
Running MAP Inference on Million Node Graphical Models: A High Performance
Computing Perspective

Chen Jin† , Qiang Fu], Huahua Wang], William Hendrix†, Zhengzhang Chen†, Ankit Agrawal†,
Arindam Banerjee], Alok Choudhary†

]University of Minnesota, Twin Cities
†Northwestern University

Email:†{chen.jin, whendrix, zzc472, ankitag, choudhar}@eecs.northwestern.edu
Email:]{qifu, huwang, banerjee}@cs.umn.edu

Abstract—
An important problem in discrete graphical models is

the maximum a posteriori (MAP) inference problem. Recent
research has been focusing on the development of parallel
MAP inference algorithm, which scales to graphical models
of millions of nodes. In this paper, we introduce a parallel
implementation of the recently proposed Bethe-ADMM algo-
rithm using Message Passing Interface (MPI), which allows us
to fully utilize the computing power provided by the modern
supercomputers with thousands of cores. Experimental results
demonstrate that for a broad class of problems, our parallel
implementation of Bethe-ADMM scales almost linearly even
with thousands of cores.

Keywords-Alternating Direction Method of Multipliers;
Markov Random Field; Maximum a Posteriori Inference;
Message Passing Interface

I. INTRODUCTION

Discrete graphical models have found applications in a
wide variety of problems, including image analysis [13],
speech recognition [14], bioinformatics [9] and error cor-
recting codes. Hidden Markov models (HMMs) [5], Markov
random fields (MRFs) [29], and conditional random fields
(CRFs) are popular examples of discrete graphical mod-
els which have found widespread usage in data analysis.
Given a discrete graphical model with known structure
and parameters, the problem of finding the most likely
configuration of the states is known as the maximum a
posteriori (MAP) inference problem. For a tree-structured
graph, the problem can be solved efficiently using a suitable
dynamic programming algorithm such as the max-product
algorithm [63]. For example, for HMMs, the most likely
sequence of latent states can be found efficiently using
the Viterbi decoding algorithm [10]. For general graphs,
however, the MAP inference problem is a computationally
intractable integer program and is NP-hard [29]. In practice,
these problems can be approached by considering a linear
programming (LP) relaxation of the integer program. Over
the past few years, several algorithms have been proposed
to solve such graph-structured LPs [29], [18], [22], [21].
Such approaches can be broadly classified into two groups:

primal methods which work with the original variables [25]
and dual methods, which works on the dual variables [27].

In the context of large scale data analysis, the ability to
apply such methods efficiently to graphs of over millions or
hundreds of millions of nodes is important and necessary.
Consider the problem of detecting droughts from precipita-
tion data of the past 100 years at a temporal resolution of a
month and spatial resolution of 0.5◦ × 0.5◦ over land. A 3-
dimensional MRF (latitude × longitude × time) with neigh-
borhood dependencies is a suitable model for such analysis
since droughts have both spatial and temporal continuity.
Assuming a boolean indicator variable of drought at each
space-time location, the graph-structured LP relaxation of
the MAP inference problem in this context has to work
with approximately 7 million variables and about double that
many constraints. The key bottleneck, even in the advanced
algorithms for solving graph-structured LPs, is that they
are inherently sequential [26]. Given that climate datasets
are available at much higher resolutions, especially from
climate model outputs used by the Intergovernmental Panel
on Climate Change (IPCC) for future climate projections,
we need algorithms for solving graph structured LPs which
efficiently scale to problem sizes of millions or hundreds
of millions of nodes. Further, due to the generality of the
framework, the algorithms can find applications in other
domains, such as community detection in large scale social
networks, which can have millions to hundreds of millions
of users (nodes) [28].

Driven by the emerging need for scalable MAP infer-
ence algorithms, in this paper, we adopt the recently pro-
posed Bethe-ADMM algorithm [12], [15] for solving graph-
structured LPs. The overall structure of the algorithm is
based on two ideas: tree-based decomposition of a graph-
structured LP [29] and the alternating direction method of
multipliers (ADMM) [6]. The tree decomposition breaks the
problem into small but overlapping parts, each involving
small number of variables and constraints. The algorithm it-
erates between doing updates to variables in individual parts
in parallel followed by suitable aggregation, all within the
framework of ADMM. However, unlike standard ADMM,

Bethe-ADMM is a novel inexact ADMM augmented by
a Bregman divergence induced by the Bethe entropy. The
unusual modification in Bethe-ADMM leads to an efficient
projection of partial solutions to subsets of constraints,
leading to highly efficient iterations and avoids double-loop
algorithm.

To illustrate the efficiency of the Bethe-ADMM algorithm,
we implement it using Message Passing Interface (MPI),
which is a natural fit for the parallel algorithm given its
flexible message passing mechanism, along with its porta-
bility and wide adoption in distributed and high performance
clusters. Another advantage of using MPI is that its I/O
interface is optimized for a wide variety of underlying
parallel file systems (PFS) and sustains high I/O bandwidth.
We evaluate our algorithms on both large-scale simulation
and real precipitation data. The empirical results show that
we manage to obtain almost linear speedup in the number
of cores used.

The rest of the paper is organized as follows: We briefly
review the MAP inference problem in Section II. We in-
troduce the Bethe-ADMM algorithm in Section III, and
discuss its MPI implementation in detail in Section IV. We
present the experimental results in Section V and conclude
in Section VI.

II. PROBLEM DEFINITION

A pairwise Markov random field (MRF) is defined on an
undirected graph G = (V,E), where V is the vertex set
and E is the edge set. Each node u ∈ V has a random
variable Xu associated with it, which can take value xu
in some discrete space X = {1, . . . , k}. Concatenating
all the random variables Xu, ∀u ∈ V , we obtain an n
dimensional random vector X = {Xu|u ∈ V } ∈ Xn.
We assume that the distribution P of X is a Markov
Random Field [30], meaning that it factors according to
the structure of the undirected graph G as follows: With
fu : X 7→ R, ∀u ∈ V and fuv : X × X 7→ R,
∀(u, v) ∈ E denoting nodewise and edgewise potential func-
tions respectively, the distribution takes the form P (x) ∝
exp

{∑
u∈V fu(xu) +

∑
(u,v)∈E fuv(xu, xv)

}
.

An important problem in the context of MRF is that of
maximum a posteriori (MAP) inference,

which is to compute the configuration x∗ with the largest
probability:

x∗ ∈ argmax
x∈Xn

exp

∑
u∈V

fu(xu) +
∑

(u,v)∈E

fuv(xu, xv)

 .

(1)
The above optimization problem is equivalent to the follow-
ing integer programming (IP) problem:

x∗ ∈ argmax
x∈Xn

∑
u∈V

fu(xu) +
∑

(u,v)∈E

fuv(xu, xv)

 . (2)

The complexity of (2) depends critically on the structure
of the underlying graph. When G is a tree structured graph,
the MAP inference problem can be solved efficiently via the
max-product algorithm [19]. However, for an arbitrary graph
G, the MAP inference algorithm is usually computationally
intractable. The intractability motivates the development of
algorithms to solve the MAP inference problem approxi-
mately. In this paper, we focus on the Linear Programming
(LP) relaxation method [29], [8]. The LP relaxation of MAP
inference problem is defined on a set of pseudomarginals µu
and µuv , which are non-negative, normalized and locally
consistent [29], [8]:

µu(xu) ≥ 0 , ∀u ∈ V ,∑
xu∈Xu

µu(xu) = 1, ∀u ∈ V ,

µuv(xu, xv) ≥ 0, ∀(u, v) ∈ E ,∑
xu∈Xu

µuv(xu, xv) = µv(xv), ∀(u, v) ∈ E .

(3)

We denote the polytope defined by (3) as L(G) and the LP
relaxation of MAP inference problem (2) becomes solving
the following LP:

max
µ∈L(G)

〈µ,f〉 =
∑
u∈V

∑
xu

µu(xu)fu(xu) (4)

+
∑

(uv)∈E

∑
xu,xv

µuv(xu, xv)fuv(xu, xv) ,

subject to the constraint that µ ∈ L(G). If the solution
µ to (4) is an integer solution, it is guaranteed to be the
optimal solution of (2). Otherwise, one can apply rounding
schemes [24], [25] to round the fractional solution to an
integer solution.

Although standard LP solvers can be used to solve the
optimization problem (4), they are usually inefficient for the
MAP inference problem [33], mainly because they fail to
take advantage of the underlying graph structure. Specially
designed MAP inference algorithms usually exploit the
structures of the dependency graphs and solve the problem
efficiently. Broadly speaking, LP-based approximate MAP
inference algorithms can be categorized into primal and dual
algorithms which solve the primal (4) and the dual of (2)
respectively.

III. ALGORITHM

In this section, we first show how to solve (4) by the
ADMM based on tree decomposition. The resulting algo-
rithm can be a double loop algorithm since some updates do
not have closed-form solution. We then introduce the Bethe-
ADMM algorithm where every update can be computed
efficiently.

A. ADMM for MAP Inference

To facilitate the discussion in the sequel, we first outline
the basic ADMM [6] updates. Suppose our optimization
problem is as follows:

min
x∈Rn

N∑
i=1

fi(x) , (5)

and we assume that fi, i = 1, . . . , N are convex functions.
We can rewrite (5) with local variables xi ∈ Rn and a global
variable z ∈ Rn:

min
xi,z

N∑
i=1

fi(xi) (6)

subject to xi = z, i = 1, . . . , N. (7)

Note that (7) is a consensus constraint and we use it to make
sure that the local variables and the global variable are of
the same value.

Let λi ∈ Rn, i = 1, . . . , N be the Lagrangian multipliers.
The Lagrangian function of (6) is:

L(xi,λi, z) =

N∑
i=1

(
fi(xi) + λ

T
i (xi − z)

)
. (8)

The ADMM algorithm imposes a quadratic penalty on (8)
and the augmented Lagrangian then becomes:

L(xi,λi, z) =

N∑
i=1

fi(xi) + 〈λi,xi − z〉+ β

2
||xi − z||22︸ ︷︷ ︸

quadratic penalty

 ,

(9)
where β > 0 is the positive penalty parameter. The problem
(9) and (8) are equivalent because for any feasible xi and z,
the penalty term is zero. The ADMM algorithm minimizes
(9) iteratively and consists of the following updates:

xt+1
i = argmin

xi

(
fi(xi) + 〈λti,xi − zt〉+

β

2
||xi − zt||22

)
,

(10)

zt+1 = argmin
z

(
−

N∑
i=1

〈λt+1
i , z〉+ β

2
||xt+1

i − z||22

)
,

(11)

λt+1
i = λti + β(xt+1

i − zt+1) . (12)

We first show how to decompose (4) into a series
of subproblems. We can decompose the graph G into
overlapping subgraphs and rewrite the optimization prob-
lem with consensus constraints to enforce the pseudo-
marginals on subgraphs (local variables) to agree with µ
(global variable). Throughout the paper, we focus on tree-
structured decompositions. To be more specific, let T =
{(V1, E1), . . . , (V|T|, E|T|)} be a collection of subgraphs of
G which satisfies two criteria: (i) Each subgraph τ =

(Vτ , Eτ) is a tree-structured graph and (ii) Each node u ∈ V
and each edge (u, v) ∈ E is included in at least one subgraph
τ ∈ T. We also introduce local variable mτ ∈ L(τ) which
is the pseudomarginal [29], [8] defined on each subgraph
τ . We use θτ to denote the potentials on subgraph τ . We
denote µτ as the components of global variable µ that
belong to subgraph τ . Note that since µ ∈ L(G) and τ is
a tree-structured subgraph of G, µτ always lies in L(τ). In
the newly formulated optimization problem, we will impose
consensus constraints for sharing nodes and edges. For the
ease of exposition, we simply use the equality constraint
µτ =mτ to enforce the consensus.

The new optimization problem we formulate based on
graph decomposition is then as follows:

min
mτ ,µ

|T|∑
τ=1

ρτ 〈mτ ,θτ 〉 (13)

subject to mτ − µτ = 0, τ = 1, . . . , |T| (14)
mτ ∈ L(τ), τ = 1, . . . , |T| (15)

where ρτ is a positive constant associated with each sub-
graph. We use the consensus constraints (14) to make
sure that the pseudomarginals agree with each other in the
sharing components across all the tree-structured subgraphs.
Besides the consensus constraints, we also impose feasibility
constraints (15), which guarantee that, for each subgraph,
the local variablemτ lies in L(τ). When the constraints (14)
and (15) are satisfied, the global variable µ is guaranteed to
lie in L(G).

To make sure that problem (4) and (13) are equivalent,
we also need to guarantee that

min
mτ

|T|∑
τ=1

ρτ 〈mτ ,θτ 〉 = max
µ
〈µ,f〉 , (16)

assuming the constraints (14) and (15) are satisfied. It is
easy to verify that, as long as (16) is satisfied, the choice of
ρτ and θτ do not change the problem. Let 1[.] be a binary
indicator function and l = −f . A straightforward approach
to obtain the potential θτ can be:

θτ,u(xu) =
lu(xu)∑

τ ′ ρτ ′1[u ∈ Vτ ′]
, u ∈ Vτ ,

θτ,uv(xu, xv) =
luv(xu, xv)∑

τ ′ ρτ ′1[(u, v) ∈ Eτ ′]
, (u, v) ∈ E(τ) .

Plugging in the equality constraints, we then have the
augmented Lagrangian of (13) as:

L(mτ ,µτ ,λτ)=

|T|∑
τ=1

(
ρτ 〈mτ ,θτ 〉+〈λτ ,mτ−µτ 〉+

β

2
||mτ−µτ ||22

)
,

(17)
where λτ is the dual variable and β > 0 is the penalty
parameter. The following updates constitute a single iteration

of the ADMM [6]:

mt+1
τ = argmin

mτ∈L(τ)
〈mτ , ρτθτ + λ

t
τ 〉+

β

2
||mτ − µtτ ||22 ,

(18)

µt+1 = argmin
µ

|T|∑
τ=1

(
−〈µτ ,λ

t
τ 〉+

β

2
||mt+1

τ − µτ ||22
)
,

(19)

λt+1
τ = λtτ + β(mt+1

τ − µt+1
τ) . (20)

Now, the problem turns to whether the updates (18)
and (19) can be solved efficiently which we analyze as
follows:

Updating µ: Since we have an unconstrained optimiza-
tion problem (19) and the objective function decomposes
component-wise, taking the derivatives and setting them to
zero yield the solution. In particular, let Su be the set of
subgraphs which contain node u, for the node components,
we have:

µt+1
u (xu) =

1

|Su|β
∑
τ∈Su

(
βmt+1

τ,u (xu) + λtτ,u(xu)
)
. (21)

(21) can be further simplified by observing that∑
τ∈Suλ

t
τ,u(xu)= 0:

µt+1
u (xu) =

1

|Su|

T∑
τ=1

mt+1
τ,u (xu) . (22)

Similarly, let Suv be the subgraphs which contain edge (u, v)
and the update for the edge components is:

µt+1
u,v (xu, xv) =

1

|Suv|
∑
τ∈Suv

mt+1
τ,uv(xu, xv) . (23)

Updating mτ : We need to solve a quadratic optimization
problem for each tree-structured subgraph. Unfortunately,
we do not have a closed-form solution for (18) in general.
One possible approach, similar to the proximal algorithm, is
to first obtain the solution m̃τ to the unconstrained problem
of (18) and then project m̃τ to L(τ):

mτ = argmin
m∈L(τ)

||m− m̃τ ||22 . (24)

If we adopt the cyclic Bregman projection algorithm [7] to
solve (24), the algorithm becomes a double-loop algorithm,
i.e., the cyclic projection algorithm projects the solution to
each individual constraint of L(τ) until convergence and the
projection algorithm itself is iterative.

B. Bethe-ADMM

Instead of solving (18) exactly, a common way in inexact
ADMMs [32], [17] is to linearize the objective function in

(18), i.e., the first order Taylor expansion at mt
τ , and add a

new quadratic penalty term such that

mt+1
τ = argmin

mτ∈L(τ)
〈ytτ ,mτ −mt

τ 〉+
α

2
‖mτ −mt

τ‖22 ,

(25)

where α is a positive constant and

ytτ = ρτθτ + λ
t
τ + β(mt

τ − µtτ) . (26)

However, as discussed in the previous section, the quadratic
problem (25) is generally difficult for a tree-structured graph
and thus the conventional inexact ADMM does not lead to
an efficient update for mτ . Next we show that, by taking the
tree structure into account, an inexact minimization of (18)
augmented with a Bregman divergence induced by Bethe
entropy leads to efficient update of mτ .

The basic idea in the new algorithm is that we replace
the quadratic term in (25) with a Bregman-divergence term
dφ(mτ ||mt

τ) such that

mt+1
τ = argmin

mτ∈L(τ)
〈ytτ ,mτ −mt

τ 〉+ αdφ(mτ ||mt
τ) , (27)

is efficient to solve for tree τ . Expanding the Bregman
divergence and removing the constants, we can rewrite (27)
as

mt+1
τ = argmin

mτ∈L(τ)
〈ytτ/α−∇φ(mt

τ),mτ 〉+ φ(mτ). (28)

For a tree-structured problem, what convex function φ(mτ)
should we choose? Recall mτ defines the marginal distri-
butions of a tree-structured distribution pmτ over the nodes
and edges:

mτ,u(xu) =
∑
¬xu

pmτ (x1, . . . , xu, . . . , xn), ∀u ∈ Vτ ,

mτ,uv(xu, xv) =
∑

¬xu,¬xv

pmτ
(x1, . . . , xu, xv, . . . , xn), ∀(uv) ∈ Eτ .

It is well known that the sum-product algorithm [19]
efficiently computes the marginal distributions for a tree
structured graph. It can also be shown that the sum-product
algorithm solves the following optimization problem [30]
for tree τ :

max
mτ∈L(τ)

〈mτ ,ητ 〉+HBethe(mτ) , (29)

where HBethe(mτ) is the Bethe entropy of mτ . The Bethe
entropy on tree τ is defined as:

HBethe(mτ)=
∑
u∈Vτ

Hu(mτ,u)−
∑

(u,v)∈Eτ

Iuv(mτ,uv) ,

(30)
where Hu(mτ,u) is the entropy function on each node u ∈
Vτ and Iuv(mτ,uv) is the mutual information on each edge
(u, v) ∈ Eτ .

Combing (28) and (29), we set ητ = ∇φ(mt
τ) − ytτ/α

and choose φ to be the negative Bethe entropy of mτ so

that (28) can be solved efficiently in linear time via the sum-
product algorithm.

For the sake of completeness, we summarize Bethe-
ADMM algorithm as follows :

mt+1
τ = argmin

mτ∈L(τ)
〈ytτ/α−∇φ(mt

τ),mτ 〉+ φ(mτ) ,

(31)

µt+1 = argmin
µ

T∑
τ=1

(
−〈λtτ ,µτ 〉+

β

2
||mt+1

τ − µτ ||22
)
,

(32)

λt+1
τ = λtτ + β(mt+1

τ − µt+1
τ) , (33)

where ytτ is defined in (26) and φ is defined in (30).
Due to the space constraint, we refer the readers to [12]
for the detailed convergence analysis of the Bethe-ADMM
algorithm.

It is easy to see that the update of mτ in (31) is
independent for each tree τ , which motivates the parallel
implementation of the Bethe-ADMM algorithm. We describe
our implementation in detail in the next section.

IV. PARALLEL IMPLEMENTATION

In this section, we explain the key components of our
MPI implementation in detail. Our goal is to run the Bethe-
ADMM algorithm on modern high performance computers
with thousands of cores and it requires us to adopt the best
parallelization practice. To achieve this goal, we carefully
design our MPI implementation so that the underlying
parallel computing architecture can be fully utilized.

A. Existing Frameworks

Various computational frameworks have been proposed
and successfully applied to various inference problems in
large scale graphical models, such as GraphLab [1] and
Pregel [20].

GraphLab [1] provides a high level parallel abstraction
through a data graph, which encodes the computational
structure and the dependencies of the subproblems. It also
provides a set of consistency models which insulates the
users from the complexity of synchronization, data races
and deadlocks. However, to our best knowledge, there are
no experimental results to show that graphLab runs over
thousands of computer cores.

On the other side, Pregel, a large-scale graph processing
system proposed in [20], and its open source counterpart
Giraph [2], adopt the bulk synchronous parallel (BSP) com-
puting model, by which the computation is carried out in
the sequence of supersteps. The same user-defined function
is applied to each vertex in parallel within each superstep,
while the global synchronization barrier is enforced at inter-
supersteps. Different from our focus on HPC systems, these
two frameworks dedicate efforts on the distributed com-
modity hardware and relies on the distributed file system.

Nevertheless, we all endorse using a pure messaging passing
model for data exchange rather than either remote procedure
call or shared memory model.

Even though we only construct first order Markov Ran-
dom Fields in the previous problem formulation, Beth-
ADMM algorithm is general enough to apply to high order
MRFs. Thus, our goal is to design a MPI framework to solve
the MAP inference problems in arbitrary large graphs.

B. Bethe-ADMM using MPI

Since the update of mτ in (31) for each tree is inde-
pendent, the Bethe-ADMM algorithm is inherently parallel.
In the parallel Bethe-ADMM algorithm, each process only
maintains the information of a subset of trees in T and mτ

is updated simultaneously. According to (32), the update of
variable µ involves averaging over mτ from the relevant
trees. If these trees belong to different processes, the value
of mτ needs to be exchanged among the processes so that
µ can be computed correctly. Because of the communica-
tion among the processes, the message passing framework
is a good fit for our parallel implementation. Hence, we
implement the Bethe-ADMM algorithm using MPI. We also
make the following implementation assumptions: (i) The
MRF dependency graph is a regular grid shaped graph, e.g.,
two dimensional four nearest neighbor grid. (ii) Each tree
structured subgraph is simply an edge of G. (iii)The input
to the MAP inference algorithm is some data file, which has
the potential and graph structure information.

An efficient parallel implementation is more challenging
than an efficient sequential implementation. To fully utilize
the computing power provided by the underlying parallel
architecture, we need to address the following issues:

• How to design an efficient I/O scheme to load the data
files, i.e., node potentials, edge potentials and graph
structure?

• How to decompose the graph so that the work load on
each process is balanced?

• How to efficiently figure out, for each process, what
‘messages’ it needs to exchange with other processes?

We depict in Fig 1(a) how the entire application is
deployed in the high performance computing environment.
We take advantage of the underlying parallel file system
(PFS) in high performance computing systems along with
the parallel I/O library, PnetCDF in our case, so that the data
files can be accessed in parallel among all the processes.

We also design a simple heuristic to partition the graph
to achieve load balancing. With the help of PnetCDF’s
metadata APIs to access the graph structure information,
we deploy a decentralized partitioning algorithm to figure
out, for each MPI process, the information it needs to
exchange with other processes. After each process reads
the data file in parallel to fetch the relevant nodewise and
edgewise potentials, it computes the local variables mτ ,

Parallel&File&System&

Parallel&NetCDF&

P0& Pn31&

MPI3IO&

MPI&

Beth3ADMM&

(a) Bethe-ADMM deployment.

Input.nc(

Local(Compute(

Exchange(Data(

Update(

Done?(

Yes(

No(

NeighborFinder(

(

Par@@oner(

NeighborFinder(

Local(Compute(

Communicate(

Update(

Done?(

Solu%on'
Yes(

No(

Input.nc'

(b) Bethe-ADMM parallel implementa-
tion.

communicates with other processes and update the global
variable µ.

Once the graph is decomposed among processes, Beth-
ADMM algorithm can be executed iteration by iteration until
the termination condition is met.

The key components of our MPI implementation is il-
lustrated in Fig 1(b), each of which is described in detail
below.

C. Parallel File Loading
The data file used as input to the MAP inference algorithm

contains the nodewise and edgewise potentials and the graph
structure information. We represent the graph as a set of
edges with two node ids. (Figure 1(c) shows an example
on a simple grid graph.) A naive way to load the data file
is to have a master process read the entire data file and
send to other slave processes the information they need.
This approach is clearly not efficient because a slave process
remains idle when other slave processes receive data from
the master process. Our approach is to take advantage of the
PFS, which stripes a file across multiple storage devices and
enables parallel access to the data file.

To be more specific, we adopt the PnetCDF [3] file format
for parallel data file loading. The PnetCDF is suitable for
our implementation because the potential data and graph
structure information can be easily stored as PnetCDF multi-
dimensional arrays. A PnetCDF file also provides a rich suite
of APIs that allow users to define metadata which describe
datasets in detail, such as the number of nodes and edges
of a given graph, the type of graphs and the dimensions
of the datasets. Moreover, it integrates tightly with MPI-IO
and the underlying PFS so that our algorithm can achieve a
high degree of parallelism in terms of I/O operations. Given
the number of edges, the number of processes and its own
MPI rank, each process could easily determine its own set
of edges to be processed.

D. Graph Partitioning
To take advantage of the parallel architecture, the work

load should be split evenly among the processes and the par-

tition should also minimize the intercommunication among
the processes. This problem is usually NP hard and most
practical solutions are based on heuristics. For example, in
Pregel [20] and Giraph [2], the solution is to use a node-
centric partition, where assignment of a node to a partition
depends solely on the node id. The simplest implementation
is to calculate the hash value of each node id and modulus
by N, where N is the number of partitions. However this
simple heuristic comes with a cost that neighboring nodes
are likely to be distributed on different processes and thus
incur high communication overhead.

In our implementation, we adopt edge-centric partition,
where we evenly divide the edges among all the processes.
With no assumption on the shape of the given graph models,
edge-centric decomposition can be applied to any arbitrary
graphs. If the underlying dependency graph is a simple
graph such as a regular shaped grid graph, edge partition
is empirically a good choice, as shown by the experimental
results in Section V.

Since the graph structure such as the list of edges and
the number of edges are recorded in the PnetCDF file as
metadata, we can retrieve this information using PnetCDF
APIs and evenly divide the edges among all the processes.
The edge list needs to be sorted based on the end points
such that the close vertices are more likely assigned to the
same process together. Even though this wouldn’t give us
the optimal cut of the graph, we can still preserve the local
connectivity on one process. Once each process calculates its
own workload, it only reads its own portion of data from the
PnetCDF file. The nc get vara API provided by PnetCDF
library employs MPI-IO techniques and retrieves subarrays
from datasets with high read bandwidth.

One widely used program, METIS[16], uses multilevel
algorithms to recursively partition graphs and it exhibits
high efficiency for large graphs with millions of vertices.
We could also add an extra partitioner hook for libraries like
METIS, such that its partitioning results can be incorporated
in our framework when solving more generalized graphs.

Even though later in our experiements, we mainly focus
on MAP inference on pairwise MRFs, in principle, there is
no loss of generality in restricting to pairwise interactions,
since any higher-order MRF can be converted to pairwise
MRFs by introducing auxiliary ramdom variabels[31]. More-
over, by applying dge-centric decomposition without making
assumptions about the graph type, the techniques described
in this paper can all be generalized to apply directly to
general MRFs.

E. Inter-process communication

After the graph decomposition step, each process reads
from the input PnetCDF file, retrieves the nodewise and
edgewise potentials and computes mτ . To compute µ, a
simple solution is to have a master process collect the value
of mτ from the slave processes and compute µ according

0"
1"

2" 3"

4"

0" 1"

0" 3"

2" 4"

3" 4"

0" 2"

1" 4"
Process"0"

Process"1"

Process"2"

Process"3"

0"
1"

2" 3"

4"

1"

0"

0"

(c) A grid with 6 nodes and 7 edges.

0"
1"

2" 3"

4"

0" 1"

0" 3"

2" 4"

3" 4"

0" 2"

1" 4"
Process"0"

Process"1"

Process"2"

Process"3"

0"
1"

2" 3"

4"

1"

0"

0"

(d) Edge-centric partition with 4 processes.

0"
1"

2" 3"

4"

0" 1"

0" 3"

2" 4"

3" 4"

0" 2"

1" 4"
Process"0"

Process"1"

Process"2"

Process"3"

0"
1"

2" 3"

4"

1"

0"

0"

(e) Process 0 and 1 share node 0 and 1.

Figure 1. 1(c): We label the nodes row by row and represent the graph structure as a set of edges: (0, 1), (0, 2), (0, 3), (1, 4), (2, 4), (3, 4). 1(d): We
use 4 MPI processes and apply edge-centric partition. 1(e): The node list of process 0 can be represented as: {{0, 1, 2}} and the node list of process 1
can be represented as: {{0, 1, 3, 4}}. These two processes share node 1 and 0. Node 0 has the degree of 3, its partial degree is 2 on process 0 and 1 on
process 1.

to (32). After µ is updated, the master process has to send
µ back to each slave process so that mτ can be computed
in the next iteration. This approach is clearly not efficient
and we adopt a fully distributed algorithm: each process
maintains a copy of the relevant elements of µ, receives
mτ from other processes and updates µ according to (32).

Algorithm 1 NeighborFinder
1: procedure NEIGHBORFINDER
2: idList = getNodeId()
3: pairCount = idList.size()
4: MPI Allgather(
5: pairCount, 1,MPI INT,
6: countArr, 1,MPI INT, comm)
7: Copy idList to sendBuf
8: Construct displacementArr from countArr
9: MPI Allgatherv(

10: sendBuf, 2 ∗ pairCount,MPI INT,
11: recvBuf, 2 ∗ countArr, displacementArr,
12: MPI INT, comm)
13: Compute neighbor processes by comparing idLists
14: Count partial degree of sharing nodes
15: Exchange partial degree with neighbor processes
16: Compute full degree of sharing nodes
17: end procedure

To apply the above distributed algorithm, each process
needs to figure out the neighbor processes with which it
exchanges the value of mτ . This can be done by comparing
the node ids of each process and a pair of processes need
to communicate with each other if they have sharing nodes.
To be more specific, we compactly represent the node list
of a process as a list of pairs {vi, li}, where li is the length
of continuous ids starting from vi. (Figure 1(e) illustrates
the compact representation of node lists on two processes.)
Each process then gathers {(vi, li)} from all other processes,

compares the lists with its own node list and decides
what processes it communicates with. Beside deciding the
neighbor processes, each process also needs to figure out the
degrees of the sharing nodes. The degree (count) information
will be used when the averaging operation is performed
according to (32). As a result, the neighbor process also
exchanges the local partial degree of the sharing nodes and
compute the full degree accordingly. Algorithm 1 summaries
the above procedure.

Algorithm 2 shows the details on how MPI APIs are
employed in our framework. We reduce the communication
cost by exchanging the partial sum of mτ rather than
individual mτ one by one. Further we use asynchronous
MPI APIs, which allow messages to be sent or received
asynchronously without blocking the following operations.

V. EXPERIMENTAL RESULTS

In this section, we present experimental results on a sim-
ulation dataset and a precipitation dataset. Our experiments
are conducted on Hopper [4], the Cray XE6 parallel machine
at the National Energy Research Scientific Computing Cen-
ter.

Hopper is a 6384 compute node cluster where each
compute node consists of two twelve-core AMD Magny-
Cours processors with a theoretical peak performance of 8.4
GFlop/sec per core. 6000 compute nodes have 32 GB DD3
memory each and the rest have 64 GB memory each. Hopper
runs “Cray Linux Environment” (CLE) which is a restricted
low-overhead operating system that has been optimized for
high performance computing. The PFS is Lustre with 156
I/O servers (OSTs). The measured peak write performance
on Hopper is 35 GB per second. To maximize the possible
read bandwidth, we stripe our input file across 128 stripes
and the file stripe size is set to 1 MB.

(a) Time spent on the I/O phase and the Bethe-
ADMM optimization. The I/O cost is low.

(b) Time spent on the three steps of the Bethe-
ADMM optimization. The communication overhead
can be negligible.

(c) Almost linear speedup in the number of MPI
processes

Figure 2. Results on the simulation dataset with 10 million nodes and 20 million edges using 8-1024 MPI processes. The I/O and communication cost
is relatively low. Overall, the MPI implementation achieves almost linear speedup in the number of processes.

Algorithm 2 Exchange mτ among neighbor processes
1: procedure EXCHMSG
2: for Each node u do
3: partial sum[u] = 0
4: end for
5: for Each edge τ (u, v) do
6: partial sum[u] += mτ [u]
7: partial sum[v] += mτ [v]
8: end for
9: idx = 0

10: MPI Request request[neighbors.size() * 2]
11: for i in neighbors do
12: sharing node = getSharingNode(i)
13: copy partial sum[sharing node] to sendBuf
14: MPI ISend(sendBuf, k∗sharing node.size(),
15: MPI FLOAT, i, rank,
16: comm,&request[idx++])
17: MPI IRecv(recvBuf, k∗sharing node.size(),
18: MPI FLOAT, i, i,
19: comm,&requests[idx++])
20: end for
21: end procedure

A. Simulation Dataset

We show experimental results on a simulation dataset. The
underlying graph is a 2 dimensional 1,000 × 10,000 grid
with k = 3 and the potentials are random numbers in [0, 1].
The resulting MRF has 10 million nodes and approximately
20 million edges. We apply the edge-centric partitioning and
run the Bethe-ADMM algorithm for 100 iterations.

Figure 2(a) shows the run time performance using 8 to
1024 MPI processes. The algorithm runs about half an hour
on 8 process, and dramatically reduces to 16 seconds on
1024 processes. The input file size is close to 1GB and data
loading only takes 1.2 seconds. We attribute the speedup to

our adoption of PNetCDF as well as stripping the input file
across 128 OSTs.

Figure 2(b) illustrates the average time it takes per process
to compute mτ , update µ and communicate with neighbor
processes respectively. The error bars show the minimum
and maximum time spent on these three steps across all
the processes. Since we evenly distribute the edges to the
processes, the time spent on computing mτ has little fluctu-
ation among the processes. The time to update µ, however,
also depends on the number of neighbor processes and
the number of shared nodes, hence the fluctuation between
the min and max time among all the processes becomes
more obvious as the number of processes increases. The
plot shows the communication cost incurred by the edge-
centric partition is negligible. The main reason that the
communication cost is so small is because when we partition
the grid, we sweep row edges and column edges from top to
bottom, which essentially behaves as row partitioning where
each process has at most 2 neighbors and only the boundary
data are exchanged.

Figure 2(c) shows that the Bethe-ADMM algorithm
implementation achieves almost linear speedup while the
speedup of the entire implementation (I/O phase + Bethe-
ADMM optimization) starts to deviate from the ideal case
after 256 processes. This happens because communication
costs dominate once the work is spread out enough.

B. CRU Precipitation Dataset

The dataset used in this section is the Climate Research
Unit (CRU) precipitation dataset [23], which has monthly
precipitation from the years 1901-2006. The dataset is of
high gridded spatial resolution (360 × 720, i.e., 0.5 degree
latitude × 0.5 degree longitude) and only includes the
precipitation over land.

Our goal is to detect major droughts of the last century
based on precipitation. We formulate the drought detection

(a) Time spent on the I/O phase and Bethe-ADMM
optimization. The I/O cost is low.

(b) Time spent on the three steps of the Bethe-
ADMM optimization. The communication overhead
is low.

(c) Almost linear speedup in the number of MPI
processes

Figure 3. Results on the CRU dataset with 7,146,520 nodes and 20,777,480 edges using 8-1024 MPI processes. The I/O and communication cost is
relatively low. Overall, the MPI implementation achieves almost linear speedup in the number of processes.

Figure 4. Major droughts starting within the period 1961-1970, which include the three decade long Sahel drought and the drought in eastern India in
the 1960s.

problem as the one of estimating the most likely config-
uration of a binary hidden MRF. In the underlying graph,
each node represents a location and it can be in two possible
states: dry and normal. We use a four nearest neighbor grid
(m = 360, n = 720) to model the global dependency and
replicate it 106 times. The resulting graph is similar to the
ones used in the previous section and the structure respects
the CRU dataset, i.e, it only has the nodes that correspond
to the locations with precipitation record. Overall, the three
dimensional grid has 7,146,520 nodes and 20,777,480 edges.

We design the potential functions carefully from the CRU
datasets to enforce label consistency, i.e., neighboring nodes
should take same values. We refer the readers to [11] regard-
ing the details on designing potential functions. We obtain
the integer solution after rounding the node pseudomarginals
and we can detect droughts based on it. Figure 4 shows the
detected droughts in the 1960s.

We run the Bethe-ADMM algorithm on the CRU dataset
for 500 iterations with edge-centric partitioning. The input

PNetcdf file is around 530 MB. The runtime performance, as
shown in Figure 3(a) exhibits the nice decreasing trend as it
does on the simulation data. The algorithm takes less than 2
minutes to complete with 1024 MPI processes which would
run more than two hours with 8 processes. The amount of
time saved by our implementation is tremendous.

Figure 3(b) illustrates the average time per process to
compute mτ , communicate with neighbors and update µ
respectively. The error bars mark the minimum and maxi-
mum time spent on these three steps across all the processes.
The communication cost on the CRU dataset is no longer
negligible anymore. This is because the underlying 3 dimen-
sional grid has missing nodes (CRU only has precipitation
over land) and when we apply edge-centric partitioning,
each process may have more than two neighbors. Hence as
the number of processes increases, the number of neighbors
for each process is more dynamic and the communication
pattern becomes more complicated. Figure 3(c) plots the
almost linear speedup on the CRU dataset. It also shows

the trend that our implementation is scalable beyond 1024
processes. This is understandable because I/O time is only
2% of the total execution time, even at 1024 MPI processes.

VI. CONCLUSIONS

In this paper, we proposed a parallel MAP inference
algorithm for large-scale MRFs. Based on the ‘tree decom-
position’ idea from the MAP inference literature and the
alternating direction method from the optimization litera-
ture, the problem is divided into a set of tree-structured
subproblems, each of which can be solved independently
and efficiently via the sum-product algorithm.

The entire framework is implemented with the standard
MPI library in C++ and can be easily ported on any
HPC systems or even distributed clusters. We evaluated our
algorithm on both synthetic and real-world datasets and the
experimental results verify our parallel design can scale
almost linearly with the number of MPI processes up to
thousands of computer cores for grid-structured graphs.

ACKNOWLEDGMENT

This work is supported in part by the following grants:
NSF awards CCF-1029166, ACI-1144061, IIS-1343639, and
CCF-1409601; DOE award DESC0007456; AFOSR award
FA9550-12-1-0458; NIST award 70NANB14H012.

REFERENCES

[1] http://graphlab.org.

[2] http://giraph.apache.org.

[3] http://cucis.ece.northwestern.edu/projects/PnetCDF.

[4] http://www.nersc.gov/users/computational-systems/hopper.

[5] J. Bilmes. A gentle tutorial on the EM algorithm and its
application to parameter estimation for Gaussian mixture and
hidden markov models. Technical Report ICSI-TR-97-02,
University of Berkeley, 1997.

[6] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein.
Distributed optimization and statistical learning via the al-
ternating direction method of multipliers. Foundations and
Trends in Machine Learning, 3(1):1–122, 2011.

[7] Y. Censor and S. Zenios. Parallel optimization: theory,
algorithms, and applications. Oxford University Press, 1998.

[8] C. Chekuri, S. Khanna, J. Naor, and L. Zosin. A linear
programming formulation and approximation algorithms for
the metric labeling problem. SIAM Journal on Discrete
Mathematics, 18(3):608–625, Mar. 2005.

[9] R. Durbin, S. Eddy, A. Krogh, and G. Mitchison. Biological
sequence analysis. Cambridge University Press, 2006.

[10] G. D. Fornay. The viterbi algorithm. Proceedings of the
IEEE, 61(3):268–278, 1973.

[11] Q. Fu, A. Banerjee, S. Liess, and P. K. Snyder. Drought
detection of the last century: An MRF-based approach. In
Proceedings of the SIAM International Conference on Data
Mining, 2012.

[12] Q. Fu, H. Wang, and A. Banerjee. Bethe-ADMM for tree
based parallel MAP inference. In Proceedings of the Twenty-
Ninth Conference on Uncertainty in Artificial Intelligence,
2013.

[13] S. Geman and D. Geman. Stochastic relaxation, gibbs
distributions, and the bayesian restoration of images. IEEE
Trans. Pattern Analysis and Machine Intelligence, 6:721–741,
1984.

[14] X. Huang, A. Acero, and H.-W. Hon. Spoken language
processing: A guide to theory, algorithm, and system devel-
opment. Prentice Hall, 2001.

[15] C. Jin, Q. Fu, H. Wang, A. Agrawal, W. Hendrix, W.-k.
Liao, M. M. A. Patwary, A. Banerjee, and A. Choudhary.
Solving combinatorial optimization problems using relaxed
linear programming: a high performance computing perspec-
tive. In Proceedings of the 2nd International Workshop
on Big Data, Streams and Heterogeneous Source Mining:
Algorithms, Systems, Programming Models and Applications,
BigMine ’13, pages 39–46, New York, NY, USA, 2013. ACM.

[16] G. Karypis and V. Kumar. Metis – unstructured graph
partitioning and sparse matrix ordering system, version 2.0.
Technical report, 1995.

[17] S. P. Kasiviswanathan, P. Melville, A. Banerjee, and V. Sind-
hwani. Emerging topic detection using dictionary learning. In
Proceedings of the Twentieth ACM international conference
on Information and knowledge management, 2011.

[18] V. Kolmogorov. Convergent tree-reweighted message passing
for energy minimization. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 28(10):1568–1583, oct.
2006.

[19] F. R. Kschischang, B. J. Frey, and H. A. Loeliger. Factor
graphs and the sum-product algorithm. IEEE Transactions
on Information Theory, 47(2):498–519, 2001.

[20] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn,
N. Leiser, and G. Czajkowski. Pregel: a system for large-
scale graph processing. In Proceedings of the 2010 ACM
International Conference on Management of Data, 2010.

[21] A. F. Martins, P. M. Aguiar, M. A. Figueiredo, N. A. Smith,
and E. P. Xing. An augmented Lagrangian approach to
constrained MAP inference. In Proceedings of the Twenty-
Eighth International Conference on Machine Learning, 2011.

[22] O. Meshi and A. Globerson. An alternating direction method
for dual MAP LP relaxation. In Proceedings of the European
Conference on Machine Learning and Principles and Practice
of Knowledge Discovery in Databases, 2011.

[23] T. D. Mitchell, T. R. Carter, P. D. Jones, M. Hulme, and
M. New. A comprehensive set of high-resolution grids of
monthly climate for Europe and the globe: the observed
record (1901-2000) and 16 scenarios (2001-2100). Tyndall
Centre for Climate Change Research, 2004.

http://graphlab.org
http://giraph.apache.org
http://cucis.ece.northwestern.edu/projects/PnetCDF
 http://www.nersc.gov/users/computational-systems/hopper

[24] P. Raghavan and C. D. Thompson. Randomized rounding:
A technique for provably good algorithms and algorithmic
proofs. Combinatorica, 7(4):365–374, 1987.

[25] P. Ravikumar, A. Agarwal, and M. J. Wainwright. Message-
passing for graph-structured linear programs: Proximal meth-
ods and rounding schemes. Journal of Machine Learning
Research, 11:1043–1080, 2010.

[26] P. Ravikumar and J. Lafferty. Quadratic programming re-
laxations for metric labeling and markov random field map
estimation. In ICML, pages 737–744, 2006.

[27] D. Sontag, A. Globerson, and T. Jaakkola. Introduction to
dual decomposition for inference. In S. Sra, S. Nowozin,
and S. J. Wright, editors, Optimization for Machine Learning.
MIT Press, 2011.

[28] M. Szell, R. Lambiotte, and S. Thurner. Multirelational
organization of large-scale social networks. Proceedings
of the National Academy of Sciences USA, 107(31):13636–
13641, 2010.

[29] M. J. Wainwright, T. S. Jaakkola, and A. S. Willsky. MAP
estimation via agreement on (hyper)trees: Message-passing
and linear-programming approaches. IEEE Transactions of
Information Theory, 51(11):3697–3717, 2005.

[30] M. J. Wainwright and M. I. Jordan. Graphical models,
exponential families, and variational inference. Foundations
and Trends in Machine Learning, 1(1-2):1–305, 2008.

[31] M. J. Wainwright and M. I. Jordan. Graphical models,
exponential families, and variational inference. Foundations
and Trends in Machine Learning, 1(12):1–305, 2008.

[32] J. Yang and Y. Zhang. Alternating direction algorithms for l1-
problems in compressive sensing. SIAM Journal on Scientific
Computing, 33(1):250–278, 2011.

[33] C. Yanover, T. Meltzer, and Y. Weiss. Linear programming
relaxations and belief propagation: an empirical study. Jour-
mal of Machine Learning Research, 7:1887–1907, 2006.

	Introduction
	Problem Definition
	Algorithm
	ADMM for MAP Inference
	Bethe-ADMM

	Parallel Implementation
	Existing Frameworks
	Bethe-ADMM using MPI
	Parallel File Loading
	Graph Partitioning
	Inter-process communication

	Experimental Results
	Simulation Dataset
	CRU Precipitation Dataset

	Conclusions
	References

