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Earth system models (ESMs) are the primary mechanisms for obtaining projections under different 
climate change scenarios. Researchers use ensembles of climate models to gain better accuracy 
and reduce uncertainty. A multitask learning-based method can build ESM ensembles for all 
regions jointly to improve predictions for individual ones.

P
rojections of future climate variables such as temperature, precipitation, and atmospheric pres-
sure are fundamental to obtaining a picture of how the climate will evolve in the near and long 
term; we then can infer how these changes will affect life on Earth. For example, an increase in 
global temperatures is expected to raise sea levels, which will have a potentially large impact on 

coastal areas, with consequences such as increased flooding exposure. Regional climate change could also 
alter forests, crop yields, and water supplies. Human health, fauna equilibrium, and many other types of 
ecosystems will be impacted by these changes.

Based on the projected variables, we can also forecast other, more complex climate phenomena. In-
formation about future sea surface temperature, for example, can be used to project El Niño-Southern 
Oscillation (ENSO),1 which involves fluctuating ocean temperatures in the equatorial Pacific. ENSO is 
known to provoke variations in regional climate patterns around the globe, including hurricanes in the 
US southeast, droughts in the Brazilian and Indian northeasts, and warmer winters in the Canadian and 
Alaskan northwest.
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Such projections are performed by computer 
simulations based on mathematical models that at-
tempt to emulate dynamical, physical, and biogeo-
chemical processes relevant to the climate system. 
These Earth system models (ESMs) are complex math-
ematical representations of the major climate system 
components (atmosphere, land surface, ocean, and 
sea ice) and their interactions. Given certain initial 
conditions (socioeconomic scenarios, for example), 
the models simulate all interactions among climate 
system components and produce predictions for a 
variable of interest. Owing to many sources of un-
certainty (which we’ll discuss in the next section), 
the projections can have a high variability, thus mak-
ing it difficult to perform inferences.

Earth System Model Uncertainties and 
Multimodel Ensemble
The forecasts of future climate variables produced 
by ESMs have high variability due to three sources 
of uncertainty: future anthropogenic emissions of 
greenhouse gases, aerosols, and other natural forc-
ings (“emission uncertainties”); imprecision due 
to incomplete understanding of climate systems 
(“model uncertainties”); and the existence of inher-
ent internal climate variability itself (“initial con-
dition uncertainties”). In this work, we focus on 
reducing model uncertainties and producing more 
reliable projections.

Climate science institutes from various coun-
tries (see Table 1 for a few examples) have  proposed 

Table 1. Earth system models (ESMs) used in experiments.

ESM Origin Citation

BCC_CSM1.1 Beijing Climate Center, 
China

L. Zhang et al., “Projections of Annual Mean Air Temperature and Precipitation 
over the Globe and in China during the 21st Century by the BCC Climate System 
Model BCC CSM1.0,” Acta Meteorologica Sinica, vol. 26, no. 3, 2012,  
pp. 362–375.

CCSM4 National Center for 
Atmospheric Research 
(NCAR), US

W. Washington et al., “The Use of the Climate-Science Computational End Station 
(CCES) Development and Grand Challenge Team for the Next IPCC Assessment: 
An Operational Plan,” J. Physics, vol. 125, no. 1, 2008; http://iopscience.iop.
org/1742-6596/125/1/012024.

CESM1 National Center for 
Atmospheric Research 
(NCAR), US

Z.M. Subin et al., “Boreal Lakes Moderate Seasonal and Diurnal Temperature 
Variation and Perturb Atmospheric Circulation: Analyses in the Community Earth 
System Model 1 (CESM1),” Tellus A, vol. 64, 2012; www.tellusa.net/index.php/
tellusa/article/view/15639.

CSIRO Commonwealth Scientific 
and Industrial Research 
Organization, Australia

H.B. Gordon et al., The CSIRO Mk3 Climate System Model, tech. paper 60, CSIRO 
Atmospheric Research, 2002.

HadGEM2 Met Office Hadley Centre, 
UK

W. Collins et al., “Development and Evaluation of an Earth-System Model, 
HadGEM2,” Geoscientific Model Development Discuss, vol. 4, 2011,  
pp. 997–1062.

IPSL Institut Pierre-Simon 
Laplace, France

J. Dufresne et al., “Climate Change Projections Using the IPSL-CM5 Earth System 
Model: From CMIP3 to CMIP5,” Climate Dynamics, 2012; www.lmd.jussieu.
fr/~jldufres/publi_ipslcm5/Smi/ipsl-cm5.pdf.

MIROC5 Atmosphere and Ocean 
Research Institute, Japan

M. Watanabe et al., “Improved Climate Simulation by MIROC5: Mean States, 
Variability, and Climate Sensitivity,” J. Climate, vol. 23, no. 23, 2010,  
pp. 6312–6335.

MPI-ESM Max Planck Institute for 
Meteorology, Germany

V. Brovkin et al., “Evaluation of Vegetation Cover and Land-Surface Albedo in MPI-
ESM CMIP5 Simulations,” J. Advances in Modeling Earth Systems, 2013; http://
onlinelibrary.wiley.com/doi/10.1029/2012MS000169/abstract.

MRI-CGCM3 Meteorological Research 
Institute, Japan

S. Yukimoto, Y. Adachi, and M. Hosaka, “A New Global Climate Model of the 
Meteorological Research Institute: MRI-CGCM3: Model Description and Basic 
Performance,” J. Meteorological Soc. Japan, vol. 90, 2012, pp. 23–64.

NorESM Norwegian Climate Centre, 
Norway

M. Bentsen et al., “The Norwegian Earth System Model, NorESM1-M-Part 1: 
Description and Basic Evaluation,” Geoscientific Model Development, vol. 5, 2012, 
pp. 2843–2931.
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several ESMs, differing slightly from each other in 
the way they model climate processes that aren’t 
fully understood. Consequently, each ESM can 
produce different projections for the same climate 
variable and initial condition. To give a sense of 
the variability among ESMs, Figure 1 shows South 
American mean temperature anomalies for the 
period of 1901 to 2000 that 10 different ESMs 
produced. A well-accepted approach of addressing 
model uncertainty is the concept of multimodel 
ensemble,2 in which instead of relying on a single 
ESM, projection is performed based on a set of 
produced simulations.

There’s still no consensus on the best method 
of combining ESMs outputs.2 The simplest ap-
proach is to assign equal weights to all ESMs, then 
perform an arithmetic mean. Other approaches 
suggest assigning different weights to individual 
ESMs,3,4 with the weights specifically chosen to 
reflect the skill levels of the ESMs. The latter is 
the focus of our approach, in which weights for 
each geographical location are estimated via a least 
square fitting.

The primary novelty of our methodology is 
that it jointly solves all least square problems in a 
multitask learning (MTL) fashion, allowing the ex-
change of information among related geographical 
locations.

Multitask Learning
Learning for multiple tasks, such as regression and 
classification, simultaneously arises in many practi-
cal situations. For example, in spam filtering, the 
problem of learning a personalized filter (classifier) 
can be treated as a single supervised learning task in-
volving data from multiple users; in finance forecast-
ing, models for simultaneously predicting the value 
of many possibly related indicators are required; and 
in multilabel classification, where the problem is usu-
ally split into binary classification problems for each 
label, the classifiers’ joint synthesis can be beneficial.

The most common strategy to deal with mul-
tiple tasks is to perform the learning procedure for 
each task independently. However, in situations 
where the tasks might be related to each other, the 
strategy of isolating each task won’t exploit the po-
tential information we could acquire from other 
related tasks. This is the main motivation behind 
MTL,5,6 which seeks to improve a learning task’s 
generalization capability by exploiting task com-
monalities. To allow information exchange, MTL 
usually employs a shared representation. MTL’s 
benefits over traditional independent learning are 

supported in many experimental and theoretical 
works.7–10 Figure 2 illustrates MTL’s joint learning 
performed in contrast to traditional single-task (in-
dependent) learning.

Many MTL methods7,11 make the assumption 
that all tasks are related. However, this might not 
hold for some applications—in fact, sharing infor-
mation with unrelated tasks can be detrimental to 
task performance.12 A fundamental step is to esti-
mate the true relationship structure among tasks, 
thus promoting proper information sharing among 
related tasks while we avoid using information 
from unrelated tasks.

Recently, researchers have explicitly focused 
on modeling task relationships.13–15 In particular, 
we proposed a hierarchical Bayesian model in 
which task dependencies are explicitly estimated 
from the data, in addition to each task’s parameters 
(weights).15 Unlike other MTL methods, our ap-
proach—called multitask sparse structure learning 
(MSSL)—measures tasks’ relationships in terms of 
partial correlation, which has a more meaningful 
interpretation in terms of conditional independence 
than ordinary correlation. Additionally, MSSL uses 
efficient optimization methods for estimating the 
graph dependence and task-specific parameters, 
which makes MSSL suitable for problems with a 
large number of tasks, such as ESM ensembles.

Figure 1. South American land mean temperature anomalies in °C for the 10 
Earth system models (ESMs) described in Table 1. Note the high variability 
among them.
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In MSSL, task dependencies are represented 
by a weighted graph structure, where edges indi-
cate that the connected nodes are related (condi-
tionally dependent). The weight associated with 
each edge indicates how strong is the dependence 
 between the two tasks. The procedure to estimate 
the  parameters has two steps:

1. Estimate the weighted dependence graph based 
on current task-specific parameters.

2. Learn all task parameters jointly by sharing in-
formation with related tasks determined by the 
graph computed in Step 1.

These steps iterate until a convergence criterion is 
met (for example, graph dependence and weights 
don’t change in consecutive iterations). As each 
step solves a convex optimization problem, an al-
ternating minimization process guarantees the 
convergence to a local minimum.16

In Step 1, a structure learning problem must be 
solved, and for this we used recent advances—for 
the experiments, for example, we used an alternat-
ing direction method of multipliers (ADMM).17 
Step 2 requires the solution of a penalized quadrat-
ic programming problem, which we solved with 
the established proximal gradient descent-based 

fast iterative shrinkage-thresholding algorithm 
(FISTA).18

We can then interpret the problem of ESM en-
sembles for several distinct geographical locations 
as an instance of MTL. Weighting the ESMs ac-
cording to their relative performance in a control 
period is a linear regression task. By using MSSL,15 
we’re assuming that geographical locations with 
similar model skill patterns will present similar 
ESM output values. We make an equivalent as-
sumption for the weights, enforcing the idea that 
similar geographical locations tend to have similar 
weights.

Case Study: Temperature Forecasting in 
South America
To demonstrate the benefits of MSSL, we consider 
the problem of combining multiple ESMs for land 
surface temperature prediction in South America. 
Being that South America is the world’s fourth-
largest continent, covering approximately 12 per-
cent of the Earth’s land area, its climate varies 
considerably. The Amazon River basin in the north 
has the typical hot wet climate suitable for the 
growth of rain forests. The Andes Mountains, on 
the other hand, remain cold throughout the year. 
The desert regions of Chile are the driest portions 
of South America.

For our simulations, we used temperature out-
puts from 10 CMIP5 ESMs,19 with a single run 
for each one (see Table 1 for the list). We obtained 
global observation data for surface temperature (in 
degrees Celsius) from the Climate Research Unit 
(CRU; www.cru.uea.ac.uk). We aligned the data 
from the ESMs and CRU observations to have the 
same spatial and temporal resolution, using public-
ly available climate data operators (CDOs; https://
code.zmaw.de/projects/cdo). For all the experi-
ments, we used a 2.5° × 2.5° grid over latitudes and 
longitudes in South America and monthly mean 
temperature data along 100 years, to 2000, with 
records starting from 16 January 1901. In total, we 
considered 1,200 time points (monthly data) and 
250 spatial locations over land.

Methodology
We considered the following four baselines for 
comparing and evaluating MSSL performance:

 ■ average model, the current technique used 
by the Intergovernmental Panel on Climate 
Change (IPCC), which gives equal weight to 
all ESMs at every location;

Figure 2. Differences between multitask learning (MTL) and traditional 
single-task learning. In MTL, the learning process involves all tasks and is 
performed jointly, allowing for information exchange.
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 ■ best ESM, which uses the predicted outputs of 
the best ESM in the training (control) phase 
(lowest root-mean-square error [RMSE]);

 ■ linear regression, an ordinary least squares 
(OLS) regression for each geographical loca-
tion; and

 ■ multimodel regression with spatial smooth-
ing (S2M2R),20 which can be seen as a special 
case of MSSL with local spatial dependence 
assumption.

We’ll refer to these baselines and MSSL as the 
“models” and the constituent ESMs as “submod-
els.” We used the residual-based version of the 
MSSL algorithm, referred to as r-MSSL, in the ex-
periments. (More details appear elsewhere.15 )

We considered a moving window of 50 years of 
data for training and the next 10 years for testing, 
resulting in five train/test sets. The decadal climate 
prediction problem has been a focus of study in the 
recent past.21

Results
Table 2 reports the mean and standard deviation 
RMSE in degrees Celsius for all 250 geographical 
locations. While the average model has the 
highest RMSE, MSSL has the smallest RMSE in 
comparison to the baselines. The performance of 
OLS and S2M2R are similar. Values in boldface 
indicate statistical significance (p < 0.05).

Figure 3 shows the RMSE per geographical 
location for the average model, best ESM, OLS 
and r-MSSL. As previously mentioned, South 
America has a diverse climate, and not all of the 
ESMs are designed to take it into account and 
capture it. Hence, averaging the model outputs as 
done by IPCC produces less accurate predictions 
when compared to the other methods. Moreover, 
r-MSSL performs better possibly due to a proper 
definition of weights in the combination of the 
model outputs through the incorporation of  spa-
tial smoothing by learning the task relationship. 
The neighborhood dependence assumption of 
S2M2R neglects possible long-range dependence 
among geographical areas while OLS completely 

ignores dependence information. In particular, the 
average model isn’t performing well on the west 
coast and southern part of South America (parts of 
Peru, Chile, and Argentina, which experience dif-
ferent climate conditions).

Figure 4 shows the relationship structure es-
timated by r-MSSL among the geographical lo-
cations. The regions connected by blue lines were 
identified as being dependent on each other. We 
can immediately see that locations in the northwest 
part of South America are densely connected. This 
area has a typical tropical climate and comprises 
the Amazon rainforest, which is known to have a 
hot and humid climate throughout the year with 
low temperature variation.22 The cold climates that 
occur in the southernmost parts of Argentina and 
Chile are clearly highlighted. Such areas have low 
temperatures throughout the year, but there are 
large daily variations.

We can make another important observation 
about South America’s west coast, ranging from 
central Chile to Venezuela, and passing through 
Peru, which has one of the driest deserts in the 
world. These areas are located to the left of the An-
des Mountains and are known to exhibit an arid 
climate. The average model didn’t perform well on 
this region compared to r-MSSL—we can see the 
long lines connecting these coastal regions, which 
might explain the improvement in terms of RMSE 
reduction achieved by r-MSSL. The algorithm uses 
information from related locations to enhance its 
performance in these areas.

The lack of connecting lines in central Argen-
tina can be explained by the temperate climate, 
which presents a greater range of temperatures 
when compared to tropical climates and can have 
extreme climatic variations. This is a transition area 
between the cold southernmost region and the hot 
and humid central area of South America. It also 
comprises Patagonia, a semiarid scrub plateau that 
covers nearly the entire southern portion of main-
land, whose climate is strongly influenced by the 
South Pacific air current. Due to high variability, 
it becomes harder to provide accurate temperature 
predictions.

Table 2. Mean and standard deviation of the root-mean-square error over all locations.

Average (IPCC) Best ESM OLS S2M2R r-MSSL

1.621 1.410 0.866 0.863 0.780

(±0.020) (±0.037) (±0.037) (±0.067) (±0.039)
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We also observe that locations within Chile and 
Argentina are less densely connected to other parts 
of South America. A possible explanation could 

be that Chile includes the Atacama Desert, a dry 
 region located to the west of the Andes, and Argen-
tina, especially the southern part,  experiences heavy 

Figure 3. Root-mean-square error (RMSE) per location for each one of the four approaches: (a) the average model, 
(b) the best ESM, (c) the ordinary least squares (OLS), and (d) the r-MSSL. Because S2M2R produced almost the 
same RMSE as OLS, it’s not shown here.
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 snowfall, in contrast to the hot and humid rain for-
ests or the dry and arid deserts on the west coast. 
Both these regions experience climate conditions 
that are disparate from the northern rain forests and 
from each other. The task  dependencies estimated 
from the data reflect this disparity. Figure 5 presents 
the dependency structure using a chord diagram. 
Each point on the circle’s periphery is a location in 
South America and has associated with it a learning 
task to predict temperature at that location. The lo-
cations are arranged serially on the periphery accord-
ing to the respective countries. We can immediately 
see that the locations in Brazil are strongly connect-
ed to parts of Peru, Colombia, and parts of Bolivia. 
These connections are interesting, as these parts of 
South America comprise the Amazon rain forest.

H andling other sources of uncertainty will 
be the focus of future research steps. For ex-

ample, uncertainty due to anthropogenic forcings 
(which depend on socioeconomic factors including 

global geopolitical agreements to control pollutant 
emissions) is usually handled by running the ESM 
for future scenarios of distinct amounts of gas 
emission. Consequently, we can generate multiple 
runs of the same ESM and incorporate strategies 
of feature and structure grouping23 into the MSSL 
algorithm to properly deal with these runs. 
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