
reported. Table 3 presents similar results for Modularity.

Figures 3-a and 3-b show the number of partitions re-
turned by StochColor when varying |C| and 8 respectively.
While results are generally stable over changes in C, on
increasing it even to larger values, a limiting behavior on
the number of partitions returned is observed as redundant
colors die out. Semantically, this is indicative of a “cascade
saturation number” i.e., the maximum number of cascades
that the network can support. For 3 the stability is relatively
less and as expected, a general trend of larger § returning
more partitions can be observed.

— 4 add32

18 besstk23

---@ - finance256

18 —&— brain

---EF-- NDyeast
ca-GiQc

Number of Partitions (k)

\ \ \ . . . \ \ \
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(a) Number of partitions (k) vs number of colors (25-
1000). B8 was 0.9 and for each dataset the number of
partitions is scaled w.r.t. the number of partitions in the
result from StochColor for |C'| = 100 and § = 0.9

— % add32

18 bosstk22

---&r-- finance256

—— brain

---E}-- NDyeast
ca-Grlc

Number of Partitions (i

(b) Number of partitions (k) vs 8 (0.1-0.9). |C| = 100
and for each dataset the number of partitions is scaled
w.r.t. the number of partitions in the result from Stoch-
Color for |C| = 100 and 8 = 0.9

Figure 3. Number of partitions vs changing parameters

V. CONCLUSIONS AND FUTURE DIRECTIONS

In this work a generalized version of the liner threshold
model, capable of handling multiple cascades while allowing
nodes to switch back and forth between them, is presented.
The corresponding stochastic process is shown to be a
rapidly mixing Markov chain and the StochColor agorithm
is provided for discovering the most likley states of the
cascades’ spread in a given graph. Results on real data
demonstrate the high quality of solutions estimated using
StochColor, while revealing an interesting limiting behavior
on the number of cascades’ surviving in the network. Future
work will study the influence maximization problem as well
as a more effective algorithm for computing the optimal state
representative of the cascades’ behavior.
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