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Abstract

Droughts are one of the most damaging climate-related haz-

ards. The late 1960s Sahel drought in Africa and the North

American Dust Bowl of the 1930s are two examples of severe

droughts that have an impact on society and the environ-

ment. Due to the importance of understanding droughts,

we consider the problem of their detection based on gridded

datasets of precipitation. We formulate the problem as the

one of finding the most likely configuration of a Markov Ran-

dom Field and propose an efficient inference algorithm. We

apply this algorithm to the Climate Research Unit precipita-

tion dataset spanning 106 years. The empirical results show

that the algorithm successfully identifies the major droughts

of the twentieth century in different regions of the world.

1 Introduction

Droughts are one of the most damaging climate-related
hazards and the consequences are often abrupt, severe
and potentially catastrophic to both society and the
environment. Droughts may lead to reductions in water
supply, diminished power generation, disturbed riparian
habitats as well as a host of other associated economic,
political and social activities [18]. A frequently cited
example is the decades long Sahel drought [5, 8] starting
in the late 1960s, which led to widespread famine,
ecosystem degradation and dispersion of its inhabitants.
Other examples include the Dust Bowl event in the
central US [15] in the 1930s, which is marked by sudden
reductions in precipitation.

In the climate science community, the cause of
droughts has been extensively studied. For example,
[13] identify the physical basis for long-term droughts
and [4] analyze how the increase in deserts influences
climate, e.g., a reduction in precipitation in a general
circulation model (GCM). In addition to the general
theory developed for droughts worldwide, some work
has been focused on specific drought events. For
instance, [15] perform model simulations to identify the
mechanisms contributing to the Dust Bowl. [5] show
how the interaction between climate and vegetation
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prolongs the Sahel drought. [3] analyze the Sahel
drought simulation with GCMs and projection what
may happen in the future.

Even though the importance of understanding
droughts cannot be overstated, there are few rigor-
ous and systematic tools to detect them. The current
standard of drought detection is the Palmer Severity
Drought Index (PSDI) [7]. The PSDI is based on a
supply-and-demand model of soil moisture. It uses a
0 as normal, and drought is shown in terms of nega-
tive numbers. However, the utility of the Palmer index
is weakened by the arbitrary nature of Palmer’s algo-
rithms, including the technique used for standardiza-
tion. In a recent paper, [11] analyze global historical
rainfall observations and detect regions that have un-
dergone large, sudden decreases in rainfall. Their algo-
rithm identifies the potential regions of abrupt rainfall
changes using a wavelet-based method. However, the
algorithm is not fully automatic as it requires a manual
inspection step to remove the potential droughts with
low magnitude of rainfall change and short span of per-
sistence.

In contrast, machine learning and data mining
methods have been successfully applied to application
domains, such as computer vision, natural language
processing and others. With a significant increase in
the number of climate datasets available, we believe that
relevant machine learning and data mining algorithms
can also be applicable to climate science. In this paper,
we propose a drought detection algorithm based on the
well studied Markov Random Field (MRF) model [17].

We formulate the detection problem as the one of
finding the most likely configuration of a binary MRF,
where each node can only take two values: 1 means
the node is in a drought state and 0 means a normal
state. Since the gridded precipitation dataset we use is
spatio-temporal, i.e., the dataset contains precipitation
observations of the globe over a period of time, we
construct a 3-dimensional grid graph as the underlying
dependency graph for the MRF. More specifically, for
a particular time, we model the dependency using a
4-nearest neighbor grid, where each node represents
a location. The 3-dimensional grid can be viewed
as a replication of 2-dimensional grids and the nodes
representing the same location are connected together.



We design the potential functions carefully from the
climate datasets to ensure spatio-temporal consistency,
i.e., the neighboring nodes in the 3-dimensional grid are
encouraged to take the same value.

Our goal is to estimate the binary value each node
takes based on the MRF and we consider that the nodes
with value 1 are in drought states. However, in general
the integer programming problem of finding the most
likely configuration is computationally intractable and
people often resort to relaxation and obtain approxi-
mate solutions [17]. Throughout the paper, we use the
Linear Programming (LP) relaxation [16], which has
been extensively studied in the MRF literature. Instead
of solving the LP directly, we adopt the idea of prox-
imal minimization [1] from the optimization literature
and propose an efficient inference algorithm. After the
algorithm terminates, we round the relaxed fractional
solution and obtain the integer solution. We then iden-
tify major droughts which are spatially widespread over
long duration based on the integer solution.

We apply our drought detection algorithm on the
Climate Research Unit (CRU) precipitation dataset [10]
over 106 years (1901-2006). The drought detection
problem on this dataset is of large scale, since the
underlying dependency graph has over 7 million nodes
and the number of configurations is more than 27,000,000.
Our algorithm is fully automatic and solves the problem
efficiently, i.e., the algorithm converges within one and a
half hours in a Linux workstation. The empirical results
show that the algorithm successfully detects the major
droughts of the twentieth century, including the Dust
Bowl in the 1930s and the drought in the Sahel starting
in the late 1960s. We compare our algorithm with the
drought detection algorithm in [11] and find that both
algorithms detect similar droughts.

The rest of the paper is organized as follows: In
Section 2, we give a brief review of MRFs and propose
a MAP inference algorithm. We outline the MRF-based
drought detection algorithm in Section 3. We show the
experimental results on the CRU dataset in Section 4
and conclude in Section 5.

2 Markov Random Fields and MAP Inference

We start by introducing some basic background on
Markov Random Fields. An MRF is defined on an
undirected graph G = (V,E), where V is the vertex set
and E is the edge set. Each node u ∈ V has a random
variable Xu associated with it, which can take value xu

in some discrete space X = {1, . . . , k}. Concatenating
all the random variables Xu, ∀u ∈ V , we obtain an n
dimensional random vector X = {Xu|u ∈ V } ∈ Xn.
We assume that the distribution P of X is a Markov
Random Field [17], meaning that it factors according

to the structure of the undirected graph G as follows:
With fu : X �→ R, ∀u ∈ V and fuv : X × X �→ R,
∀(u, v) ∈ E denoting nodewise and edgewise potential
functions respectively, the distribution takes the form:

P (x) ∝ exp

⎧⎨
⎩
∑
u∈V

fu(xu) +
∑

(u,v)∈E

fuv(xu, xv)

⎫⎬
⎭ .

An important problem in the context of MRF is
that of maximum a posteriori (MAP) inference, which
is to compute the configuration x∗ with the largest
probability:

x∗ ∈ argmaxx∈Xn exp

⎧⎨
⎩
∑
u∈V

fu(xu) +
∑

(u,v)∈E

fuv(xu, xv)

⎫⎬
⎭ .

The above optimization problem is equivalent to the
following integer programming problem:
(2.1)

x∗ ∈ argmaxx∈Xn

⎧⎨
⎩
∑
u∈V

fu(xu) +
∑

(u,v)∈E

fuv(xu, xv)

⎫⎬
⎭ .

The complexity of (2.1) depends critically on the
structure of the underlying graph. When G is a tree
structured graph, the MAP inference problem can be
solved efficiently via the max-product algorithm [9].
However, for an arbitrary graph G, the MAP inference
algorithm is usually computationally intractable. The
intractability motivates the development of algorithms
to solve the MAP inference problem approximately. In
this paper, we focus on the Linear Programming (LP)
relaxation method [16]. The LP relaxation of MAP
inference problem is defined on a set of pseudomarginals
μu and μuv, which are non-negative, normalized and
locally consistent:

μu ≥ 0, ∀u ∈ V ,(2.2)

μuv ≥ 0, ∀(u, v) ∈ E ,(2.3) ∑
xu∈Xu

μs(xu) = 1, ∀u ∈ V ,(2.4)

∑
xu∈Xu

μuv(xu, xv) = μv(xv), ∀(u, v) ∈ E, xv ∈ Xv .

(2.5)

We denote the polytope defined by (2.2)-(2.5) as
L(G) and the LP relaxation of MAP inference problem
(2.1) becomes maximizing the following LP:

〈μ, f〉 =
∑
u∈V

∑
xu

μu(xu)fu(xu)

+
∑

(uv)∈E

∑
xu,xv

μuv(xu, xv)fuv(xu, xv) ,(2.6)

subject to the constraint that μ ∈ L(G).



2.1 Proximal Methods Although standard LP
solvers can be used to solve the optimization problem
(2.6), they are usually inefficient compared to the algo-
rithms which exploit the graph structure [19]. In this
section, we briefly introduce the proximal maximization
algorithm [1] which can take advantage of the graph
structure and is guaranteed to converge to the global
maximizer of (2.6).

Instead of solving the constrained LP (2.6) directly,
the proximal maximization methods solves a sequence
of maximization problems:

(2.7) μt+1 = argmaxμ∈L(G)

{
〈μ, f〉 − 1

wt
Dh(μ||μt)

}
,

where the subscript t = 1, 2, . . . denotes the iteration
number, wt is a positive constant and Dh(μ||ν) is a
Bregman divergence [2] between μ and ν induced by
the strictly convex function h:

Dh(μ||ν) = h(μ)− h(ν)− 〈∇h(ν), μ − ν〉 .

Now we study the choice of h that will be used
in the sequel. To take the advantage of the graph
structure, in principle, we can decompose the graph into
N (overlapping) parts and assign each part a strictly
convex function hi, i = 1, . . . , N . Let μi denote the
components of μ that belong to part i and h =

∑N
i=1 hi

. The Bregman divergence then becomes:

Dh(μ||ν) =
N∑
i=1

hi(μi)− h(νi)− 〈∇hi(νi), μi − νi〉 .

For the sake of simplicity, we focus on a straightfor-
ward decomposition: we decompose the graph into |V |
nodes and |E| edges and the strictly convex function hi

is the negative entropy of the pseudomarginals:

hu =
∑
xu

μu(xu) logμu(xu), ∀u ∈ V,

huv =
∑
xu,xv

μuv(xu, xv) logμuv(xu, xv) , ∀(u, v) ∈ E.

Then the Bregman divergence is the Kullback-Leibler
(KL) divergence across all the nodes and edges:

Dh(μ||ν) =
∑
u∈V

Dhu(μu||νu) +
∑

(uv)∈E

Dhuv (μuv||νuv) ,

where Dhu(μu||νu) =
∑

xu
μu(xu) log

μu(xu)
νu(xu)

+μu(xu)−
νu(xu). We note that this is also the setting of one of
the proximal algorithms in [12].

2.2 Bregman Projection In this section, we show
how to solve the optimization problem (2.7) by perform-
ing the Bregman projection [2]. We observe that (2.7)
can be solved by first obtaining the solution μt+1,0 to
the unconstrained problem of (2.7) and then projecting
μt+1,0 to L(G). To be more specific, we have:

μt+1,0 = argmaxμ

{
〈μ, f〉 − 1

wt
Dh(μ||μt)

}
,(2.8)

μt+1 = argminμ∈L(G) Dh(μ||μt+1,0) .(2.9)

When h is the negative entropies on node and edge pseu-
domarginals, (2.8) has a closed form solution. Taking
derivatives and setting them to zeros yields:

μt+1,0
u (xu) = μt

u exp(w
tfu(xu)) ,

μt+1,0
uv (xu, xv) = μt

uv exp(w
tfuv(xu, xv)) .

Unfortunately, (2.9) does not have a closed form solu-
tion and the projection is usually computed iteratively.
In particular, we show that the projection can be ob-
tained by performing a sequence of cyclic Bregman pro-
jections.

We note that the polytope L(G) can be viewed as
an intersection of the equality constraints, i.e., (2.4)
and (2.5) (The inequality constraints (2.2) and (2.3)
are taken care of automatically when h is the negative
entropy function.). It is easy to see that the number of
constraints is NC = k|V |+2k|E|. Denote each equality
constraint as Ci, i = 1, . . . , NC and define

(2.10) μ = ΠCi(ν)

as the operation of projecting ν onto the constraint
Ci. The Bregman projection algorithm projects μt+1,0

sequentially onto each constraint Ci of L(G) in a cyclic
manner, i.e., starting from ν = μt+1,0, we perform the
following operation repeatedly until convergence:

μ = ΠCi(ν),

ν = μ,

where i is the constraint index and i =
1, . . . , NC, 1, . . . , NC, 1, . . .. It can be shown [2]
that the above cyclic Bregman projection converges to
the projection defined in (2.9). It is important to point
out that when the constraint set includes inequality
constraints, the Bregman projection has to be followed
by a correction step [2]. We avoid this by choosing the
KL divergence as the Bregman divergence.

We now show that the projection (2.10) onto each
constraint has closed form solutions. We use the
notation μt+1,p to denote the value of μt+1 after μt+1,0

has been projected to L(G) p times according to the



cyclic projection scheme. Consider the constraint on
node u :

∑
xu

μu(xu) = 1 and let λu be the Lagrangian
multiplier associated with the constraint. The KKT
condition is:

∇h(μ
t+1,p+1
u (xu)) = ∇h(μ

t+1,p
u (xu)) + λt+1,p+1

u .

Expanding the derivatives and performing some simple
algebra yields:

μt+1,p+1
u (xu) = μt+1,p

u (xu) exp(λ
t+1,p+1
u ) ,

exp(λt+1,p+1
u ) =

1∑
xu

μt+1,p
u (xu)

.

Then it follows the normalization update for each node:

μt+1,p+1
u (xu) =

μt+1,p
u (xu)∑

xu
μt+1,p
u (xu)

.

Similarly, we can derive the update for each edge

μt+1,p+1
uv (xu, xv) = μt+1,p

uv (xu, xv)

√√√√ μt+1,p
u (xu)∑

xv
μt+1,p
uv (xu, xv)

,

μt+1,p+1
u (xu) =

√
μt+1,p
u (xu)

∑
xv

μt+1,p
uv (xu, xv) .

In summary, the MAP inference algorithm (Algo-
rithm 1) is a double loop algorithm: In the outer loop,
the algorithm performs proximal maximization and in
the inner loop, the algorithm performs cyclic Bregman
projection. It is shown in [1, 12] that for appropriate
choice of weight sequence {wt}, Algorithm 1 has super-
linear convergence rate.

3 MRF-based Drought Detection Algorithm

In this section, we show how droughts are detected using
the MAP inference algorithm presented in Section 2.

3.1 Designing the Potential Functions Climate
datasets are usually spatio-temporal datasets in that
they have climate variable observations over the globe
for a period of time. Suppose a precipitation dataset has
yearly precipitation averages over a m × n global grid
over T years, i.e., the resolution is 180

m degree latitude
× 360

n degree longitude. To use the MRF model, the
underlying graph structure has to be determined. To
model the spatio nature of the dataset, we use a m× n
4-nearest neighbor grid for each year. To model the
temporal nature, we construct a 3-dimensional grid by
connecting the nodes representing the same location in
the T 2-dimensional grids. Figure 1 shows the graph
structure for m = 3, n = 4, T = 2.

Algorithm 1 MAP inference algorithm with proximal
maximization and Bregman projection

Input: potential functions {fu, fuv}, weight sequence
{wt} and the number of integer values k
Output: pseudomarginals μ
Initialization: μ1

u(xu) =
1
k and μ1

uv(xu, xv) =
1
k2

Outer Loop: For t = 1, 2, . . . until convergence
Compute μt+1 by the inner loop
1. Initialization:

μt+1,0
u (xu) = μt

u(xu) exp(w
tfu(xu)) ,

μt+1,0
uv (xu, xv) = μt

(uv)(xu, xv) exp(w
tfuv(xu, xv)) .

2. Inner Loop : For p = 0, 1, . . . until convergence
For each node

μt+1,p+1
u (xu) =

μt+1,p
u (xu)∑

xu
μt+1,p
u (xu)

.

For each edge

μt+1,p+1
uv (xu, xv) = μt+1,p

uv (xu, xv)

√√√√ μt+1,p
u (xu)∑

xv
μt+1,p
uv (xu, xv)

,

μt+1,p+1
u (xu) =

√
μt+1,p
u (xu)

∑
xv

μt+1,p
uv (xu, xv) .

(a) m = 3, n = 4, T = 1.

(b) m = 3, n = 4, T = 2.

Figure 1: The graph structure for climate datasets used
in this paper.



To facilitate the discussion in the sequel, we intro-
duce some notations first: We denote the precipitation
observation at location u at time t as ytu. The node-
wise potential of location u at time t is f t

u(x
t
u). For

two neighboring locations at time t, we denote the pair-
wise potential as f t

uv(x
t
u, x

t
v). For the same location u

at time t− 1 and t, we denote the pairwise potential as
f t−1,t
u (xt−1

u , xt
u).

We are now ready to define the potential functions
based on the 3-dimensional grid. To detect drought
regions, we set k = 2, where xt

u = 1 means that location
u at time t is in a drought state, i.e., abnormal state, and
xt
u = 0 means a normal state. To define the nodewise

potential function for each location u, we partition the
observations ytu, t = 1, . . . , T into two parts and we
consider the observations below the p% percentile as
abnormal and the rest as normal. We also compute
μabnormal
u and μnormal

u , the mean of the abnormal and
normal observations respectively. Then the nodewise
potential function comes from the log-likelihood of a
Gaussian distribution

f t
u(x

t
u = 1) = logN (ytu|μabnormal

u , σ2
u) ,

f t
u(x

t
u = 0) = logN (ytu|μnormal

u , σ2
u) ,

where σu is the standard deviation of the observations
at location u.

We define the pairwise potential functions to en-
courage label consistency, i.e., the potential value is
higher if neighboring nodes take same values. Specif-
ically, we set the pairwise potential as follows:

f t
uv(x

t
u, x

t
v) =

{
C1 > 0, if xt

u = xt
v;

0, Otherwise.

and

f t−1,t
u (xt−1

u , xt
u) =

{
C2 > 0, if xt−1

u = xt
u;

0, Otherwise.

Intuitively, the higher C1 is, the more likely the neigh-
boring nodes in the 2-dimensional girds are to take same
values. Similarly, the higher C2 is, the nodes represent-
ing the same location at consecutive time intervals are
to take same values.

3.2 Obtaining the Integer Solution from the
Pseudomarginals After the potential function is de-
fined, we can run the MAP inference algorithm pre-
sented in Section 2 and compute the pseudomarginals
μ. To find the drought regions, we need to decode the
fractional solution μ and obtain the integer configura-
tion x. The value each node takes tells us whether the
location is in a drought state or not.

We employ a simple node-based rounding scheme
to interpret the pseudomarginals μ:

(3.11) xu = argmaxx′∈Xu
μu(x

′) .

We apply (3.11) to each node and obtain the corre-
sponding integer solution.

Now each node has an integer value associated with
it: If xt

u = 1, we consider that the location u at time t
is in a drought state, otherwise it is in a normal state.

3.3 Drought Detection from the Integer Solu-
tion Once we have the integer solution, we can detect
droughts based on it. Since a drought can be defined
both spatially and temporally, we define it as a set
of neighbouring nodes in the three-dimensional depen-
dency graph (Figure 1(b)) whose states are drought.
Thus, the drought detection problem becomes one of
finding sets of neighbouring nodes with drought states.
To accomplish this goal, we first construct a three-
dimensional adjacency graph and calculate the con-
nected components of this graph. We treat each con-
nected component as a drought. In the adjacency graph,
two nodes are connected if both nodes are in drought
states, i.e., we simply remove the edges from the depen-
dency graph if at least one node is not in the drought
state. A connected component is defined as a subgraph
of the adjacency graph in which any two vertices are
connected to each other by paths and which is connected
to no additional vertices. Since a connected component
may only contain a few locations and may not be long
in duration, we only pick the sizable components and
consider them as major droughts. The details as how
to select connected components are in Section 4.

3.4 Practical Issues Algorithm 1 is a general MAP
inference algorithm and can be applied to estimate the
mostly likely configuration for any pairwise MRF. In
practice, we find several ways to speed up the algorithm
for our application.

The first option is that, instead of a uniform ini-
tialization on μ, we can initialize the pseudomarginals
based on the precipitation value. To be more specific,
we set μt

u = 1, if the climate variable on node u at time
t is below the p% percentile and μt

u = 0, otherwise. We
attribute the speed up to the conjecture that the value-
based initialization is more close to the optimal solution
than the uniform initialization.

The other option is to divide the globe into several
disjoint parts, run the MAP inference algorithm on each
part and combine the results. Since we can estimate
the configuration for each part simultaneously, we can
gain significant speed up due to parallel computing.
Some climate datasets have disjoint parts in nature.



For example, since the CRU only has precipitation over
land, North America, South America and Australia are
isolated from the rest of the world.

Finally, we choose the weight scalar {w1, . . . , wT }
such that wT → 0. In this case, we observe a super-
linear convergence rate if we terminate the inner loop
when the change of μ between two consecutive iterations
is less than 10−3.

4 Experimental Results

In this section we show the drought regions detected
by the algorithm using the CRU dataset, which has
monthly precipitation from the years 1901-2006. The
dataset (Figure 2) is of high gridded spatial resolution
(0.5 degree latitude × 0.5 degree longitude) and only
includes the precipitation over land (67420 locations
with precipitation records). To eliminate the monthly
variance, we convert the monthly dataset to a yearly
dataset by calculating the average precipitation over 12
months for each year.

We first apply the drought detection algorithm over
the United States and the Sahel region and show that
our algorithm successfully discovers the dust bowl in the
1930s and the prolonged drought in the Sahel starting
in the late 1960s. We then apply the algorithm to the
global dataset and report the droughts that we identify.

For all the experiments, we set C1 = 0.5, C2 = 3,
w1 = 1 and wt+1 = 0.8wt. We terminate both the
inner and outer loop when the change of μ between two
consecutive iterations is less than 10−3.

150 W 120 W 90 W 60 W 30 W 0 30 E  60 E 90 E 120 E 150 E 180 E
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Figure 2: The CRU dataset is a highly gridded dataset
containing precipitation for land locations only (red
region).

4.1 The Dust Bowl The Dust Bowl, in the 1930s,
was one of the most devastating droughts of the past
century in the Great Plains region of the United States.
The severe drought affected almost two-thirds of the
country and was infamous for the numerous dust storms

that occurred [15].
In this subsection, we show how our approach can

be used to detect the Dust Bowl drought from the CRU
precipitation dataset. We first extract the precipitation
of the United States and run the drought detection
algorithm on this sub-dataset with p = 15. After the
algorithm outputs the pseudomarginals, we compute
the integer solution. Figure 3 shows the number of
locations with drought state detected by our algorithm.
We compare our drought detection algorithm with a
simple threshold algorithm: If the precipitation in a
location is lower than the p% percentile, we consider it
in a drought state. Otherwise, it is in a normal state. It
is very obvious from Figure 3 that our algorithm detects
a drought in the US in the 1930s, while the threshold
algorithm does not provide any meaningful results.

We then compute the connected components from
the integer solution and find that the component start-
ing from the year 1928 corresponds to the Dust Bowl
region. This connected component spans over 13 years
(1928-1940). The drought region we detect is shown in
Figure 4. For each location in the drought region, we
count the number of years it is included in the connected
component and divide this number by the number of
years that the component spans. Figure 4 shows the
resulting ratio associated with each location in a color.
We find that the Dust Bowl map is similar to the one
in [15].

We also carefully examine the solution provided by
the threshold algorithm. Since the threshold algorithm
fails to capture the spatial and temporal consistency,
we find that the nodes with drought states are isolated
from each other and do not form sizable connected
components. In contrast, the MRF model encourages
neighboring nodes to be in same states and, as a result,
the solution by the drought detection algorithm has less
number of ‘drought’ locations, as shown in Figure 3.

To show the drought region detected by the algo-
rithm is valid, we also draw a time series plot (Figure
5) of the average precipitation of the Dust Bowl region
we identify. It is clear to see that a sudden reduction
in precipitation occurred around 1930 and the drought
lasts for about 10 years.

4.2 The Sahel Region In this subsection, we show
the results of detection of the 30-year drought in the
Sahel starting in the late 1960s [5]. We extract the
precipitation of the Sahel region and run the drought
detection algorithm on this sub-dataset. We also use the
15% percentile. Figure 6 shows the number of locations
with drought states detected by both algorithms. It
is not surprising that the base line algorithm detects
many more drought locations than our algorithm. We
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Figure 3: The number of locations with drought states
in the United States detected by the drought detection
and threshold algorithms.
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Figure 4: The dust bowl drought region, which corre-
sponds to the connected component starting in 1928.
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Figure 5: The time series plot of the average precipita-
tion of the Dust Bowl region. The red ellipse shows the
sudden reduction in precipitation in the 1930s.
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Figure 6: The number of locations with drought states
in the Sahel region detected by the drought detection
and threshold algorithms.
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Figure 7: The prolonged drought in the Sahel region,
which corresponds to the largest connected component
starting in 1968.

find that the largest component corresponds to the
prolonged drought in the Sahel region starting in the
late 1960s. The connected component spans 31 years
(1968 to 1998). The drought region we detect is shown
in Figure 7 and the color code is the same as the one used
in Figure 4. We find that the drought map is similar to
the one in [8]. The time series plot (Figure 8) shows the
30-year precipitation reduction in the area.

4.3 Global Data Finally, we apply our drought de-
tection algorithm to the entire CRU dataset. We want
to emphasize that since the CRU dataset has a high
resolution and the underlying 3-dimensional grid has
7,146,520 nodes (67,420 nodes per year × 106 years),
the drought detection problem is of large scale.

Since the global precipitation exhibits large vari-
ance, a uniform percentile may not be sufficient. To
take this into account, for each location, we compute
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Figure 8: The time series plot of the average precipita-
tion of the Sahel drought region. The red ellipse shows
the decades long reduction in precipitation.
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Figure 9: The k-means clustering on the medians with
k = 9. Each color represents a different cluster. The
cluster in dark red (cluster index 9) indicates the lowest
precipitation while the blue cluster (cluster index 1)
indicates the highest precipitation.

the median precipitation over the 106 years and run
the k-means clustering algorithm on the medians with
k = 9. Figure 9 shows the 9 clusters over the globe.
Intuitively, the locations in the clusters with low pre-
cipitation are more likely to experience droughts than
those in the clusters with high precipitation. Thus, we
sort the clusters according to the mean precipitation in
descending order and set p = 15 for the first three clus-
ters, p = 10 for the next three clusters and p = 15 for
the rest.

After obtaining the integer solution from the
pseudomarginals, we compute the connected compo-
nents. Since a significant drought should be spatially
widespread over a long duration, we first select the
largest 200 connected components and then further pick
among them the ones which last for more than 5 years.
We consider the resulting connected components as ma-

jor droughts.
Our algorithm runs efficiently on the CRU dataset

and converges within one and a half hours in a Linux
workstation. The significant droughts are shown in
Figure 10-11 and each sub-figure shows the droughts
beginning in a particular decade. Besides the three-
decade drought in the Sahel region starting in the late
1960s and the Dust Bowl in the 1930s, the algorithm
also detects the drought in the southwest US and
northern Mexico in the 1950s, the region’s most severe
drought of the 20th century [6]. Other detected strong
droughts include: the drought in northeastern China
in the 1920s, the drought in Kazakhstan in the 1930s,
the drought in west Europe in the 1940s, the drought
in Iran in the 1950s, the drought in eastern India and
Bangladesh in the 1960s and the drought in southern
Africa in the 1980s. We find that most of the droughts
have a duration of at least 10 years. We also find that
the drought regions are mostly located in the arid and
semi-arid regions and this observation is consistent with
many climate modeling studies [5, 14].

In [11], the authors list the top 30 regions of the
world with abrupt decreases in rainfall during the 20th
century. Our algorithm discovers all the droughts in the
list, except for a drought in Ukraine and two droughts
in Australia. The droughts found by both algorithms
are shown by black rectangles in Figure 10 and 11.

5 Conclusions

Due to the importance of understanding droughts, we
consider the problem of their detection in this paper and
develop a fully automic drought detection algorithm.
We formulate the problem as the one of estimating
the most likely configuration of a binary MRF, where
each node can be in either a drought or normal state.
We adopt the proximal maximization and Bregman
cyclic projection scheme for the MAP inference task.
To maintain spatio-temporal consistency, we design
the potential functions to encourage the neighbouring
nodes to take same values. We run the algorithm on
the high resolutiuon CRU precipitation dataset and
it efficiently solves this large scale problem with over
7 million variables. The empirical results shows that
we successfully identify some well-documented drought
regions of the last century in different parts of the
world. We want to emphasize that even though we
mainly run our algorithm on a precipitation dataset,
the methodology is applicable to other climate variables
as well. We plan to extend the current algorithm to
handle multi-variate climate datasets in the future, e.g.,
incorporating the soil moisture variable to the model.
We are also interested in applying the algorithm to the
model output datasets.
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