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5.1  OVERVIEW AND MOTIVATION

5.1.1  Climate Extremes: Definitions and Concepts

The Intergovernmental Panel on Climate Change (IPCC) SREX 
(IPCC, 2011) summary for policymakers defines climate extremes 

as follows:

The occurrence of a value of a weather or climate variable above 
(or below) a threshold value near the upper (or lower) ends of 
the range of observed values of the variable. For simplicity, both 
extreme weather events and extreme climate events are referred to 
collectively as “climate extremes.”

Climate extremes in this chapter are defined as extreme weather events, 
or those that may last from several hours to several days. Thus, they may 
include heat waves and cold snaps, rainfall patterns in space and time 
potentially leading to floods and droughts, tropical cyclones, tornadoes, 
and storm surges. Figure 5.1 provides an overview.

There is evidence that statistical attributes of certain climate extremes 
have been growing steadily and significantly worse as a result of human 
influence, and these changes can be projected from analysis of physics- 
based computational climate model simulations as well as observations 
from remote or in- situ sensors. However, climate science cannot predict 
any particular event at decadal to centennial scales or assign a specific 
cause, and the confidence in statistical projections differs by the variable 
considered, the extent of spatial or temporal aggregation, regional and 
seasonal characteristics, and other considerations. Thus, we have relatively 
higher confidence in projections of temperature- related extremes, fol-
lowed by extremes of precipitation and tropical cyclones. The climates of 
the extra- tropics are often relatively easier to project than that of the trop-
ics, while statistical properties of extremes and change are typically better 
projected at aggregate space- time scales compared to finer resolutions.

5.1.2  Societal and Stakeholder Priorities

Stakeholder communities across multiple sectors such as water and 
food security, natural hazards preparedness and humanitarian aid, or 
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management of natural and engineered infrastructures, as well as policy 
makers dealing with urbanization, population growth, or migration, land 
use or energy and water sustainability, and energy or emissions control, 
require actionable insights about climate extremes at local to regional 
scales. The costs of action and inaction can both be large, as adaptation 
and mitigation strategies designed for climate extremes may be costly for 
the current generation and potentially even more costly for future genera-
tions. Specific examples of prior work that demonstrated the importance 
of climate extremes to the stakeholder community include the follow-
ing: an international climate change policy related to global emissions 

1.

2.

3.

Severe hydrological or
weather events or large
shifts in regional climate
patterns

Caused or exacerbated by
climate change and/or
natural climate variability

Leading to extreme
stresses on natural,
engineered and human
systems

Inclusive definition of

Knowledge Discovery &
Translation Process

Database

Data Integration

Data Analytics

New Insights

(Larger
Uncertainty)

Local Models
~e.g., 2.5 miles

Global Models
~62 miles

Decision Scales

GIS Visualization & Science
for Decision Support

Arguably the largest knowledge gap in climate science relevant for informing
adaptation and policy

Multiple fossil
fuel emission
storylines
Multiple models

•

•

Critical
infrastructures
Population
Climate
observations

•

•
•

“Climate extremes”:

FIGURE 5.1 Uncertainty quantification for climate extremes, which are broadly 
construed in this context, represents one of the largest knowledge gaps in terms 
of translating the physical science basis of climate to information relevant for 
impacts assessments and adaptation decisions, and eventually to mitigation 
policy. However, the cascade of uncertainties is difficult to quantify. The soci-
etal costs of action and inaction are both potentially large for climate adaptation 
and mitigation policies; hence, uncertainties in climate are important to effec-
tively characterize and communicate. Climate extremes may broadly include 
large shifts in regional climate patterns or severe weather or hydrological events 
caused or exacerbated by natural climate variability or climate change. This 
chapter primarily focuses on the statistical attributes of severe events, or, changes 
in tail behavior.
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negotiations (Engelhaupt, 2008; Tollefson, 2008a, b); national security 
decisions related to regional threat assessments and preparedness, for 
example, the 2010 Quadrennial Defense Review report of the United States 
Department of Defense (Ganguly et al., 2009a); and a war game related to 
the Arctic sea ice (cited in NRC, 2011).

5.1.3  Computational Data Sciences: Challenges and Opportunities

Computer science, informatics, and computational (or cyber) infrastruc-
tures have played a major role in our current understanding, projections, 
and attributions of climate extremes, primarily through physics- based 
models. The climate system is nonlinear, dynamical (and often chaotic, or 
very sensitive to initial conditions), subject to multiple feedback mecha-
nisms (e.g., among ocean, atmosphere, and land processes), thresholds 
and intermittence (e.g., for precipitation and cloud physics), exhibits low- 
frequency (and even “1/f ”) variability and complex dependence structures 
(e.g., long- memory processes over time and long- range spatial dependence 
or “teleconnections” in space), as well as nonstationary (e.g., the relative 
dominance of processes generating extremes may change in a warmer 
world). Thus, purely data- driven extrapolation may not be adequate or 
even appropriate, especially for long lead  time projections (e.g., decadal 
to centennial scales), where data assimilation methods may also have 
limited value. State- of- the- art physical climate models are based on fun-
damental physical laws (e.g., laws of motion and conservation of mass 
and momentum). Physical approximations and mathematical discretiza-
tion techniques (e.g., strategically chosen finite difference equation sys-
tem formulations) are applied to these laws, resulting in complex systems 
encapsulated in hundreds of thousands or millions of lines of low- level 
source code (Christensen et al., 2005). Current global climate models are 
composed of multiple interacting components, including atmospheric, 
oceanic, and often land and sea ice models (IPCC, 2007). Such physics- 
based models, whether global climate or Earth system models or regional 
climate models used to downscale the outputs of global models, are more 
credible for variables such as mean temperature at continental to global 
scales. The same models are less reliable for climate extremes; for example, 
they are inadequate for precipitation extremes and tropical cyclones, espe-
cially at the precision required for making informed decisions.

The research opportunities for computational data sciences are three-
fold: (1) improved characterization, projections, and attribution of climate 
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extremes; (2) characterization of uncertainties, especially at local to 
regional scales for annual or seasonal projections over decades and cen-
turies; and (3) enhanced predictive insights over and above what may be 
obtained from direct extrapolation of historical trends or analysis of cli-
mate model simulations. The volume of the data (e.g., hundreds of tera-
bytes going on petabytes for archived climate model simulations, and 
gigabytes going on terabytes for remotely sensed observations) and the 
complexity of the methods (Lozano et al., 2009a, b; Steinhaeuser et al., 
2011a, b) require data- intensive computational methods. A schematic is 
shown in Figure 5.2.
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FIGURE 5.2 Remote or in- situ sensor observations and climate model simu-
lations can be investigated through computational data science methods for 
multimodel evaluations, enhanced projections, and multiscale assessments 
to inform decisions and policy. The growth in climate data from models and 
observations is expected to grow exponentially over the next several decades 
(Overpeck et al., 2011), providing a vast set of challenges and opportunities for 
data science communities.
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5.1.3.1  Overview of Research Areas: 1. Extremes Characterization
Extremes may be characterized based on their relevance to impacts 
(e.g., heat waves based on nighttime minima, which relate to human dis-
comfort and possible loss of lives: Meehl and Tebaldi, 2004) or through 
statistical distributions (e.g., extreme value theory for precipitation 
extremes: Kharin et al., 2007). Thus, our analysis (Ganguly et al., 2009b) 
of model simulations and surrogate observations (re analysis data gener-
ated by assimilating weather data from disparate sensors into a numerical 
weather prediction model) pointed to higher trends but larger uncertainty 
in heat waves in this century based on a plausible but high emissions sce-
nario, which in turn implies greater urgency but caution in adaptation or 
mitigation decisions. On the other hand, our analysis (Kodra et al., 2011a; 
see report by Tollefson, 2011) of multiple model simulations and re analysis 
data revealed that while extreme cold events may grow less frequent, the 
intensity and duration of the ones that do occur may often persist at cur-
rent levels. Our analysis of intense precipitation events (Kao and Ganguly, 
2011) suggested an amplification of extremes, especially over the extra- 
tropics and in an aggregate sense at continental to global scales. Major 
community- wide efforts are necessary to comprehensively characterize 
the statistical attributes of gradual or sudden changes in extremes over 
space and time, including less well- defined or predictable climate extremes 
such as droughts. A combination of state- of- the- art methods, new meth-
odological adaptations, and novel approaches in spatial or spatio temporal 
statistics and data mining are motivated.

5.1.3.2  Overview of Research Areas: 2. Uncertainty Assessments
Uncertainty assessments for extremes (Wehner, 2010) need to consider 
knowledge- gaps in model physics (e.g., based on statistical methods 
to balance model skill in the past and multimodel convergence in the 
future through extensions of approaches such as Smith et al., 2009), and 
the applicability and statistical validity of the definitions or distributions 
of extremes, as well as uncertainties in parameter estimation processes 
(e.g., through the bootstrap as in Kharin et al., 2007 or Kao and Ganguly, 
2011). The potential differences in the nature of the insights and uncer-
tainties based on definitions of extremes become obvious by comparing 
our recent work (Ghosh et al., 2011) with a previous approach (Goswami 
et al., 2006). Current methods for attribution of extremes, e.g., for intense 
precipitation events, include statistical techniques (Min et al., 2011) or 
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numerical simulations (Pall et al., 2011): these methods can benefit from 
rigorous uncertainty quantification approaches. New mathematical meth-
ods for uncertainty are critically needed in these areas.

5.1.3.3  Overview of Research Areas: 3. Enhanced Predictions
Large gaps continue to exist in our scientific understanding and projec-
tions of certain crucial variables, often related to climate extremes, and 
fine- scale or aggregate processes that drive the extremes. There have been 
claims that the sad truth of climate science is that the most crucial infor-
mation is the least reliable (Schiermeier, 2010). One question relevant 
for enhanced projections of climate extremes is the extent to which the 
variables that are relatively better predicted (e.g., sea surface temperature 
or ocean meteorology in general, atmospheric temperature or humidity 
profiles over land) may have information content about the variables that 
may be more crucial (e.g., precipitation extremes or intensity and fre-
quency of hurricanes), and whether such information can be utilized for 
developing predictive models. There is evidence of information content; 
for example, Liu et al. (2009) and others have reported on temperature 
dependence of precipitation extremes. And there is literature attempting 
to develop physics- based relations; for example, O’Gorman and Schneider 
(2009), Sugiyama et al. (2010), as well as Muller and O’Gorman (2011), 
have sought to develop a better understanding of precipitation processes 
related to extremes based on atmospheric covariates, while Emanuel et al. 
(2008) have attempted to produce projections of the statistical attributes 
of hurricanes based on climate model- simulated oceanic variables. While 
data- driven methods should be explored to develop novel and action-
able predictive insights, the methods have to be able to handle nonlinear 
processes as well as complex dependence patterns, yet remain physically 
interpretable and able to generalize to nonstationary conditions. This area 
may represent a steep challenge for computational data sciences, and per-
haps motivate truly interdisciplinary approaches conceived from tradi-
tionally disparate methods ranging from computational statistics, signal 
processing, and econometrics, to nonlinear dynamics, graph- based meth-
ods, data mining, and machine learning. Our recent efforts (Steinhaeuser 
et al., 2011a, b and Chatterjee et al., 2012) for improved regional predic-
tions over land based on ocean meteorological variables or Kawale et al., 
2011 for understanding climate dipoles) are only initial steps in an area 
that may well represent a grand challenge for data- intensive sciences.
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5.2  EXTREMES CHARACTERIZATION
There are several challenges in characterizing and analyzing data related 
to climate extremes. One of the first challenges is the nature of the data: 
observational data are of relatively short duration and typically do not 
allow for many important extreme conditions to be manifest, they are 
unevenly spread spatially, and data quality is also uneven. Climate model 
outputs and re analysis data do not have several of these problems, but 
Mannshardt- Shamseldin et al. (2011) demonstrate that the nature of 
extremes from gridded data differ considerably from observed data. 
Moreover, as Wehner (2010) observes:

…to the extent that climate models can be tuned to reproduce the 
recent past, model developers focus on the mean values of climatic 
observations, not the tails of their distributions. 

Several other studies (O’Gorman and Schneider, 2009; Sugiyama et al., 
2010; Wehner, 2010; Min et al., 2011) have pointed out that our current 
understanding of precipitation extremes has room for improvement and 
that the current generation of climate models probably fails to reflect real-
ity. Recent studies (O’Gorman and Schneider, 2009; Sugiyama et al., 2010) 
suggest a deficiency in our understanding of the relationship between 
precipitation extremes and atmospheric moisture content. Wehner (2010) 
suggests that climate models might actually be able to emulate extreme 
events if they were run at sufficiently high resolution; that is not the case 
for models run at the typical resolution level adopted for the “International 
Panel on Climate Change’s Fourth Assessment Report” (AR4, a landmark 
assessment report on the state of climate change science) (IPCC, 2007), 
and higher- resolution runs are computationally expensive. Min et al. 
(2011) point to the possible underestimation of trends in precipitation 
from a potential lack of accounting for anthropogenic effects on future 
precipitation extreme events. All of these suggest that there is room for 
improvement in the quality of data, and in the development of methodol-
ogy to analyze available extreme data.

Another challenge for statistical and data- driven analysis of climate 
extremes is that the definition of what is extreme should be guided by 
various stakeholders and users. For example, in the case of rainfall, (1) the 
amount of rainfall in a given unit of time, (2) the total amount of rain-
fall, (3) the duration of rainfall, (4) the time gaps between rainfall events, 
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(5) the spatial pattern of rainfall, and several other variables can be of 
interest. Accordingly, the definition and the notion of an extreme may 
be different. The trifecta of intensity, duration, frequency (IDF), which is 
often characterized using extreme value theory (Kao and Ganguly, 2011) 
is useful in many cases, but not all. Another example is that of cold tem-
peratures, which are important for crop production and food security. The 
variables of interest in this example could be the number of days of a cer-
tain level of frost, consecutive frost days, and time spent below a tempera-
ture threshold (Kodra et al., 2011a). Not all such definitions of “extremes” 
lend themselves to common, theoretically satisfying statistical analysis 
(Coles, 2001).

Another potential problem is that of identification of extreme events 
versus rare events, which are not always the same; in other words, an event 
might be extreme in impact but not rare, and vice versa. The definition of 
an extreme event may often be determined by its impact, and this defini-
tion will, in turn, often determine its rarity. The rarity of the defined events, 
along with other data properties, will dictate which statistical inference 
approaches may be appropriate. In some cases, summary measures have 
been used to obtain conclusions about extreme events (Goswami et al., 
2006), although subsequent uses of the extreme- value model have pro-
vided different conclusions on similar data (Ghosh et al., 2011). Also, as 
Ferro and Segers (2003) observe, extremes can be clustered, which may 
present additional challenges related to the independence assumed by 
some extreme value statistical approaches.

From a purely statistical perspective, there is a gap between finite 
sample data- based extreme events and the general asymptotic theory 
that is used for extreme event analysis. Classic extreme- value statisti-
cal approaches attempt to extrapolate the extreme behavior of variables 
by fitting distributions to tail observations, such as annual maxima or 
exceedances above or below some predetermined (quantile) threshold 
(Coles, 2001; Kharin et al., 2007). Note that the generalized extreme value 
distribution or the generalized Pareto distribution, which have been used 
in the climate extremes literature (Kharin and Zwiers, 2000; Perkins 
et al., 2009; Kao and Ganguly, 2011), are asymptotic limits of probabili-
ties relating to finite- sample size extreme events, and need not be exact 
characterizations. Also, most real data are temporally and spatially cor-
related, a fact that is often ignored in computing return- level characteris-
tics, quantifying uncertainty, or making inference. There is no consensus 
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about the best parameter estimation and inference technique for extreme- 
value distributions (Hosking and Wallis, 1997; Kharin and Zwiers, 2000; 
Coles and Dixon, 1999; Kharin and Zwiers, 2005), and approaches for 
including information from covariables are still in development (Hall and 
Tajvidi, 2000).

The bootstrap, broadly speaking, is a class of resampling techniques that 
can be employed to quantify sampling variability (uncertainty) in param-
eter estimation, among other uses (Efron, 1979). Parametric bootstrap and 
the traditional nonparametric bootstrap approaches of Efron (1979) were 
used in conjunction with the L- moments method and the maximum like-
lihood method for studying climate extremes in Kharin and Zwiers (2000; 
2005; 2007), who also compared various estimation techniques and listed 
several caveats. Inference for climate extremes may benefit from a bet-
ter understanding of the limits and appropriateness of popular statistical 
inference procedures (such as extreme value theory), as well as the appli-
cation and/ or creation of other approaches that relax assumptions or are 
robust to limitations of available extreme data.

5.3  UNCERTAINTY ASSESSMENTS

5.3.1  Statistical Modeling of Uncertainty in Multimodel Ensembles

Here we discuss the state- of- the- art in uncertainty quantification (UQ) 
for situations where ensembles of global climate models or Earth system 
models (GCMs/ ESMs) are used to assess regional climate change. While 
statistical and dynamical (regional climate models) downscalings are often 
used for regional assessments, they are in turn driven by ESMs, and hence 
UQ in ESMs remains an important challenge. UQ is often inundated with 
a sense of urgency, and ensembles of ESMs are tools from which practical 
and timely uncertainty assessments can be readily formed.

Structural uncertainty, or that which arises from variations in the 
mathematical mechanics of climate models, is the principal focus of 
UQ in approaches discussed in this section; it has been studied in sev-
eral forms with multimodel ensembles where weights are assigned to 
individual models as a measure of their reliability. We distinguish the 
ensemble approaches discussed here from other UQ methodologies—for 
example, physics perturbed ensembles—that have been used to explore 
parameter uncertainty within single climate models (Stainforth et al., 
2005), and approaches based on or similar to polynomial chaos expan-
sion (see Section 5.3.2). It is important to be aware of all approaches for 
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UQ to understand the scope and limitations of multimodel ensembles for 
climate UQ: to date, no statistical multimodel ensemble UQ methodol-
ogy explicitly incorporates uncertainty within climate models (e.g., to 
understand the uncertainties contributed by parameterizations of climate 
processes and the propagation of these uncertainties along the rest of the 
model components). The ensemble methods discussed here, however, pro-
vide a basis for exploring inter- model (i.e., structural) uncertainty.

While the use of multimodel ensembles for prediction has been studied 
extensively in data science disciplines (Seni and Elder, 2010), an important 
distinction must be made for the climate science domain. In many typical 
time series and classification applications, for example, a forecast horizon 
of interest is often one or two (or a few) periods ahead, or the binary clas-
sification is for the next observation (Seni and Elder, 2010). In such cases, 
there is the potential for a predictive model to learn from an ensemble of 
predictions and recalibrate its next prediction upon validation (Fern and 
Givan, 2003). Several key challenges, however, distinguish climate fore-
casting from more typical problem settings: long prediction lead  times 
(multidecadal to centennial scales), potential nonstationarity (where the 
validity of processes embedded within a GCM may change), the difficulty 
in selecting metrics that are meaningful for model training (Knutti, 2010), 
and finally the impossibility of true validation for the prediction horizons 
of interest. Many of the methods developed in data sciences, while valu-
able on their own and across applications, do not directly translate well 
to climate prediction. For example, even in the case where past data are 
segmented into multiple training samples in order to rigorously develop a 
multimodel ensemble prediction formula founded on well- chosen, physi-
cally meaningful error metrics, there is no guarantee that nonstation-
arity will not invalidate the prediction formula in the future, given the 
lead  time. Thus, while mature data science ensemble methodologies may 
be valuable as foundational approaches, novel and creative methods are 
needed to solve the problem of UQ in climate with multimodel ensembles.

One persisting notion in the climate literature is that the multimodel 
average (MMA), or the average of spatial, temporal, or spatio temporal fields 
of climate outputs from multiple GCMs, is a robust approach for making 
“most likely” projections; this robustness is largely based on alleged bias 
(noise) cancellation and orthogonal skills of GCMs (Knutti et al., 2010). 
The concept of its potential utility in climate may have followed from suc-
cess in weather forecasting (Krishnamurti et al., 1999; Hagedorn et al., 
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2005) and has been empirically justified in climate attribution studies 
(Pierce et al., 2009; Santer et al, 2009); in fact, the latter studies implicitly 
suggest that the MMA of a random selection of an adequate number of 
GCMs will form a reliable projection, at least for anthropogenic attribu-
tion. Equal- weighted MMAs may represent a more conservative approach, 
as optimum model weighting may hold less potential benefit than risk 
compared to equal weighting (Weigel et al., 2010). The MMA has been a 
default in some climate stakeholder assessment reports (Karl et al., 2009), 
where they are sometimes displayed visually without clear reference to 
uncertainty. This may be a questionable practice, as averaging of dynami-
cally consistent spatial fields or time series may lead to physically mean-
ingless signals, and the exclusion of individual model results may serve to 
obscure plausible lower and upper bounds of climate change (Knutti et al., 
2010). A recent case study (Perkins et al., 2009) has also implicitly ques-
tioned the notion of a priori use of MMAs and inclusion of demonstrably 
poor GCMs. Work with historical (20th century) observations and simu-
lations of Indian monsoon climatology (Kodra et al., 2012) may suggest 
that the MMA should not be a default choice, and that all models within 
an ensemble should be evaluated carefully.

Given this debate surrounding MMAs, the display of worst and best 
cases as derived from archived GCM outputs may be advisable as the 
bare minimum requirement for communicating uncertainty. However, 
because multimodel ensembles are not true random samples of inde-
pendent GCMs from a larger population, they should not be considered 
formal probability distributions (Tebaldi and Knutti, 2007). More rigor-
ous and statistically grounded approaches may be desired; recently, sev-
eral notable probabilistic approaches have been developed: Giorgi and 
Mearns (2002) proposed the Reliability Ensemble Average (REA) method 
for assigning reliability to simulations of regional mean temperature from 
GCMs; this method has since been expanded and developed into a more 
formal Bayesian framework that has become perhaps the most prominent 
method for UQ using multimodel ensembles. Essentially, the REA method 
attempts to weight GCMs based on their alleged reliability, which is a bal-
ance of (1) historical model bias relative to observations and (2) future 
multimodel consensus (convergence), or model distance from the center 
of the ensemble spread. Giorgi and Mearns (2002) define bias and conver-
gence as the following, respectively:
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In practice, Giorgi and Mearns (2002) arbitrarily set m = n = 1 so that bias 
and consensus received equal favor. Because ~Y and λC,j are both unknowns 
but depend on each other, a recursive procedure was used to compute both 
(Giorgi and Mearns, 2002).

These two criteria suggest that information on the credibility (weights) 
of models can be estimated by performance compared to observed data, 
as well as degree of convergence; if a model falls far from the center of the 
ensemble, it may be treated more like an outlier than a likely outcome. 
The consensus criterion may have been borne at least partially from the 
ideas of bias cancellation and orthogonal skills of MMAs discussed pre-
viously (Krishnamurti et al., 1999; Hagedorn et al., 2005), and strong 
criticisms of the criterion have been acknowledged (Tebaldi and Knutti, 
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2007). Additionally, the criterion of GCM skill (bias in most recent work) 
is difficult to define and evaluate; in most cases, it is difficult to determine 
whether metrics measuring past GCM skill will translate to the future 
(Tebaldi and Knutti, 2007; Knutti et al., 2010).

The REA was admittedly ad hoc; however, its two notions of GCM skill 
and consensus (Giorgi and Mearns, 2002) have formed the foundation for 
a prominent line of work, beginning with Tebaldi et al., (2004), that for-
malized them in a Bayesian model. One of the most recent versions of this 
statistical model can be found in Smith et al. (2009), which also allows for 
the joint consideration of multiple regions. Specifically, using this model, 
a posterior distribution for past or current temperature μ and future tem-
perature υ can be simulated from a Markov Chain Monte Carlo (MCMC) 
sampler using a weight λj for each GCM j. Next, each λj can be simulated 
from a posterior by considering the bias and consensus of GCM j. The 
weights λj then inform a new estimate of μ and υ, which informs a new 
estimate of each λj, and so on. Specifically, λj follows a Gamma posterior 
distribution with the following expectation:

 E a

b X Y X
j

j j j

λ
µ θ υ β µ

•
. .

  = +
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1

0 5 0 5
2 22  (5.5)

where a and b are prior parameters (usually uninformative), β is an 
unknown quantity representing the correlation between historical and 
future model outputs, and θ is a random quantity that allows future cli-
mate variance to differ from that of the past. The conditionality serves to 
illustrate the fact that the expectation of λj is contingent upon the values 
of all other random parameters and data. Thus, the value of λj is a func-
tion of the random quantities μ, υ, θ, and β, which in turn have their own 
posterior conditional distributions. In general, it is notable that under this 
formulation all of these random quantities are conditionally independent 
and cannot be readily analyzed marginally.

An initial post- hoc analysis (Kodra et al., 2011b) of simulation results 
from the latest model (Smith et al., 2009) suggested it may rely more on 
consensus and less on bias (i.e., skill), and that the bias criterion may not 
be adequate in representing model skill. Conceptually, in the state- of- the- 
art statistical model, holding all else constant, the posterior distribution 
for υ−μ will “shrink” toward the multimodel mean, even if all GCMs 
exhibit poor skill with respect to past data; in such circumstances, it might 
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make sense that that uncertainty should actually increase. The degree of 
shrinkage toward the mean is dictated by the parameter θ. Its impor-
tance is stressed in Figure 5.3 and clear from Equation 5.1: if θ ≫ 1, then 
holding all else constant, consensus is favored by the statistical model. 
Indeed, an earlier work by Tebaldi et al. (2004) featured a slight variant 
of their statistical model with a provision that, through a prior distribu-
tion, restricted the influence of θ; this provision was not included later by 
Smith et al. (2009). While the above represents the most prominent line 
of work on combining multimodel ensembles for quantifying uncertainty 
in regional climate, a few other initial approaches have been developed. 
These approaches have extended the broad multimodel UQ line of work by 
integrating methodology for quantifying inter- model covariance (Greene 
et al., 2006) and spatial variability structure (Furrer et al., 2007; Sain et al., 
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FIGURE 5.3 The univariate (one region) Bayesian model from Smith et al. (2009) 
illustrates the importance of the parameter θ in dictating the spread of the prob-
ability density function (PDF) for change in regional mean temperature. This 
particular set of PDFs is obtained for spatiotemporally averaged Greenland tem-
perature change from 1970 to 1999 to 2070 to 2099. The horizontal axis measures 
change in degrees Celsius, while the vertical axis measures frequency. The legend 
indicates the condition of θ and from top to bottom corresponds to PDFs from 
narrow to wide: “random” is the narrowest density, and treats θ as a random 
unknown quantity as in Smith et al. (2009). For the remaining PDFs, values of θ 
are fixed at different quantities that come to represent the relative importance of 
convergence versus bias (where the importance of bias is 100% minus that of θ). 
Notably, treating θ as a random quantity yields a result where convergence is 
favored much more than bias.
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2008), Bayesian model averaging as a technique for model weighting (Min 
and Hense, 2007), and methodology for quantifying GCM biases (Buser 
et al., 2009).

Monteleoni et al. (2010) proposed an online learning approach where 
weights for GCMs can change with new data. More specifically, α- experts 
predict annual global mean temperature; the experts learn from the mis-
takes (i.e., squared errors) of GCMs and can actually predict one–year- 
ahead temperature better than the best prediction of all GCMs or the 
multimodel mean. While this is an intriguing approach for combining 
GCMs and it seems to handle one- step- ahead non stationarity quite well, 
in its present form it does not allow for long lead  time prediction, which is 
the primary goal of climate models in general. Additionally, uncertainty 
bounds have not yet been developed within the algorithm.

The regional climate UQ research area is still relatively nascent and may 
benefit from new approaches (Knutti et al., 2010). Methods must be devel-
oped that simultaneously accommodate long lead  times as well as potential 
nonstationarity, where conditions (e.g., relationships between variables) 
could change. In addition, there may be value in considering physical rela-
tionships between multiple variables to encourage robustness and inter-
pretation in the GCM weighting process, as is discussed in Section 5.4. 
Recent UQ work (Tebaldi and Sanso, 2009), along the same line as Smith 
et al. (2009), developed a hierarchical Bayesian model for joint projections 
of mean temperature and precipitation; this model attempted to statisti-
cally utilize correlation between the two variables. Extending this type of 
statistical model to one that considers climate extremes would be valu-
able to the climate community. For instance, O’Gorman and Schneider 
(2009) developed a relatively simple conceptual physical model for an 
increase in precipitation extremes under anthropogenic climate change, 
while Kao and Ganguly (2011) explored conceptual physical bases in their 
characterization of 21st  century precipitation extremes. Careful statistical 
utilization of such insights could lead to novel multimodel ensemble UQ 
methodology for extremes, which could be useful for informing various 
impact sectors.

5.3.2  Parametric Uncertainties in Individual Climate Models

While approaches for quantifying structural uncertainty were discussed 
in Section 5.3.1, accounting for parametric uncertainty is important for 
understanding intrinsic model variability, especially because archived 
global models do not traverse the entire space of plausible prediction space 
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(Stainforth et al., 2005). Climate models employ a wide range of param-
eterizations in land, ocean, atmosphere, and ice sub- model components. 
These parameters are typically calibrated based on data. Bayesian meth-
ods are useful for parameter estimation with quantified uncertainty, as 
they provide estimation of the joint posterior density of the parameters. 
While Bayesian methods have been used for parameter estimation in cli-
mate model components (Jackson et al., 2003, 2004, 2008; Annan and 
Hargreaves, 2006; Govaerts and Lattanzio, 2007; Villagran et al., 2008), 
much more remains to be done in general for estimating the wide variety of 
climate model parameters. One key challenge is the construction of effec-
tive climate model surrogates for facilitating the Bayesian/ inverse problem 
solution. Gaussian processes, as well as other surrogate models, have been 
used for representing climate data (Jackson et al., 2004; Banerjee et al., 
2008; Cressie and Johannesson, 2008; Sanso et al., 2008; Villagran et al., 
2008; Drignei et al., 2009; Furrer and Sain, 2009). High dimensionality, 
in the present context largely embodied in the large number of uncertain 
parameters, is a significant challenge for surrogate construction and for 
uncertainty quantification in general. Global sensitivity analysis methods 
(Morris, 1991; Saltelli et al., 2000) have been used to identify a small subset 
of parameters that are critical to the climate system outputs of interest. 
Alternatively, compressed sensing (CS) methods have been developed to 
provide means of constructing sparse representations of high- dimensional 
information (Donoho, 2006; Candès and Wakin, 2008). Bayesian CS meth-
ods have been used for discovering sparsity in land models (S. Babacan 
et al. 2010).

With parameters calibrated using Bayesian methods, and described 
using a posterior density, one can estimate the forward propagation of 
uncertainty in model observables resulting from the input parametric 
uncertainty. While this can be done via random sampling, employing the 
parameter posterior density, model complexity, and computational cost 
render this an infeasible task due to the large number of random samples 
needed for convergence of Monte Carlo methods (Caflisch, 1998). In recent 
years, Polynomial Chaos (PC) UQ methods have been developed and 
used to great advantage in representing uncertain/ random variables, and 
in accelerating forward uncertainty propagation in computational mod-
els (Ghanem and Spanos, 1991; Xiu and Karniadakis, 2002; Debusschere 
et al., 2004; Le Maitre et al., 2004; Soize and Ghanem, 2004). PC methods 
rely on a representation of random variables as truncated expansions in 
terms of orthogonal functions of a given random basis. Thus, an uncertain 
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model parameter χ can be written as a PC expansion (PCE) in terms of 
an n- dimensional basis:

 χ α ξ ξ ξ≈ …( )
=∑ k k n

k

P
Ψ 1 2

0
, , ,  (5.6)

The key task is then the propagation of uncertainty from parameter 
χ to climate model output Z, where Z = ℋ(χ) (Najm, 2009). Generally, 
PC methods come in two variants (Najm, 2009): (1) intrusive methods, 
where the governing equations are transformed employing Galerkin pro-
jection, arriving at a new set of equations for the PC mode coefficients; and 
(2) nonintrusive methods, where the original model is employed as a black 
box in a sampling context. The former approach requires changing the 
source code/ forward solvers of the underlying physical model. The latter 
is the more practical, given established legacy codes. In this approach, the 
mode coefficients in the PCE for a model output of interest Z are evalu-
ated employing a chosen set of N samples of the basis ξ, {ξ j}N

j=1 and associ-
ated model output values Z j. Adaptive anisotropic deterministic sampling 
methods, employing sparse- quadrature evaluations of projection inte-
grals for the PC coefficients, are highly effective in this regard (Nobile 
et al., 2008).

The outcome of the PC forward UQ problem is a PCE for the uncertain 
model outputs of interest, which can be employed to generate correspond-
ing probability density functions, or moments of interest. Note that the 
PCE, being a functional representation of model outputs over the range 
of uncertainty in input parameters, is also useful simply as a surrogate for 
the dependence of model outputs on the parameters. PC surrogates have 
been used, very much like GP surrogates, for accelerating Bayesian infer-
ence (Marzouk and Najm, 2009).

The use of PC UQ methods in the global scale climate- modeling con-
text is feasible in principle employing a nonintrusive formalism, although 
it is severely challenged by the high dimensionality of the stochastic input 
space, particularly given the computational expense of a single model run. 
Presuming known uncertainties of model parameters, targeted studies 
exploring small subsets of parameters are quite feasible. Sparsification via 
sensitivity analysis or CS methods, as well as utilization of known param-
eter correlations, and the hierarchical structure of climate models, is use-
ful to reduce the effective dimensionality of the uncertain input space, 
thereby rendering the overall problem more feasible.
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Finally, given that the most damaging consequences of climate change 
are associated with climate extremes, it is worthwhile to discuss the pre-
diction of extreme behavior under uncertainty in model parameters. This 
is a more challenging pursuit than that of estimating means/ moments of 
uncertain climate predictions when extreme events of interest are also 
rare. Capturing the tails of probability distributions accurately in a com-
putational setting is challenging when there is small probability of sam-
pling the tail region, and hence implies the need for a very large number of 
samples overall. While PC methods can avoid random sampling, the accu-
racy of the PC representation for modeling the tail- behavior of the under-
lying random variable requires particular attention. In principle, using 
high- order expansions may help; however, that renders the problem even 
more computationally challenging, requiring, for example, a large number 
of samples in a nonintrusive setting. It is also feasible to use a PC basis that 
is tailored to achieve higher accuracy in the tail region than conventional 
constructions. This can be done, for example, by choosing a basis that has 
a density with fat- tail behavior. This approach, however, still requires fur-
ther development to be implemented practically with climate models.

5.4  ENHANCED PREDICTIONS
The key desiderata from predictive models in the context of extremes 
include accurate and uncertainty- quantified projections of crucial vari-
ables related to extremes as well as succinct characterizations of covariates 
and climate processes collectively influencing extremes. Such character-
izations must be cognizant of complex and possibly nonlinear dependency 
patterns while staying physically interpretable, thereby yielding scien-
tific understanding of extremes and the processes driving them. While 
uncertainty quantification methods were discussed in Section 5.3, we now 
briefly introduce some methodology that could be useful in enhancing 
predictions and perhaps reducing uncertainty in crucial climate variables 
that are not captured well by current- generation physical models.

Standard predictive models, such as least squares or logistic linear 
regression, fall short of such desiderata in multiple ways. The number p 
of covariates and fine- scale climate processes potentially influencing key 
variables such as extreme precipitation far surpass the number of examples 
n of such extreme events. In the n ≪ p regime for regression, consistency 
guarantees from standard theory breakdown, implying that the model 
inferred is not even statistically meaningful (Girko, 1995; Candès and Tao, 
2007). Moreover, such standard models will assign nonzero regression 
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coefficients to all covariates and processes provided as input without any 
model selection (Tibshirani, 1996; Zhao and Yu, 2006). The correspond-
ing model is not likely to have a meaningful physical interpretation or to 
aid hypothesis generation by identifying a small number of covariates or 
processes potentially influencing the key response variable(s).

Sparse regression, a relatively recent development in statistics and 
machine learning, may be a promising approach toward building enhanced 
prediction models. Preliminary studies in the context of multivariate 
autoregressive models and Granger causality have shown promise for 
modeling both normal as well as extreme behavior (Lozano et al., 2009a, b; 
Liu et al., 2009). Sparse regression models attempt to identify a small set 
of predictors out of a large space of candidates by balancing model fit and 
parsimony. Regularization (penalty) terms are combined with error mini-
mization criteria to encourage predictive models that are accurate while 
choosing a relatively small subset of covariates with nonzero coefficients. 
Penalty terms could enforce temporal, spatial, and/ or covariate sparsity 
(Lozano et al., 2009a, b), which may be needed to obtain physically sen-
sible solutions. The models can be shown to be statistically consistent even 
in the n ≪ p regime, along with rigorous finite sample rates of convergence 
(Meinshausen and Bühlmann, 2006; Zhao and Yu 2006; Candès and Tao, 
2007; Meinshausen and Yu, 2009; Negahban et al. 2009; Ravikumar et al. 
2010; Negahban and Wainwright, 2011; Obozinski et al. 2011). While the 
number of samples n for extremes will be rather small, sparse regression 
methods will still be able to do model selection in a statistically consis-
tent way. There are, however, a few key assumptions made while develop-
ing statistical consistency guarantees, which need not be true for climate 
data, especially extremes. A typical linear model of the form y = X θ + w 
assumes that (1) y has a linear dependence on the covariates, (2) the noise 
w is Gaussian or sub- Gaussian, and (3) samples are independently drawn 
from a fixed but unknown distribution. Such assumptions can often be 
violated in the context of extremes. In particular, (1) the extremes may 
have a nonlinear dependence on the covariates (Koltchinskii and Yuan, 
2008; Raskutti et al., 2010), (2) the noise component may be non- Gaussian 
and may be even heavy tailed (Falk et al., 2010; Embrechts et al., 2011), and 
(3) the samples (yi, Xi) may be dependent or even from a nonstationary 
distribution, violating the independence assumptions (Meir, 2000; Mohri 
and Rostamizadeh, 2010). The ability to accommodate such nonlinear, 
non- Gaussian, nonstationary behavior using advanced predictive models 
will determine the success of enhanced prediction for extremes.
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An alternative promising approach for regression of unreliable vari-
ables, especially extremes, can be based on correlated but more reli-
able variables, or those that are currently better predicted. For example, 
although rainfall extremes may be difficult to characterize directly in 
terms of a set of covariates, given that rainfall extremes may be corre-
lated with temperature in some way (O’Gorman and Schneider, 2009; 
Sugiyama et al., 2010), and temperature can be effectively characterized 
using suitable (sparse) regression models, one then obtains an indirect but 
reliable way to model rainfall extremes. The above idea is a prominent 
theme in multivariate or multiple output regression, especially in the con-
text of spatial and geostatistics, where such models are studied as Linear 
Models of Coregionalization (LMC) (Wackernagel, 2003; Gelfand and 
Banerjee, 2010) and related spatiotemporal models (Higdon, 2002; Mardia 
and Goodall, 1993). In recent years, correlated multiple- output, nonlin-
ear, nonparametric regression models have been studied in statistical 
machine learning using Gaussian Processes (Agovic et al., 2011; Álvarez 
and Lawrence, 2011). In particular, our recent work on Probabilistic 
Matrix Addition (Agovic et al., 2011) has two additional capabilities that 
may be useful in this context: (1) the ability to utilize a nonlinear covari-
ance function (kernel) Kx among the covariates, as well as a nonlinear 
covariance function Ky among the multivariate output (e.g., precipitation 
and temperature); and (2) the ability to handle data matrices with miss-
ing entries. Recent literature has shown evidence that reliable auxiliary 
variables may contain valuable information on crucial variables that are 
currently difficult to physically model (e.g., O’Gorman and Schneider, 
2009; Sugiyama et al., 2010), and the ideas outlined above may lead to a 
systematic way to leverage such signals. Such an accomplishment might 
not only enhance predictability of such key variables, but also augment 
physical understanding, which could inform future efforts in the climate 
modeling community.

5.5  CONCLUSIONS AND FUTURE RESEARCH
Computational data sciences may offer a path forward to one of the key sci-
ence challenges relevant for stakeholders, resources managers, and policy 
makers—specifically, the consequences on statistical attributes of extreme 
events as a consequence of climate change. This chapter presented several 
critical challenges in the science of climate extremes that are not handled 
by the current generation of climate models, represent long- standing chal-
lenges in scientific understanding, may not be solved in the near future by 
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improvements in physics- based modeling, and where data- driven compu-
tational methods may offer novel solutions. The chapter presented specific 
details on three interrelated problem areas—extremes characterization, 
uncertainty quantification, and enhanced prediction—as well as several 
potential conceptual and methodological directions for the interdisciplin-
ary computational and data sciences communities to advance the science 
in these areas.

The close integration between physical understanding, or physics- 
based modeling, and data- driven insights is emphasized from three inter-
related perspectives.

 1. Data- driven insights from observations inform model diagnostics 
and uncertainty quantification.

 2. Enhanced projections rely on data- guided functional mappings 
(e.g., between precipitation extremes and temperature), which in turn 
may be derived from both observations and model- simulations but 
remain conditioned on physics- based, model- simulated results in the 
future (e.g., future data- driven insights on precipitation extremes may 
be conditioned on projected temperatures in the future from models).

 3. New insights from massive data on multivariate associations derived 
from observed or model- simulated data not only improve our 
understanding of relevant processes but also may inform the physi-
cal formulation and parameter choices within global or regional cli-
mate models.

This chapter made no attempt to comprehensively address two impor-
tant research directions. The first area, on attribution of climate extremes, 
has been primarily motivated by prior and ongoing work led by the cli-
mate science community but has witnessed recent progress by the com-
puter science community. The second area, on graphical models and 
complex networks in climate, has been motivated by nonlinear dynamics 
communities within the geosciences as well as more recently by the inter-
disciplinary data science communities. Attribution of climate extremes to 
global warming and anthropogenic emissions, regional changes in urban-
ization and land use, as well as other plausible causal factors, is a key con-
cern for policy makers. The corresponding methods include data- driven 
approaches such as Granger causality and optimal fingerprinting, that, 
for example, may be used for attribution of global and regional changes 
in rainfall extremes (Min et al., 2011). Numerical modeling techniques 



Computational Data Sciences for Actionable Insights    ◾    149  

have attempted to generate a range of simulations at specific locations 
and time periods to delineate what may be caused by natural variabil-
ity versus what may have to be attributed to climate change, for example, 
with application to location- based precipitation extremes in a given sea-
son (Pall et al., 2011). While data science communities have developed 
(Lozano et al., 2009b) innovative approaches, new developments are moti-
vated. Nonlinear dynamics methods have been used in climate for a while 
(e.g., to relate climate oscillators to the variability of river flows: Khan 
et al., 2006, 2007). Correlation- based complex networks have been used 
in climate to capture multivariate dependence (Steinhaeuser et al., 2011b), 
diagnose model performance through their ability to capture ocean- based 
oscillators (Kawale et al., 2011), relate ocean- based oscillators to regional 
climate (Steinhaeuser et al., 2011a; Chatterjee et al., 2012), as well as for 
abrupt change (Tsonis et al., 2007) and extremes processes (Malik et al., 
2011). Further developments may make these emerging approaches impor-
tant tools for climate extremes.
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