
TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, DECEMBER 2012 1

Jensen-Bregman LogDet Divergence with
Application to Efficient Similarity Search for

Covariance Matrices
Anoop Cherian, Student Member, IEEE, Suvrit Sra, Arindam Banerjee and

Nikolaos Papanikolopoulos, Fellow, IEEE

Covariance matrices have found success in several computer vision applications, including activity
recognition, visual surveillance, and diffusion tensor imaging. This is because they provide an easy
platform for fusing multiple features compactly. An important task in all of these applications is to
compare two covariance matrices using a (dis)similarity function, for which the common choice is
the Riemannian metric on the manifold inhabited by these matrices. As this Riemannian manifold
is not flat, the dissimilarities should take into account the curvature of the manifold. As a result
such distance computations tend to slow down, especially when the matrix dimensions are large or
gradients are required. Further, suitability of the metric to enable efficient nearest neighbor retrieval
is an important requirement in the contemporary times of big data analytics. To alleviate these
difficulties, this paper proposes a novel dissimilarity measure for covariances, the Jensen-Bregman

LogDet Divergence (JBLD). This divergence enjoys several desirable theoretical properties, at the
same time is computationally less demanding (compared to standard measures). Utilizing the fact
that the square-root of JBLD is a metric, we address the problem of efficient nearest neighbor
retrieval on large covariance datasets via a metric tree data structure. To this end, we propose
a K-Means clustering algorithm on JBLD. We demonstrate the superior performance of JBLD on
covariance datasets from several computer vision applications.

Index Terms—Region Covariance Descriptors, Bregman Divergence, Image Search, Nearest Neighbor Search, LogDet Divergence,

Video Surveillance, Activity Recognition

F

1 INTRODUCTION

Recent times have witnessed a steep increase in the utilization

of structured data in several computer vision and machine

learning applications, where instead of vectors, one uses richer

representations of data such as graphs, strings, or matrices. A

class of such structured data that has been gaining importance

in computer vision is the class of Symmetric Positive Definite

(SPD) matrices, specifically as covariance matrices. These

matrices which offer a compact fusion of multiple features

and they are by now preferred data representations in several

applications.

To bring out the importance of covariance matrices in

computer vision, we concisely review a few applications in

which these data descriptors have found immense success.

SPD matrices are fundamental objects in Diffusion Tensor

Imaging for mapping biological tissue structures, with applica-

• A. Cherian, A. Banerjee and N. Papanikolopoulos are with the Dept. of

Computer Science and Engineering at the University of Minnesota, Minneapo-

lis, MN-55455. Their emailids are: {cherian,banerjee,npapas}@cs.umn.edu

respectively.

• S. Sra is with the Max Planck Institute for Intelligent Systems, Tüebingen,

Germany. His emailid is suvrit.sra@tuebingen.mpg.de.

tions to the diagnosis of neuro-psychiatric illnesses including

Alzheimer’s disease, brain atrophy, and dementia [1]–[3].

Covariances provide a convenient platform for fusing multiple

features, are robust to static noise, and can be easily made

invariant to image affine transformations, illumination changes

or changes in camera parameters. As a result they are used

extensively in multi-camera object tracking applications [4],

[5]. Other important applications of covariances include but

are not limited to human detection [6], image segmentation [7],

texture segmentation [8], robust face recognition [9], emotion

recognition [10], and human action recognition [11]. Appli-

cation of covariances as data descriptors is not limited to

computer vision; an example is speech recognition [12].

These successful applications are however burdened by

a common problem: whenever distance or similarity com-

putations with covariances are required, the corresponding

algorithms tend to slow down. This is because, covariances

do not conform to the Euclidean geometry, but rather form

a Riemannian manifold. Data points on this manifold are no

more connected by straight lines, but rather geodesics along

the curvature of the manifold. As a result, computing similarity

between covariance matrices is non-trivial. But the choice

TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, DECEMBER 2012 2

of similarity measure is crucial, especially for a key task

such as Nearest Neighbor (NN) retrieval, which is a building

block in countless applications. For example, for tracking the

appearance of people in video surveillance, the number of

database points can lie in the millions, and without efficient

similarity computation both NN retrieval and the subsequent

tracking are severely disadvantaged. Standard NN retrieval

techniques such as locality sensitive hashing [13] cannot be

directly applied to covariance datasets without ignoring the

manifold structure, resulting in poor retrieval accuracy.

Driven by these concerns we take a closer look at simi-

larity computation on covariances by introducing the Jensen-

Bregman LogDet Divergence (JBLD). We discuss theoretical

properties of JBLD and then apply it to the task of rapid

NN retrieval on several image databases. Experiments against

state-of-the-art techniques show the advantages afforded by

JBLD. At this point, we would like to acknowledge that the

Riemannian framework is still useful for computing various

intrinsic statistics on covariances that are required in several

applications [14].

Before proceeding, let us briefly describe our notation. At

places where the dimensionality of the matrix is unimportant,

an SPD matrix X might be introduced as X > 0. The set

Sd denotes the space of d × d symmetric matrices and Sd
++

denotes the set of Symmetric Positive Definite (SPD) matrices.

We use | | to denote matrix determinant, Tr denotes the trace

and ‖ ‖F the Frobenius norm. Also, I refers to a d×d identity

matrix. For two SPD matrices X , Y , the inequality X > Y
means X − Y is SPD; the notation X ⊗ Y denotes the usual

Kronecker product of X and Y .

2 RELATED WORK

We recall some standard similarity measures for covariance

matrices. The simplest but naive approach is to view d × d
covariance matrices as vectors in R

d(d+1)/2, whereby the

standard (dis)similarity measures of Euclidean space can be

used (e.g., ℓp-distance functions, etc.). Recall that covariance

matrices, due to their positive definiteness structure, belong to

a special category of symmetric matrices and form a Rieman-

nian manifold (which is a differentiable manifold associated

with a suitable Riemannian metric). Euclidean distances on

vectorized covariances ignore this manifold structure leading

to poor accuracy [15], [16]. In addition, under this measure

symmetric matrices with non-positive eigenvalues are at finite

distances to positive definite covariances. This is unacceptable

for a variety of applications, e.g. DTMRI [15].

A more suitable choice is to incorporate the curvature of

the Riemannian manifold and use the corresponding geodesic

length along the manifold surface as the distance metric. This

leads to the Affine Invariant Riemannian Metric (AIRM) [14],

[17] which is defined as follows: For two SPD matrices X
and Y ,

DR(X,Y) := ‖log(X−1/2Y X−1/2)‖F, (1)

where log(·) is the principal matrix logarithm. This metric

enjoys several useful theoretical properties, and is perhaps the

most widely used similarity measure for covariance matrices.

As is clear from (1), symmetric matrices with nonpositive

eigenvalues are at infinite distances. The metric is invariant

to inversion and similarity transforms. Other properties of this

metric can be found in [17]. Computationally, this metric can

be unattractive as it requires eigenvalue computations or some-

times even matrix logarithms, which for larger matrices cause

significant slowdowns. A few examples of such applications

using large covariances are: face recognition [9] (40×40), and

emotion recognition [10] (30 × 30).

Amongst the many measures that have been proposed to

replace AIRM, a closely related one is the Log-Euclidean

Riemannian Metric (LERM). Considering the log-Euclidean

mapping log : Sd
++ → Sd, Arsigny et al. [15] introduce the

LERM as:

Dle(X,Y) := ‖log(X) − log(Y)‖F. (2)

This metric maps SPD matrices to a flat Riemannian space (of

zero curvature) so that the ordinary Euclidean distances can

be used. The metric is easy to compute, and preserves some

of the important properties of the AIRM (such as invariance

to inversion and similarity transforms). In addition, from a

practical point of view, since this metric untangles the two

constituent matrices from their generalized eigenvalues, the

logarithms on each of these matrices can be evaluated offline,

gaining a computational edge over AIRM. As a result, LERM

has found many applications in visual tracking [18], stereo

matching [19], etc. On the negative side, computing matrix

logarithms can dramatically increase the computational costs.

The flattening of the manifold as in LERM often leads to less

accurate distance computations, affecting application perfor-

mance. A more important problem that one encounters when

using LERM is that its moments (such as Hessian, etc.) do not

have closed forms. Moreover, it is computationally difficult

even to approximate these moments due to the need to find

derivatives of matrix logarithms. The following proposition

shows that LERM is a lower bound to AIRM. This result will

come useful later in this paper.

Proposition 1. For X,Y ∈ Sd
++, we have: Dle(X,Y) ≤

DR(X,Y). Further, the equality holds only when X and Y
commute.

Proof: See Theorem 6.1.4 in [17].

Similar to our approach, there have been previous attempts

to use symmetrized f-divergences from information theory for

developing distances on SPD matrices. One such idea is to

view the SPD matrices as being the covariances associated

with zero-mean Gaussian distributions [16], and then use

the symmetrized KL-Divergence Metric (KLDM) (popularly

known as Jeffrey’s Kullback-Leibler divergence) as the dis-

tance between the distributions. This leads to the following

definition of KLDM1:

D2
jkl(X,Y) :=

1

2
Tr
(

X−1Y + Y −1X − 2I
)

. (3)

This measure does not require matrix eigenvalue computations,

or logarithms, and at the same time enjoys many of the

1. We will use the squared form of KLDM for consistency with other
metrics

TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, DECEMBER 2012 3

properties of AIRM. On the negative side, the measure requires

inversion of the constituent covariances, which can be slow

(or can even lead to instability when the data matrices are

poorly conditioned). A bigger concern is that KLDM can

in fact overestimate the Riemannian metric as the following

proposition shows and thus can lead to poor accuracy.

Proposition 2. There exist X and Y ∈ Sd
++ such that

Djkl(X,Y) > DR(X,Y).

Proof: Let vi be the ith eigenvalue of X−1Y . Since vi

is always positive, we can write vi = eui for ui ∈ R. Then

from the definitions of KLDM and AIRM, we have:

D2
jkl(X,Y) =

d
∑

i=1

(

eui + e−ui

2

)

− 1

=
D2

R(X,Y)

2

d
∑

i=1

(

1 + 2
u2

i

4!
+ · · ·

)

− 1.

For a suitable choice of ui, we have the desired result.

A distance on the Cholesky factorization of the SPD ma-

trices is presented in [20]. The idea is as follows: suppose

X = L1L
T
1 and Y = L2L

T
2 represent the Cholesky decompo-

sition of X and Y respectively, with lower triangular matrices

L1 and L2, then the Cholesky distance is defined as:

DC(X,Y) = ‖L1 − L2‖F. (4)

Other similarity measures on covariance matrices may be

found in [21]. Despite their easy formulations and properties

similar to those of AIRM, the above distances have not been

very popular in SPD matrix based applications due to their

poor accuracy (as our experiments also demonstrate).

In contrast to all these metrics, the similarity metric that we

propose in this paper is much faster to compute, as it depends

only on the determinant of the input matrices, and thus no

eigenvalue computations are required. Moreover, it turns out

to be empirically also very effective.

We note that NN retrieval for covariance matrices itself is

still an emerging area, so literature on it is scarce (though

for vector spaces, Bregman divergences have been used for

several computer vision applications [22], [23]). In [24], an

attempt is made to adapt NN techniques from vector spaces to

non-Euclidean spaces, while [25] proposes an extension of the

spectral hashing techniques to covariance matrices. However,

both these techniques are based on a Euclidean embedding of

the Riemannian manifold through the tangent spaces, and then

using LERM as an approximation to the true similarity.

3 JENSEN-BREGMAN LOGDET DIVERGENCE

We first recall some basic definitions and then present our

similarity measure: the Jensen-Bregman LogDet Divergence

(JBLD). Concurrent to our work, a one parameter generaliza-

tion of this divergence has been recently discussed in [26]; our

study arose independently of that paper. We alert the reader

that JBLD should not be confused with its asymmetric cousin:

the so-called LogDet divergence [27].

At the core of our discussion lies the Bregman Divergence

dφ : S × relint(S) → [0,∞), which is defined as

dφ(x, y) := φ(x) − φ(y) − 〈x − y,∇φ(y)〉 , (5)

where φ : S ⊆ R
d → R is a strictly convex function of

Legendre-type on int(dom S) [28]. From (5) the following

properties of dφ(x, y) are apparent: strict convexity in x;

asymmetry; non-negativity; and definiteness (i.e., dφ = 0,

iff x = y). Bregman divergences enjoy a host of useful

properties [28], [29], but often their lack of symmetry and

sometimes their lack of triangle-inequality can prove to be

hindrances. Consequently, there has been substantial interest

in considering symmetrized versions such as Jensen-Bregman

divergences [30],

Jφ(x, y) :=
1

2

(

dφ(x, s) + dφ(s, y)
)

, (6)

where s = (x + y)/2.

Both (5) and (6) can be naturally extended to matrix diver-

gences (over Hermitian matrices) by composing the convex

function φ with the eigenvalue map λ, and replacing the inner-

product in (5) by the trace. We focus on a particular matrix

divergence, namely the Jensen-Bregman LogDet Divergence,

which is defined for X , Y in Sd
++ by

Jℓd(X,Y) := log

∣

∣

∣

∣

X + Y

2

∣

∣

∣

∣

− 1

2
log |XY |. (7)

where | · | denotes the determinant; this divergence is obtained

from the matrix version of (6) by using φ(X) = − log |X| as

the seed function.

3.1 Properties

For X,Y,Z ∈ Sd
++ and invertible matrices A and B, we have

the following properties (see [31] for details and proofs):

1) Jℓd(X,Y) ≥ 0 (nonnegativity)

2) Jℓd(X,Y) = 0 iff X = Y (definiteness)

3) Jℓd(X,Y) = Jℓd(Y,X) (symmetry)

4)
√

Jℓd(X,Y) ≤
√

Jℓd(X,Z) +
√

Jℓd(Z, Y) (triangle

inequality; see [31])

5) Jℓd(AXB,AY B) = Jℓd(X,Y) (affine invariance)

6) Jℓd(X
−1, Y −1) = Jℓd(X,Y) (invariance to inversion).

Theorem 3 (Non-Convexity). Assuming X,Y ∈ Sd
++, for a

fixed Y , Jℓd(X,Y) is convex for X ≤ (1+
√

2)Y and concave

for X ≥ (1 +
√

2)Y .

Proof: Taking the second derivative of Jℓd(X,Y) with

respect to X , we have

∇2
XJℓd(X,Y) = −(X +Y)−1 ⊗ (X +Y)−1 +

X−1 ⊗ X−1

2
.

(8)

This expression is positive definite for X ≤ (1 +
√

2)Y and

negative definite for X ≥ (1 +
√

2)Y .

TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, DECEMBER 2012 4

3.2 Nearest Isotropic Matrix

As we alluded to earlier, diffusion tensor imaging is the

process of mapping diffusion of water molecules in the brain

tissues and helps in the diagnosis of neurological disorders

non-invasively. When the tissues have an internal fibrous

structure, water molecules in these tissues will diffuse rapidly

in directions aligned with this structure. Symmetric positive

definite matrices in this field- prove useful in the analysis

of such diffusion patterns [1]. Anisotropic index is a useful

quantity that is often used in this area [16], which is the

distance of a given SPD matrix from its Nearest Isotropic

Matrix (NIM). Mathematically, the NIM αI (α > 0) from a

given tensor P > 0 with respect to a distance measure D(., .)
is defined as:

min
α>0

D(αI, P). (9)

Below, we investigate this facet of JBLD (see [16] for details

on how to compute α for other AIRM, LERM and KLDM).

Theorem 4. Suppose P ∈ Sd
++ and let S = αI be such that

Jℓd(P, S) is convex (see Theorem 3). Then the NIM to P is

the minimum positive root of the following equation:

p(α) :=dαd + (d − 2)
∑

i

λiα
d−1 + (d − 4)

∑

i,j,i 6=j

λiλjα
d−2

+ · · · + (2 − d)
∑

i

∏

i6=j

λjα − d
∏

i

λi = 0, (10)

where λi, i = 1, 2, · · · , d are the eigenvalues of P .

Proof: Using the definition of Jℓd in (9), and applying

the assumption that Jℓd is convex, at optimality we have
∂Jℓd(αI,P)

∂α = 0. This leads to:

1

α
=

2

d

d
∑

i=1

1

α + λi
.

Rearranging the terms, we have the polynomial equation

in (10). Since the coefficient of αd−1 is always positive (for

d > 2), there must always exist at least one positive root.

Corollary 5. When d = 2, we have α =
√

|P |, which is the

same as NIM for AIRM.

DTMRI generally uses 3×3 SPD matrices. Since p(α) is a

cubic in this case, one can obtain its roots in closed form.

Nevertheless, we show below a useful property that helps

bracket its positive root.

Lemma 6. Let P ∈ Sd
++ and suppose ‖P‖2 < 1, then

1 + Tr (P) /d

1 + Tr (P−1) /d
> |P | . (11)

Proof: Suppose P ∈ Sd
++ and ‖P‖2 < 1, then Tr(P) <

d. Suppose λi, i = 1, 2, · · · , d represents the eigenvalues of

P , we have the following to prove from the lemma:

d + Tr(P)

d |P | +∑i

∏

j 6=i λiλj
> 1. (12)

Since |P | < Tr(P)/d (due to AM-GM inequality) and since
∑

i

∏

j 6=i λiλj < d, we have the desired result.

Theorem 7. Let P ∈ S3
++, and if S = αI, α > 0 is the NIM

to P , then α ∈ (0, 1).

Proof: Substituting d = 3 in (10), we have the following

third degree polynomial equation:

p(α) := 3α3 + Tr(P)α2 − |P |Tr(P−1)α − 3 |P | = 0. (13)

Analyzing the coefficients of p(α) shows that only one root

is positive. Now, we have p(0) < 0. Applying Lemma 6, we

have p(1) > 0, which concludes that the smallest positive root

lies in (0, 1).

3.3 Connections to Other Metrics

We summarize below some connections that Jℓd has with the

standard metrics on covariances.

Theorem 8. Let X,Y > 0. Then,

(i) Jℓd(X,Y) ≤ D2
R(X,Y)

(ii) Jℓd(X,Y) ≤ D2
jkl(X,Y)

Proof: Let vi = λi(XY −1). Since X , Y ∈ Sd
++, the

eigenvalues vi are also positive, whereby we can write each

vi = eui for some ui ∈ R. Using this notation, the AIRM

may be rewritten as DR(X,Y) = ‖u‖2, and the JBLD as

Jℓd(X,Y) =
∑d

i=1
(log(1 + eui) − ui/2 − log 2), (14)

where the equation follows by observing that Jℓd(X,Y) =
log |I + XY −1| − 1

2 log |XY −1| − log 2d.

To prove inequality (i), consider the function f(u) = u2 −
log(1 + eu) + u/2 + log 2. This function is convex since its

second derivative

f ′′(u) = 2 − eu

(1 + eu)2
,

is clearly nonnegative. Moreover, f attains its minimum at

u∗ = 0, as is immediately seen by solving the optimality

condition f ′(u) = 2u− eu/(1+ eu)+1/2 = 0. Thus, f(u) ≥
f(u∗) = 0 for all u ∈ R, which in turn implies that

∑d

i=1
f(ui) = D2

R(X,Y) − Jℓd(X,Y) ≥ 0. (15)

Similarly to prove inequality (ii), consider the function

g(u) = D2
jkl − Jℓd, which expands to:

g(u) =
1

2
(eu +

1

eu
) − log(1 + eu) +

u

2
+ log 2 − 1. (16)

Going by the same steps as before, it is straight-forward to

show that g(u) is convex and attains its minimum when u = 0,

proving the inequality.

Theorem 9. If 0 < mI ≤ X,Y ≤ MI , then

D2
R(X,Y) ≤ 2 log(M/m)(Jℓd(X,Y) + γ), (17)

where γ = d log 2.

TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, DECEMBER 2012 5

Proof: Observe that

∑d

i=1
(log(1+ eui)−ui/2− log 2) ≥

∑d

i=1
(|ui|/2− log 2),

which implies the bound

Jℓd(X,Y) + d log 2 ≥ 1

2
‖u‖1. (18)

Since uT u ≤ ‖u‖∞‖u‖1 (Hölder’s inequality), using (18) we

immediately obtain the bound

D2
R(X,Y) = ‖u‖2

2 ≤ 2‖u‖∞(Jℓd + γ), (19)

where γ = d log 2. But mI � X,Y � MI implies that

‖u‖∞ ≤ log(M/m), which concludes the proof.

Our next result touches upon a condition when Jℓd < D2
le.

A more general treatment of this relationship is outside the

scope of this paper, mainly because the Hessian of Dle do not

have closed forms2.

Theorem 10. If X,Y ∈ Sd
++ commute, then Jℓd(X,Y) ≤

D2
le(X,Y).

Proof: We use the fact that when X,Y commute,

Dle(X,Y) = DR(X,Y) (See Proposition 1). Now, using the

connection between AIRM and JBLD (refer Theorem 8), we

have the result.

3.4 JBLD Geometry

In Figure 1, we plot the three dimensional balls (isosurfaces)

associated with JBLD for various radii (0.1, 0.5 and 1) and

centered at the identity tensor. We also compare the JBLD ball

with the isosurfaces of Frobenius distance, AIRM, and KLDM.

As expected, the Frobenius distance is isotropic, while AIRM

and KLDM induce non-spherical convex balls. Against these

plots, and as was pointed by Theorem 3, the isosurfaces of

JBLD are convex in some range and become concave as the

radius increases.

3.5 Computational Advantages

The greatest advantage of Jℓd against the Riemannian metric

is its computational speed: Jℓd requires only computation of

determinants, which can be done rapidly via three Cholesky

factorizations (for X + Y , X and Y), each at a cost of

(1/3)d3 flops [32]. Computing DR on the other hand requires

generalized eigenvalues, which can be done for positive-

definite matrices in approximately 4d3 flops. Thus, in general

Jℓd is much faster (see also Table 1). The computational

advantages of Jℓd are much more impressive when comparing

evaluation of gradients3. Table 2 shows that computing ∇Jℓd

can even be more than 100 times faster than ∇DR. This

difference ca be critical for NN retrieval, or more generally

when using any algorithm that depends on gradients of the

similarity measure, e.g., see [33] and the references therein.

Table 3 provides a summary of the various metrics, their

gradients and computational complexities.

2. Due to the need to take derivatives of matrix logarithms

3. The computation of Jℓd for matrices over d = 13 was seen to be faster
when the determinants were computed using the Cholesky decomposition.

d DR Jℓd

5 .025 ± .012 .030 ± .007
10 .036 ± .005 .040 ± .009
15 .061 ± .002 .050 ± .004
20 .085 ± .006 .061 ± .009
40 .270 ± .332 .123 ± .012
80 1.23 ± .055 .393 ± .050

200 8.198 ± .129 2.223 ± .169
500 77.311 ± .568 22.186 ± 1.223

1000 492.743 ± 15.519 119.709 ± 1.416

TABLE 1
Average times (millisecs/trial) to compute function

values; computed over 10,000 trials to reduce variance.

d ∇XD2
R(X, Y) ∇XJℓd(X, Y)

5 0.798 ± .093 .036 ± .009
10 2.383 ± .209 .058 ± .021
20 7.493 ± .595 .110 ± .013
40 24.899 ± 1.126 .270 ± .047
80 99.486 ± 5.181 .921 ± .028

200 698.873 ± 39.602 8.767 ± 2.137
500 6377.742 ± 379.173 94.837 ± 1.195

1000 40443.059 ± 2827.048 622.289 ± 37.728

TABLE 2
Average times (millisecs/trial) to compute gradients;

computed over 1000 trials to reduce variance.

4 FAST NEAREST NEIGHBOR RETRIEVAL

Now we turn to the key application that motivated us to

investigate Jℓd: Nearest Neighbor (NN) retrieval for covariance

matrices. Here, we have a dataset {S1, . . . , Sn} of d × d
covariance matrices that we must organize into a data structure

to facilitate rapid NN retrieval. Towards this end, we choose to

use the metric tree data structure as we this allows us to show

the performance on an exact NN algorithm for covariances;

and for this which approximations can be easily effected for

faster searches. A key component of the metric tree is a

procedure to partition the data space into mutually exclusive

clusters, so that heuristics such as branch and bound can be

applied to prune clusters that are guaranteed not to occupy

candidate neighbors to a query. To this end, we derive below

a K-Means algorithm on Jℓd which will later be used to build

the metric tree on covariances.

4.1 K-Means with Jℓd

Let S1, S2, · · · , Sn be the input covariances that must be

clustered. A standard K-Means algorithm gives rise to the

following optimization problem:

min
C1,C2,··· ,CK

K
∑

k=1

∑

S∈Ck

Jℓd(Xk, S), (20)

where Xk is the centroid of cluster Ck. As usual, we can

alternate between the centroid computation and the clustering

stages to minimize (20). The only significant step is the

computation of the centroid for the kth cluster; this can be

written as:

F := min
Xk

∑

S∈Ck

Jℓd(Xk, S) (21)

:= min
Xk

∑

S∈Ck

log |Xk + S

2
| − 1

2
log |XkS|. (22)

TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, DECEMBER 2012 6

(a) (b) (c) (d)

Fig. 1. Isosurface plots for various distance measures. First, distances for arbitrary three dimensional covariances from the
identity matrix are computed, and later isosurfaces corresponding to fixed distances of 0.1, 0.5 and 1 are plotted. The plots show
the surfaces for: (a) Frobenius distance, (b) AIRM, (c) KLDM, and (d) JBLD respectively.

Measure D2(X, Y) FLOPS Gradient (∇X)

AIRM ‖log(X−1/2Y X−1/2)‖2
F 4d3 2X−1 log(XY −1)

LERM ‖log(X) − log(Y)‖2
F

8

3
d3 2X−1 (log X − log Y)

KLDM 1

2
Tr
(

X−1Y + Y −1X − 2I
)

8

3
d3 Y −1 − X−1Y X−1

JBLD log
∣

∣

∣

X+Y
2

∣

∣

∣
− 1

2
log |XY | d3 (X + Y)−1 − 1

2
X−1

TABLE 3
A comparison of various metrics on covariances and their computational complexities against Jℓd.

Unfortunately, Jℓd is not convex, which makes centroid

computation tricky. The good news is that, we can

write (22) as the sum of a convex function Fvex(Xk, S) =

−∑S∈Ck

|Ck|
2 log |Xk| and a concave term Fcave(Xk, S) =

∑

S∈Ck
log |Xk+S

2 |. Such a combination of convex and con-

cave objectives can be efficiently solved using Majorization-

Minimization using the Convex-ConCave Procedure (CCCP)

[34]. The main idea of this procedure is to approximate

the concave part of the objective by its first order Taylor

approximation around the current best estimate Xt
k; that is,

for the (t + 1)st step:

Xt+1
k = argmin

Xk

Fvex(Xk, S) − XT
k ∇Xk

Fcave(X
t
k, S). (23)

Substituting (23) in (22), later taking the gradient of (22) with

respect to Xk and setting it to zero (recall that now we have

a convex approximation to (22)), we have:
∑

S∈Ck

∇Xk
Fvex(Xt+1

k , S) = −
∑

S∈Ck

∇Xk
Fcave(X

t
k, S).

(24)

Expanding the gradient terms for Jℓd, we have the following

fixed-point iteration:

Xt+1
k =

[

1

|Ck|
∑

S∈Ck

(

S + Xt
k

2

)−1
]−1

. (25)

We now derive conditions guaranteeing the convergence of the

fixed point iteration in (25). The uniqueness of a centroid thus

found is reported in [35].

Lemma 11. The function f(X) = X−1 for X ∈ Sd
++ is

matrix convex, i.e., for X,Y ∈ Sd
++ and for t ∈ [0, 1],

f(tX + (1 − t)Y) ≤ tf(X) + (1 − t)f(Y). (26)

Proof: See Exercise V.1.15 [36] for details.

Lemma 12. If X,Y ∈ Sd
++ and suppose X ≥ Y , then X−1 ≤

Y −1.

Proof: See Corollary 7.7.4 [37].

Theorem 13. Let S1, S2, · · · , Sn be the input covariances

and let X∗ be the centroid found by (25). Then X∗ lies in the

compact interval

(

1

n

n
∑

i=1

S−1
i

)−1

≤ X∗ ≤ 1

n

n
∑

i=1

Si. (27)

Proof: The left inequality: Applying Lemma 11 to (25),

we have:

X−1 ≤ 1

n

n
∑

i=1

(

S−1
i + X−1

2

)

(28)

≤ 1

n

n
∑

i=1

S−1
i

2
+

1

2
X−1. (29)

Now, applying Lemma 12, the result follows.

The right inequality: As one can see, the right side of (25)

is essentially the harmonic mean of X+Si

2 for i = 1, 2, · · · , n.

Since the harmonic mean is always less than or equal to the

arithmetic mean [38], we have the result.

Theorem 14. Let {Xt} (for t ≥ 1) be the sequence of

successive iterates generated as per (25). Then, Xt → X∗,

where X∗ is a stationary point of (22).

TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, DECEMBER 2012 7

Proof: It is clear that Fvex and −Fcave are strictly convex

functions and −∇Fcave is continuous. Further, from Theo-

rem 13 it is clear that the solution lies in a compact interval

inside Sd
++. Thus, following the conditions of convergence

stipulated in [39] (CCCP-II, Theorem 8), the iterations in (25)

converges for a suitable initialization inside the compact set.

4.2 NN Using Metric Tree

Metric Trees (MT) [40] are fundamental for fast NN retrieval

when the underlying objects lie in a metric space (recall that

square-root of JBLD is a metric). NN using the MT involves

two steps: (i) Building the tree, and (ii) Querying the tree. We

discuss each of these steps below.

4.2.1 Building MT

To build the MT, we perform top-down partitioning of the

input space by recursively applying the JBLD K-Means algo-

rithm (introduced above). Each partition of the MT is identified

by a centroid and the ball radius. For n data points, and

assuming we bi-partition each cluster recursively, the total

build time of the tree is O(n log n) (ignoring the cost for K-

Means itself). To save time, we stop partitioning a cluster when

the number of points in it goes below a certain threshold; this

threshold is selected as a balance between the computational

time to do exhaustive search on the cluster elements against

doing K-Means on it.

4.2.2 Querying Using MT

Given a query point q, one first performs a greedy binary

search for the NN along the most proximal centroids at each

level. Once a leaf partition is reached, exhaustive search is used

to localize to the candidate centroid Xc. Then one backtracks

to check if any of the sibling nodes (that were temporarily

ignored in the greedy search) contain a data point that is closer

to q than Xc. To this end, we solve the following optimization

problem on each of the sibling centroids C:

d(Xc, q) > min
X;d(X,C)=R

d(X, q), (30)

where X is called the projection of q onto the ball with

centroid C, radius R and d is some distance function. If

(30) is satisfied, then the sibling node should be explored,

otherwise it can be pruned. When d is a metric, (30) has a

simple solution utilizing the triangle inequality as is described

in [41]. The mechanism can be extended to retrieve k-NN by

repeating the search ignoring the (k-1) NNs already retrieved.

This can be efficiently implemented by maintaining a priority

queue of potential subtree centroids and worst case distances

of the query to any candidate node in this subtree, as described

in [40].

5 EXPERIMENTS

We are now ready to describe our experimental setup and

results to substantiate the effectiveness of Jℓd. We first discuss

the performance metric on which our experiments are based,

then provide simulation results exposing various aspects of our

metric; these are followed by the results on four real-world

datasets. All algorithms were implemented in MATLAB and

tested on a machine with 3GHz single core CPU and 4GB

RAM.

5.1 Performance Metric

Accuracy@K: Suppose we have a covariance dataset D and

a query set Q. Accuracy@K describes the average accuracy

when retrieving K nearest covariances from D for each item

in Q. Suppose GK
q stands for the ground truth label subset

associated with the qth query, and if MK
q denotes the label

subset associated with the K nearest covariances found using

a metric M for the query q, then we formally define:

Accuracy@K =
1

|Q|
∑

q∈Q

|GK
q ∩ MK

q |
|GK

q | . (31)

Note that Accuracy@K as defined in (31) subsumes the stan-

dard performance metrics: precision and recall. Most often

we work with K = 1, in which case we will drop the suffix

and will refer as Accuracy. Since some of the datasets used in

our experiments do not have ground truth data available, the

baselines for comparison were decided via a linear scan using

the AIRM metric as this metric is deemed the state-of-the-art

on covariance data.

5.2 Simulations

Before we delve into the details of our experiments, we high-

light here the base experimental configurations that we used

for all the simulation experiments. Since there are a variety of

code optimizations and offline computations possible for the

various metrics, we decided to test all the algorithms with the

base implementation as provided by MATLAB. An exception

here are the experiments using LERM. It was found that

for computing LERM, projecting the input matrices into the

log-Euclidean space (through matrix logarithms) resulted in

expensive computations, as a result of which the performances

were incomparable with the setup used for other metrics. Thus,

before using this metric, we took the logarithm of all the

covariances offline.

For the NN experiments, we used a metric tree with four

branches and allowed a maximum of 100 data points at the

leaf nodes. With regard to computing the cluster centroids

(for k-means), LERM and FROB metrics used the ordinary

Euclidean sample mean, while AIRM used the Fréchet mean

using the iterative approximation algorithm described in [42].

The centroid for KLDM boils down to computing the solution

of a Riccati equation as described in [43]. For the simulation

experiments, we used the results produced by AIRM as the

ground truth.

Now we are ready to describe our base configuration for

the various simulation experiments. We used 1K covariances

of S10
++ with 50 true number of clusters as the dataset and a

collection of 100 covariances as the query set. The plots that

we are about to show resulted from average performances by

repeating the experiments 100 times using different database

and query sets.

TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, DECEMBER 2012 8

5.2.1 Accuracy Against Noise

Given that the distances on covariances are nonlinear, the

primary goal of this experiment is to validate the robustness of

JBLD against noise in the covariance descriptors for the task

of NN retrieval. This is especially useful when considering

that our data can be poorly conditioned so that small pertur-

bations of poorly conditioned data matrices can lead to large

divergences, which for some applications might be uncalled

for. Towards this end, we created a base set of 1K covariances

from a set of simulated feature vectors. Subsequently, Gaussian

noise of varying magnitude (relative to the signal strength)

was added to the feature vectors to obtain a set of 100 noisy

covariances. The base covariances were used as queries while

the noisy ones as the database. A linear scan through the

data using the Riemannian metric to measure nearness defined

the ground truth. Figure 2 shows the average accuracies for

decreasing SNR for three different covariance dimensions

(10D, 20D and 40D). It is clear that JBLD is more robust

than LERM and KLDM, at the same time yields accuracy

almost close to the baseline Riemannian metric, irrespective

of the dimension of the matrix. It is to be noted that a retrieval

using the Frobenius distance (FROB) is clearly seen to perform

poorly. We would also like to highlight that we noticed a small

drop in the accuracy of KLDM (as seen in Figure 2(c)) as the

data dimensionality increases, which we suspect is due to the

poor conditioning of the data matrices as the dimensionality

grows, impacting the matrix inversions.

5.2.2 Effect of Cluster Size

This section analyzes the scalability of Jℓd to an increasing

number of true data clusters (given fixed database size). The

basic goal of this experiment is to expose the clustering

performance of our Jℓd-K-Means algorithm against the K-

Means based on other metrics. The performance comparison

is analyzed on three aspects: (i) the average accuracy of

NN retrieval, (ii) average metric tree creation time (which

includes K-Means clustering for each internal node of the

metric tree), and (iii) average search time using a metric tree.

Figure 3 shows results from this experiment. There are a few

important properties of the metrics that are revealed by these

plots: (i) the accuracy of Jℓd matches closely with that of

AIRM (note that AIRM is used as the ground truth), (ii)

assuming the metric tree is constructed optimally, the search

time for AIRM and Jℓd are comparable, and (iii) (which is the

most important) the metric tree construction for AIRM almost

increases quadratically with increasing number of true clusters,

while that for other metrics is more favorable. Together, the

three plots substantiate the superior performance of Jℓd. Later

in this paper, we will get back to illustrating these claims on

real-data.

5.2.3 Effect of Matrix Dimension

One of the major motivations for proposing Jℓd as a replace-

ment for existing metrics on covariances is its scalability to

increasing matrix dimensions. Figure 4 shows the results of

accuracy, metric tree creation time and search time using a

metric tree. As is clear from the plots, the metric tree creation

time increases at many orders of magnitude worse with AIRM

than with other metrics, while Jℓd performs better at accuracy

and retrieval time against other metrics. Similar to what we

noticed in Figure 2, the accuracy of KLDM worsens as the

matrix dimension increases.

5.2.4 Effect of Increasing Database Size

This experiment shows the performance of Jℓd against search-

ing in larger datasets. Towards this end, we kept the number

of true clusters constant and same as in other experiments, but

increased the number of data points (covariances) associated

with each cluster. The results of this experiment in terms of

accuracy, tree buildup time and retrieval performance is shown

in Figure 5. Similar to the previous plots, it is clear that Jℓd

provides promising results in all the three properties, while

maintaining nearly perfect retrieval accuracy, showing that it

does not get distracted from the nearest neighbor even when

the datasize increases.

5.2.5 Anisotropic Index

As we alluded to briefly in Subsection 3.2, Anisotropic Index

(AI) of a matrix over a divergence (or metric) is a use-

ful quantity in several DTMRI applications [16]. Figure 6

plots the average Fractional Anisotropic Index4 (FAI(X) =
AI(X)/(1 + AI(X))) for the various distances on 3× 3 SPD

tensors for increasing levels of tensor anisotropy (increasing

condition number). As is clear from the plots, JBLD was found

to have lower anisotropy when compared to other metrics on

covariances.

5.3 Real Data Experiments

Continuing upon the simulated performance figures of Jℓd

against other metrics, this subsection provides results on real-

data. First, we will showcase a few qualitative results from

some important applications of covariances from literature.

We will demonstrate that JBLD outperforms other metrics in

accuracy not only when AIRM is assumed to be the ground

truth, but also in situations when we know the correct ground

truth of data as provided by an external agency or human

labeling.

5.3.1 Tracking using Integral Images

People appearance tracking has been one of the most success-

ful applications using covariances. We chose to experiment

with some of the popular tracking scenarios: (i) face tracking

under affine transformations, (ii) face tracking under changes

in pose, and (iii) vehicle tracking. For (i) and (ii), the tracking

dataset described in [44] was used, while the vehicle tracking

video was taken from the ViSOR repository5. The images

from the video were resized to 244 × 320 for speed and

integral images computed on each frame. An input tracking

region was given at the beginning of the video, which is then

tracked in subsequent images using the integral transform,

later computing covariances from the features in this region.

4. FAI is in the range of [0, 1] irrespective of the underlying divergence
and thus provides a fair comparison instead of just using AI.

5. http://www.openvisor.org

TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, DECEMBER 2012 9

−10 −8 −6 −4 −2 0
40

50

60

70

80

90

100

SNR (dB)

A
v
g
.
a
c
c
u
ra

c
y
 (

%
)

LERM
KLDM
JBLD
FROB

(a) n=10x10

−10 −8 −6 −4 −2 0
20

40

60

80

100

SNR (dB)

A
v
g
.
a
c
c
u
ra

c
y
 (

%
)

LERM
KLDM
JBLD
FROB

(b) n=20x20

−10 −8 −6 −4 −2 0
20

40

60

80

100

SNR (dB)

A
v
g
.
a
c
c
u
ra

c
y
 (

%
)

LERM
KLDM
JBLD
FROB

(c) n=40x40

Fig. 2. Accuracy against increasing noise for various matrix dimensions n; (a) n = 10× 10, (b) n = 20× 20, (c) n = 40× 40. It is
assumed that the AIRM is the ground truth. FROB stands for the Matrix Frobenius Distance.

50 100 150 200 250
40

50

60

70

80

90

100

true clusters

A
v
g
.
a
c
c
u
ra

c
y
 (

%
)

LERM
KLDM
JBLD
FROB

(a)

50 100 150 200
0

20

40

60

80

100

120

true clusters

A
v
g
.
tr

e
e
 c

re
a
ti
o
n
 t
im

e
 (

s
)

LERM
KLDM
AIRM
JBLD
FROB

(b)

50 100 150 200 250
0

0.05

0.1

0.15

0.2

true clusters

A
v
g
.
s
e
a
rc

h
 t
im

e
 (

m
s
)

LERM
KLDM
AIRM
JBLD
FROB

(c)

Fig. 3. Fixed dataset size of 1K, query size of 100 and for increasing number of true clusters: 3(a) accuracy of search, 3(b) time
to create the metric tree, and 3(c) speed of retrieval using the metric tree. The average is computed over 100 trials.

10 20 30 40 50 60 70
0

20

40

60

80

100

Matrix Dimension

A
v
g
.
a
c
c
u
ra

c
y
 (

%
)

LERM
KLDM
JBLD
FROB

(a)

10 20 30 40 50 60 70
0

200

400

600

800

1000

1200

Matrix Dimension

A
v
g
.
tr

e
e
 c

re
a
ti
o
n
 t
im

e
 (

s
)

LERM
KLDM
AIRM
JBLD
FROB

(b)

10 20 30 40 50 60 70
0

1

2

3

4

Matrix Dimension

A
v
g
.
s
e
a
rc

h
 t
im

e
 (

m
s
)

LERM
KLDM
AIRM
JBLD
FROB

(c)

Fig. 4. Fixed dataset size of 1K, query size of 100 and for increasing covariance matrix dimensions: 4(a) accuracy of search, 4(b)
time to create the metric tree, and 4(c) speed of retrieval using the metric tree. The average is computed over 100 trials.

0 2000 4000 6000 8000 10000
20

40

60

80

100

Dataset size (#covariaces)

A
v
g
.
A

c
c
u
ra

c
y
 (

%
)

LERM
KLDM
JBLD
FROB

(a)

0 2000 4000 6000 8000 10000
0

100

200

300

400

Dataset size (#covariaces)

A
v
g
.
tr

e
e
 c

re
a
ti
o
n
 t
im

e
 (

s
)

LERM
KLDM
AIRM
JBLD
FROB

(b)

0 2000 4000 6000 8000 10000
0

0.5

1

1.5

Dataset size (#covariaces)

A
v
g
.
s
e
a
rc

h
 t
im

e
 (

m
s
)

LERM
KLDM
AIRM
JBLD
FROB

(c)

Fig. 5. Fixed number of true number clusters, query size of 100 and but increasing the covariance dataset size: 5(a) accuracy
of search, 5(b) time to create the metric tree, and 5(c) speed of retrieval using the metric tree. The average is computed over 100
trials.

We used the color and the first order gradient features for

the covariances. Figures 7(a),7(b), and 7(c) show qualitative

results from these experiments. We compared the window of

tracking for both AIRM and JBLD, and found that they always

fall at the same location in the video (and hence not shown).

5.3.2 Texture Segmentation

Another important application of covariances has been in

texture segmentation [4], which has further application in

DTMRI, background subtraction [45], etc. In Figure 7(d), we

present a few qualitative results from segmentation on the Bro-

datz texture dataset. Each of the images were a combination of

0 2 4 6 8 10 12
0.4

0.5

0.6

0.7

0.8

0.9

1

log of condition number

F
ra

c
ti
o
n
a
l
a
n
is

o
tr

o
p
ic

 i
n
d
e
x

JBLD
AIRM
KLDM
LERM
FROB

Fig. 6. Plots of fractional anisotropic indices of various distance
functions on 3×3 SPD tensors for increasing condition numbers
of the constituent tensors. The FAI of AIRM and LERM were
found to be very close.

TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, DECEMBER 2012 10

two different textures, the objective being to find the boundary

and separate the classes. We first transformed the given texture

image into a tensor image, where each pixel was replaced by a

covariance matrix computed using all the pixels in a p×p patch

around the given pixel. The 5× 5 covariances were computed

using features such as image coordinates of the pixels in this

patch, image intensity at each pixel, and first order moments.

Next, we applied the JBLD K-Means algorithm for the texture

mixture, later segregating the patches using their cluster labels.

5.4 Real Data NN Experiments

Now we are ready to present quantitative results on real-

world datasets. For real-world experiments that are described

in the subsequent sections, we use four different vision ap-

plications for which covariance descriptors have shown to

produce promising results: (i) texture recognition, (ii) action

recognition, (iii) face recognition, and (iv) people appearance

tracking. We briefly review below each of these datasets and

how covariances were computed for each application.

Texture Dataset: Texture recognition has been one of the old-

est applications of covariances spanning a variety of domains,

e.g., DTMRI, satellite imaging, etc. The texture dataset for

our experiments was created by combining the 160 texture

images in the Brodatz dataset and the 60 texture classes in the

CURET dataset [46]. Each texture category in the Brodatz

dataset consisted of one 512 × 512 image. To create the

covariances from these images, we followed the suggestions

in [4]. First patches of size 20×20 were sampled from random

locations in each image, later using the image coordinate of

each pixel in a patch, together with the image intensity, and

the first order gradients to build 5D features. Covariances

computed from such feature vectors on all the pixels inside

the patch constituted one such data matrix. We generated

approximately 5K such covariances from all the texture images

in all the categories from the Brodatz dataset. To build a larger

dataset for textures, we combined this dataset with texture

covariances from the CURET dataset [46] which consists of

60 texture categories, with each texture having varying degrees

of illumination and pose variations. Using the RGB color

information, together with the 5 features described before, we

created approximately 27K covariances each of size 8× 8. To

have covariances of the same dimensionality across the two

datasets, we appended a unit matrix of small diagonal for the

RGB to the covariances computed from the Brodatz dataset.

Action Recognition Dataset: Activity recognition via op-

tical flow covariances is a recent addition to the family

of applications with covariance descriptors, and shows great

promise. For every pair of frames in a given video, the optical

flow is initially computed; the flow is then threshold and

12D feature vectors were extracted from each non-zero flow

location (refer [11] for details on this feature vector). It is

proposed that the covariance computed from the optical flow

features captures the profile of that activity uniquely. To build

the optical flow covariance dataset, we used a combination of

activity videos from the Weizmann activity dataset [47], the

KTH dataset6 and the UT tower dataset [48]. This resulted in

6. http://www.nada.kth.se/cvap/actions/

a large dataset of approximately 63.5K covariances each of

dimension 12 × 12.

Face recognition: Face recognition is still an active area of

research in computer vision and there has been many effective

ideas suggested. In [9], the idea of covariance descriptors

was extended for recognizing faces, where each face image

was convolved with 40 Gabor filters, the outputs of which

were then collated to form 40 × 40 covariances. Although

the covariance descriptors are not the state-of-the-art in face

recognition, our choice of this application for this paper is to

analyze the performance of our metric for real-data of large

dimensions. Towards this end, we used the images from the

Faces in the Wild dataset [49], which consists of approximately

31K face images mainly collected from newspapers. We used

the same approach as in [9] for computing the covariances,

along with incorporating the RGB color information of each

pixel and the first and second order intensity gradients to form

48 × 48 covariances.

People Appearances: An important real-time application of

covariances is people tracking from surveillance cameras [4].

To analyze the suitability of our metric for such applications,

we illustrate empirical results on tracking data. For this

experiment, we used videos of people appearances tracked

using multiple cameras7. The background was first learned

using a mixture of Gaussians, then the silhouettes of people

in the scene were extracted. The first and second order image

gradients along with the color information were used to obtain

approximately 10K covariances of size 8 × 8.

Ground Truth: Note that the texture dataset, the action dataset

and the faces dataset have ground truth labels associated with

each data point and thus for accuracy comparisons, we directly

use this class label of the query set against the class label

associated with the NN found by a metric. Unfortunately, the

people appearances dataset does not have a ground truth and

thus we use the label of the NN found by AIRM as the ground

truth.

5.5 NN via Exhaustive Search

Here we present our experiments and results for NN via

exhaustive search using the various metrics. Exhaustive search

is important from a practical point of view as most real-time

applications (such as tracking) cannot spend time in building

a metric tree. In this section, we analyze the performance of

JBLD in terms of accuracy and retrieval speed on each of the

datasets we described in the previous section.

5.5.1 Accuracy

We divided each of the datasets into database and query

sets, and then computed accuracy against either the available

ground truth or the baseline computed using AIRM. The query

set typically consisted of 1K covariances. The results are

shown in Table 4. Clearly, JBLD outperforms all the other

metrics in accuracy, without compromising much on the speed

of retrieval. In the case of LERM, we had to vectorize the

covariances using the log-Euclidean projections for tractability

7. http://cvlab.epfl.ch/research/body/surv/#data

TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, DECEMBER 2012 11

(a)

(b)

(c)

(d)

Fig. 7. Tracking using JBLD on covariances computed from integral images: (a) affine face tracking, (b) tracking face with pose
variations, (c) vehicle tracking, (d) shows results from texture segmentation. The red rectangle in the first image in each row shows
the object being tracked. The yellow rectangles in the subsequent images are the nearest objects returned by JBLD. (d) shows
sample results from three texture segmentation experiments. The left image in each pair shows the original mixed texture image
and the right image in each pair shows the output of segmentation, with one texture masked out.

Dataset (size) AIRM JBLD LERM KLDM CHOL FROB

Texture (25852)
Accuracy(%) 85.5 85.5 82.0 85.5 63.0 56.5

Time (s) 1.63 1.50 1.16 (4.21) 1.71 1.81 1.21

Activity (62425)
Accuracy(%) 99.5 99.5 96.5 99.5 92.0 82.5

Time (s) 4.04 3.71 2.42 (10.24) 4.34 4.98 2.53

Faces (29700)
Accuracy(%) 32.5 33.0 30.5 31.5 29.5 26.5

Time (s) 10.26 4.68 2.44 (24.54) 10.33 12.13 2.13

Tracking (8596)
Accuracy(%) – 100 83.3 70.0 91.0 52.1

Time (s) 0.44 0.40 0.17 (1.7) 0.42 0.28 0.15

TABLE 4
Performance of JBLD on different datasets and against various

other metrics for 1-NN query using exhaustive search averaged

over 1K queries. Note that for the appearance tracking dataset,

we used AIRM as the baseline (and thus the accuracy not

shown). Avg. time is in seconds for going over the entire

dataset once to find the NN. The time taken for the offline

log-Euclidean projections is shown in brackets under LERM.

of the application. The time taken for this operation for

each of the datasets is also shown in the table. Since this

embedding uses the eigen decomposition of the matrices, this

operation is seen to be computationally expensive, deterring

the suitability of LERM for real-time applications. We also

compare the performance of JBLD against other distances such

as the Cholesky (CHOL) distance and the Frobenius (FROB)

distance. Frobenius distance was seen to perform poorly in all

our experiments, although as expected, it is the fastest. The

numerical results are averaged over 10 trials, each time using

a different database and a query set.

5.5.2 Accuracy@K

We take the previous experiments of 1-NN a step further and

present results on K-NN retrieval for an increasing K. The idea

is to generalize the power of 1-NN to a K-NN application.

We plot in Figure 8, the results of Accuracy@K, where the

maximum value of K is determined by the cardinality of a

ground truth class. The plots clearly show that JBLD performs

well against almost all other metrics in terms of accuracy for

increasing K.

TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, DECEMBER 2012 12

0 10 20 30 40 50
0.2

0.4

0.6

0.8

1

K

A
c
c
u
ra

c
y
@

K

CHOL
KLDM
FROB
LERM
AIRM
JBLD

(a)

0 20 40 60 80 100
0.5

0.6

0.7

0.8

0.9

1

K

A
c
c
u
ra

c
y
@

K

CHOL
KLDM
FROB
LERM
AIRM
JBLD

(b)

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

K

A
c
c
u
ra

c
y
@

K

CHOL
KLDM
FROB
LERM
AIRM
JBLD

(c)

Fig. 8. Accuracy@K plots for (a) texture dataset, (b) activity dataset, (c) faces dataset.

5.6 NN Performance Using Metric Tree

Building the Tree: The time required to build the NN data

structure plays a critical role in the deployment of a measure.

In Table 5, we show a comparison of the build time of

the metric tree for each of the datasets, with comparisons

of JBLD against AIRM. As is clear from the table, the

performance of AIRM is poor and worsens with the increase

in the matrix dimensions (see the face dataset). JBLD, on

the other hand, takes far lesser time to initialize and shows

consistent performance even against increasing dataset size

and matrix dimensions.

Dataset (size) AIRM JBLD

Texture (25852) 769.96 131.31

Activity (62425) 2985.62 746.67

Faces (29700) 13776.30 854.33

People (8596) 213.41 53.165

TABLE 5
Comparison of metric tree buildup times (in seconds) for the

various datasets.

5.7 NN Retrieval

5.7.1 Exact NN via Metric Tree

Next, we compare the accuracy and the speed of retrieval of

JBLD against the other metrics using the metric tree. For this

experiment, we used a metric tree with four branches at each

internal node and 1K leaf nodes, for all the datasets. Since K-

Means using AIRM was found to take too much time until it

converged (it was found that with the face dataset with 48x48

covariances took more than 3 hours with approximately 26K

covariances), we decided to stop the clustering process when

there was less than 10% of data movements in the underlying

Loyd’s algorithm. This configuration was forced on K-Means

using other metrics as well for fairness of comparison of the

results. We show in Table 6 the average results of 1-NN using

the metric tree with 500 queries, and with averages computed

over 10 trials, each time using a different sample set for the

database and the query. As is clear from the table, JBLD

provides accuracy equal to AIRM with at least 1.5 times

speedup with the matrices of small size, while more than

7 times speedup for the face dataset. The retrieval speed of

LERM and FROB is high, while the accuracy is low. KLDM

was seen to provide accuracy similar to JBLD, but with low

retrieval speed. In short, JBLD seems to provide the best mix

of accuracy and computational expense.

5.7.2 Approximate NN via Metric Tree

It is well-known that the worst case computational complexity

of metric tree is linear. Thus in Table 7, we also evaluate

the performance of an approximate variant of metric tree

based retrieval in which we limit the search for NNs while

backtracking the metric tree to at most n items, where in our

experiments we used n = 5. This heuristic is in fact a variant

of the well-known Best-Bin-First (BBF) [50] method, the idea

is to sacrifice the accuracy a little bit for a large speedup in

retrieval. As is clear from the table, such a simple heuristic

can provide a speedup of approximately 100 times than that of

the exact NN, while not much of a lose in the accuracy. Also,

it is clear from the table that JBLD gives the best accuracy

among other metrics with reasonable retrieval results.

5.8 Summary of Results

Here we summarize our findings about JBLD and the other

metrics with regard to our experiments. As is clear from

the above tables and plots, JBLD was seen to provide the

best accuracy compared to other metrics, with accuracies

sometimes even superseding that of the Riemannian metric.

We found that both JBLD and the square-root of JBLD (which

is a metric) provided similar performance results, except for

the metric tree experiments for which we can use only the

latter. It might seem from Table 7 that the speed of retrieval

of JBLD is close to that of AIRM; this result needs to be seen

together with the results in Table 5 which shows that building

a metric tree for AIRM is extremely challenging, especially

when the data is large dimensional. KLDM sometimes matches

the accuracy of JBLD, and exhibits higher errors at other

times. However, it always runs slower than JBLD, requiring

up to more than twice as much computational time. LERM

seemed superior in retrieval speed due to the capability of

offline computations, while was seen to have lower accuracy.

Finally, FROB was found to perform the best in speed as

would be expected, but has the lowest accuracy. In summary,

JBLD is seen to provide the most consistent results among

all the experiments, with the best accuracy, scalability and

moderate retrieval speeds.

6 CONCLUSION

We introduced a similarity measure based on the Jensen-

Bregman LogDet Divergence (JBLD) for comparing covari-

ance valued data. This measure has several desirable theoreti-

cal properties including inequalities relating it to other metrics

TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, DECEMBER 2012 13

Dataset AIRM JBLD LERM KLDM FROB

Texture
Acc. (%) 83.00 83.00 78.40 83.00 52.00

Time (ms) 953.4 522.3 396.3 1199.6 522.0

Activity
Acc. (%) 98.8 99.00 95.80 98.60 85.60

Time (ms) 3634.0 3273.8 1631.9 4266.6 1614.92

Faces
Acc. (%) 26.6 26.6 22.8 26.1 20.6

Time (ms) 9756.1 1585.1 680.8 2617.7 658.6

People
Acc. (%) – 100 92.0 98.1 43.3

Time (ms) 354.3 229.7 214.2 701.1 163.7

TABLE 6
True NN using the metric tree. The results are averaged over 500

queries. Also refer to Table 5 for comparing the metric tree

creation time.

Dataset AIRM JBLD LERM KLDM FROB

Texture
Acc. (%) 80.2 81.40 76.80 81.40 48.80

Time (ms) 34.28 21.04 18.18 52.98 17.73

Activity
Acc. (%) 95.6 96.20 93.60 95.6 78.00

Time (ms) 38.1 30.39 20.3 85.9 12.2

Faces
Acc. (%) 22.4 24.2 20.2 22.2 18.6

Time (ms) 26.16 23.2 20.6 55.7 16.6

People
Acc.(%) – 91.3 85.6 91.1 36.4

Time (ms) 4.81 4.78 3.31 8.12 3.07

TABLE 7
ANN performance using Best-Bin-First strategy using metric

tree. The results are averaged over 500 queries. Also refer to

Table 5 for comparing the metric tree creation time.

for covariances, including the Riemannian metric (which is

probably the first choice among such metrics). We showed that

JBLD outperforms the Riemannian metric in speed, without

any drop in accuracy. Further, we showed results for com-

puting the centroid of covariances under our metric, followed

by an application of JBLD to nearest neighbor retrieval using

a metric tree. Experiments validated the effectiveness of the

measure. Going forward, we would like to apply JBLD to

classification and regression problems (initial reports can be

seen in [51]).

ACKNOWLEDGEMENTS

This material is based upon work supported in part by the

U.S. Army Research Laboratory and the U.S. Army Research

Office under contract #911NF-08-1-0463 (Proposal 55111-CI),

and the National Science Foundation through grants #IIP-

0443945, #CNS-0821474, #IIP- 0934327, #CNS-1039741,

#IIS-1017344, #IIP-1032018, and #SMA-1028076. Arindam

Banerjee is supported by NSF grants #IIS-0916750, #IIS-

0812183, #IIS-1029711, #NetSE-1017647, and NSF CAREER

award #IIS-0953274.

REFERENCES

[1] D. Alexander, C. Pierpaoli, P. Basser, and J. Gee, “Spatial transforma-
tions of diffusion tensor magnetic resonance images,” IEEE Trans. on

Med. Imaging, vol. 20, no. 11, pp. 1131–1139, 2002.
[2] H. Zhu, H. Zhang, J. Ibrahim, and B. Peterson, “Statistical analysis

of diffusion tensors in diffusion-weighted magnetic resonance imaging
data,” Journal of the American Statistical Association, vol. 102, no. 480,
pp. 1085–1102, 2007.

[3] M. Chiang, R. Dutton, K. Hayashi, O. Lopez, H. Aizenstein, A. Toga,
J. Becker, and P. Thompson, “3D pattern of brain atrophy in HIV/AIDS
visualized using tensor-based morphometry,” Neuroimage, vol. 34, no. 1,
pp. 44–60, 2007.

[4] O. Tuzel, F.Porikli, and P. Meer., “Region covariance: A fast descriptor
for detection and classification,” ECCV, 2006.

[5] F. Porikli, and O. Tuzel, “Covariance tracker,” CVPR, 2006.
[6] O. Tuzel, F. Porikli, and P. Meer, “Human detection via classification

on Riemannian manifolds,” in CVPR, 2007, pp. 1–8.
[7] J. Malcolm, Y. Rathi, and A. Tannenbaum, “A graph cut approach to

image segmentation in tensor space,” in CVPR, 2007, pp. 1–8.
[8] T. Brox, M. Rousson, R. Deriche, and J. Weickert, “Unsupervised

segmentation incorporating colour, texture, and motion,” in Computer

Analysis of Images and Patterns. Springer, 2003, pp. 353–360.

[9] Y. Pang, Y. Yuan, and X. Li, “Gabor-based region covariance matrices
for face recognition,” IEEE Trans. on Circuits and Systems for Video

Technology, vol. 18, no. 7, pp. 989–993, 2008.

[10] W. Zheng, H. Tang, Z. Lin, and T. Huang, “Emotion recognition from
arbitrary view facial images,” ECCV, pp. 490–503, 2010.

[11] K. Guo, P. Ishwar, and J. Konrad, “Action recognition using sparse
representation on covariance manifolds of optical flow,” in AVSS. IEEE,
2010, pp. 188–195.

[12] C. Ye, J. Liu, C. Chen, M. Song, and J. Bu, “Speech emotion classifica-
tion on a Riemannian manifold,” Adv. Multimedia Inf. Proc., pp. 61–69,
2008.

[13] M. Datar, N. Immorlica, P. Indyk, and V. Mirrokni, “Locality-sensitive
hashing scheme based on p-stable distributions,” Annual Symposium on

Computational Geometry, pp. 253–262, 2004.

[14] X. Pennec, P. Fillard, and N. Ayache, “A Riemannian framework for
tensor computing,” IJCV, vol. 66, no. 1, pp. 41–66, 2006.

[15] V. Arsigny, P. Fillard, X. Pennec, and N. Ayache, “Log-Euclidean
metrics for fast and simple calculus on diffusion tensors,” Magnetic

Resonance in Medicine, vol. 56, no. 2, pp. 411–421, 2006.

[16] M. Moakher and P. Batchelor, “Symmetric positive-definite matrices:
from geometry to applications and visualization,” Visualization and

Processing of Tensor Fields, 2006.

[17] R. Bhatia, Positive definite matrices. Princeton Univ Press, 2007.

[18] X. Li, W. Hu, Z. Zhang, X. Zhang, M. Zhu, and J. Cheng, “Visual
tracking via incremental Log-Euclidean Riemannian subspace learning,”
in CVPR, 2008.

[19] Q. Gu and J. Zhou, “A similarity measure under Log-Euclidean metric
for stereo matching,” in CVPR, 2009, pp. 1–4.

[20] Z. Wang, B. Vemuri, Y. Chen, and T. Mareci, “A constrained variational
principle for direct estimation and smoothing of the diffusion tensor field
from complex DWI,” IEEE Trans. on Med. Imaging, vol. 23, no. 8, pp.
930–939, 2004.

[21] I. Dryden, A. Koloydenko, and D. Zhou, “Non-Euclidean statistics for
covariance matrices, with applications to diffusion tensor imaging,”
Annals of Applied Statistics, vol. 3, no. 3, pp. 1102–1123, 2009.

[22] F. Nielsen, P. Piro, and M. Barlaud, “Bregman vantage point trees for
efficient nearest neighbor queries,” in ICME, 2009, pp. 878–881.

[23] L. Cayton, “Fast nearest neighbor retrieval for Bregman divergences,”
in ICML, 2008, pp. 112–119.

[24] P. Turaga and R. Chellappa, “Nearest-neighbor search algorithms on
non-Euclidean manifolds for computer vision applications,” in CVGIP,
2010, pp. 282–289.

[25] R. Chaudhry and Y. Ivanov, “Fast approximate nearest neighbor methods
for non-Euclidean manifolds with applications to human activity analysis
in videos,” ECCV, pp. 735–748, 2010.

[26] Z. Chebbi and M. Moakher, “Means of hermitian positive-definite
matrices based on the log-determinant alpha-divergence function,” LAA,
vol. 436, pp. 1872–1889, 2012.

[27] B. Kulis, M. Sustik, and I. Dhillon, “Low-rank kernel learning with
Bregman matrix divergences,” JMLR, vol. 10, pp. 341–376, 2009.

[28] A. Banerjee, S. Merugu, I. Dhillon, and J. Ghosh, “Clustering with
Bregman divergences,” JMLR, vol. 6, pp. 1705–1749, 2005.

TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, DECEMBER 2012 14

[29] Y. Censor and S. A. Zenios, Parallel Optimization: Theory, Algorithms,

and Applications. Oxford University Press, 1997.
[30] F. Nielsen and R. Nock, “On the centroids of symmetrized Bregman

divergences,” Arxiv preprint arXiv:0711.3242, 2007.
[31] S. Sra, “Positive definite matrices and the symmetric Stein divergence,”

http://arxiv.org/abs/1110.1773, 2011.
[32] G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd ed. Johns

Hopkins University Press, 1996.
[33] P. Fillard, V. Arsigny, N. Ayache, and X. Pennec, “A Riemannian

framework for the processing of tensor-valued images,” Deep Structure,

Singularities, and Computer Vision, pp. 112–123, 2005.
[34] A. Yuille and A. Rangarajan, “The concave-convex procedure,” Neural

Computation, vol. 15, no. 4, pp. 915–936, 2003.
[35] F. Nielsen and S. Boltz, “The Burbea-Rao and Bhattacharyya Centroids,”

IEEE Trans. on Info. Theory, vol. 57, no. 8, pp. 5455–5466, 2011.
[36] R. Bhatia, Matrix analysis. Springer Verlag, 1997, vol. 169.
[37] R. Horn and C. Johnson, Matrix analysis. Cambridge University Press,

1990.
[38] J. D. Lawson and Y. Lim, “The geometric mean, matrices, metrics, and

more,” The American Mathematical Monthly, vol. 108, no. 9, pp. 797–
812, 2001.

[39] B. Sriperumbudur and G. Lanckriet, “On the convergence of the
concave-convex procedure,” NIPS, vol. 22, pp. 1759–1767, 2009.

[40] P. Ciaccia, M. Patella, and P. Zezula, “M-tree: An efficient access method
for similarity search in metric spaces,” in VLDB. Morgan Kaufmann
Publishers Inc., 1997, pp. 426–435.

[41] S. Brin, “Near neighbor search in large metric spaces,” in VLDB, 1995.
[42] D. Bini and B. Iannazzo, “Computing the Karcher mean of symmetric

positive definite matrices,” LAA, 2011.
[43] T. Myrvoll and F. Soong, “On divergence based clustering of Normal

distributions and its application to HMM adaptation,” in Euro. Conf. on

Speech Comm. and Tech., 2003, pp. 1517–1520.
[44] E. Maggio, E. Piccardo, C. Regazzoni, and A. Cavallaro, “Particle PHD

filtering for multi-target visual tracking,” in ICASSP, vol. 1, 2007.
[45] R. Caseiro, J. Henriques, and J. Batista, “Foreground segmentation via

background modeling on Riemannian manifolds,” in ICPR, 2010, pp.
3570–3574.

[46] K. Dana, B. Van-Ginneken, S. Nayar, and J. Koenderink, “Reflectance
and texture of real world surfaces,” TOG, vol. 18, no. 1, pp. 1–34, 1999.

[47] L. Gorelick, M. Blank, E. Shechtman, M. Irani, and R. Basri, “Actions
as space-time shapes,” PAMI, vol. 29, no. 12, pp. 2247–2253, 2007.

[48] C. Chen, M. Ryoo, and J. Aggarwal, “UT-Tower
dataset: Aerial View Activity Classification Challenge,”
http://cvrc.ece.utexas.edu/SDHA2010/Aerial View Activity.html,
2010.

[49] V. Jain and E. Learned-Miller, “FDDB: a benchmark for face detection
in unconstrained settings,” University of Massachusetts, Amherst, Tech.
Rep. UM-CS-2010-009, 2010.

[50] J. Beis and D. Lowe, “Shape indexing using approximate nearest-
neighbour search in high-dimensional spaces,” in CVPR, 1997, pp.
1000–1006.

[51] M. L. Frank Nielsen and B. C. Vemuri, “Jensen divergence-based means
of SPD matrices,” Matrix Information Geometry, pp. 111–122, 2012.

Anoop Cherian received his B.Tech (honours)
degree in computer science and engineering
from the National Institute of Technology, Cali-
cut, India in 2002, and M.S. in computer science
from the University of Minnesota, Minneapolis in
2010. He is currently working towards his Ph.D.
degree in computer science at the University of
Minnesota. From 2002–2007, he worked as a
software design engineer at Microsoft. His re-
search interests include machine learning, and
computer vision. He is the recipient of the Best

Student Paper award at the Intl. Conf. on Image Processing (ICIP) in
2012.

Suvrit Sra is a Senior Research Scientist at the
Max Planck Institute for Intelligent Systems in
Tbingen, Germany. He received a Ph.D. in Com-
puter Science from the University of Texas at
Austin in 2007. His research focuses on ”large-
scale data analysis and optimization”. In particu-
lar, he designs, analyzes, and implements algo-
rithms for large-scale (data intensive) problems
in areas such as scientific computing, statis-
tics, data mining, computer vision, and machine
learning. Beyond optimization, he has interests

in numerous subareas within mathematics; most notably in matrix alge-
bra and analysis. His research has won awards at several international
venues; the most recent being the ”SIAM Outstanding Paper Prize
(2011)” for his work on metric nearness. He regularly organizes the Neu-
ral Information Processing Systems (NIPS) workshops on ”Optimization
for Machine Learning” and has recently edited a book of the same title.

Arindam Banerjee is an associate professor
at the Department of Computer and Engineer-
ing and a Resident Fellow at the Institute on
the Environment at the University of Minnesota,
Twin Cities. His research interests are in ma-
chine learning, data mining, convex analysis and
optimization, and their applications in complex
real-world problems including problems in Text
and Web Mining, Climate Sciences, Finance,
Social Network Analysis, and Bioinformatics. He
has won several awards, including the NSF CA-

REER award in 2010, the McKnight Land-Grant Professorship at the
University of Minnesota, Twin Cities (20092011), the J. T. Oden Faculty
Research Fellowship from the Institute for Computational Engineering
and Sciences (ICES), University of Texas at Austin (2006), the IBM PhD
fellowship for the academic years 2003-2004 and 2004-2005, and four
Best Paper awards.

Nikolaos Papanikolopoulos received the
Diploma degree in electrical and computer
engineering from the National Technical
University of Athens, Athens, Greece, in 1987,
the M.S.E.E. in electrical engineering from
Carnegie Mellon University (CMU), Pittsburgh,
PA, in 1988, and the Ph.D. in electrical and
computer engineering from Carnegie Mellon
University, Pittsburgh, PA, in 1992. Currently, Dr.
Papanikolopoulos is a Distinguished McKnight
University Professor in the Department of

Computer Science at the University of Minnesota and Director of
the Center for Distributed Robotics and SECTTRA. His research
interests include robotics, computer vision, sensors for transportation
applications, and control. He has authored or coauthored more than
280 journal and conference papers in the above areas (sixty seven
refereed journal papers). Dr. Papanikolopoulos was finalist for the
Anton Philips Award for Best Student Paper in the 1991 IEEE Int. Conf.
on Robotics and Automation and recipient of the best Video Award in
the 2000 IEEE Int. Conf. on Robotics and Automation. Furthermore,
he was recipient of the Kritski fellowship in 1986 and 1987. He was a
McKnight Land-Grant Professor at the University of Minnesota for the
period 1995-1997 and has received the NSF Research Initiation and
Early Career Development Awards. He was also awarded the Faculty
Creativity Award from the University of Minnesota. One of his papers
(co-authored by O. Masoud) was awarded the IEEE VTS 2001 Best
Land Transportation Paper Award. Finally, he has received grants from
DARPA, DHS, U.S. Army, U.S. Air Force, Sandia National Laboratories,
NSF, Lockheed Martin, Microsoft, INEEL, USDOT, MN/DOT, Honeywell,
and 3M (more than $20M).

