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Abstract

While influence maximization in social networks
has been studied extensively in computer sci-
ence community for the last decade the focus
has been on the progressive influence models,
such as independent cascade (IC) and Linear
threshold (LT) models, which cannot capture
the reversibility of choices. In this paper, we
present the Heat Conduction (HC) model which
is a non-progressive influence model with real-
world interpretations. We show that HC uni-
fies, generalizes, and extends the existing non-
progressive models, such as the Voter model [1]
and non-progressive LT [2]. We then prove
that selecting the optimal seed set of influen-
tial nodes is NP-hard for HC but by establishing
the submodularity of influence spread, we can
tackle the influence maximization problem with
a scalable and provably near-optimal greedy al-
gorithm. We are the first to present a scalable
solution for influence maximization under non-
progressive LT model, as a special case of the
HC model. In sharp contrast to the other greedy
influence maximization methods, our fast and ef-
ficient C2GREEDY algorithm benefits from two
analytically computable steps: closed-form com-
putation for finding the influence spread as well
as the greedy seed selection. Through extensive
experiments on several large real and synthetic
networks, we show that C2GREEDY outperforms
the state-of-the-art methods, in terms of both in-
fluence spread and scalability.

1 INTRODUCTION
Motivated by viral marketing and other applications, the
problem of influence maximization in a social network has
attracted much attention in recent years. Given a social net-
work where nodes represent users in a social group, and
edges represent relationships and interactions between the
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users (and through which they influence each other), the ba-
sic idea of influence maximization is to select an initial set
of “most influential” users (often referred to as the seeds)
among all users so as to maximize the total influence under
a given diffusion process (often referred to as the influence
model) on the social network. In the context of viral mar-
keting, this amounts to initially targeting a set of influential
customers, e.g., by providing them with free product sam-
ples, with the goal to trigger a cascade of influence through
“word-of-mouth” or recommendations to friends to maxi-
mize the total number of customers adopting the said prod-
uct. Domingos and Richardson [3] introduced this algo-
rithmic problem to the Computer Science community and
Kempe et al. [2] made the topic vastly popular under the
name of influence maximization. They studied two influ-
ence models, the independent cascade (IC) model and the
linear threshold (LT) model, and applied a greedy method
to tackle the influence maximization problem [2]. Unfor-
tunately Kempe et al.’s approach [2] for calculating the in-
fluence spread is based on Monte Carlo simulations which
does not scale to large networks [4,5]. As the result, it mo-
tivated researchers to either improve the scalability [4,5] or
study more tractable influence models [6, 7].

The focus of almost all of these earlier studies are, however,
progressive influence models, including LT and IC models,
in which once a costumer adopts a product or a user per-
forms an action she cannot revert it. Retweeting news and
sharing videos in online social network websites, are exam-
ples of progressive, i.e. irreversible actions. Nevertheless,
there are numerous real world instances where the actions
are non-progressive, especially in the technology adop-
tion domain. For example, adopting a cell phone service
provider, such as AT&T and T-mobile, is a non-progressive
action where a user can switch between providers. The
objective of influence maximization in this example is to
persuade more users to adopt the intended provider for
a longer period of time. To capture the reversibility of
choices in real scenarios, we present the Heat Conduction
(HC) model that unifies, generalizes, and extends the exist-
ing non-progressive models, including non-progressive LT
(NLT) [2] and Voter model [1] (see Section 5). In contrast



to the Voter model, HC does not necessarily reach consen-
sus, where one product dominates and extinguishes the oth-
ers after finite time, so the proposed HC model can explain
the coexistence of multiple product adoptions, which is a
typical phenomena in the real world. In addition, the HC
model incorporates both “social” and “non-social” factors,
e.g., intrinsic inertia or reluctance of some users in adopt-
ing a new idea or trying out a new product, external “media
effect” which exerts a “non-social” influence in promoting
certain ideas or products.

We tackle the influence maximization problem under the
HC influence model with a scalable and provably near-
optimal solution. The approach by Kempe et al. [2] for
influence maximization under NLT model, is to reduce the
model to (progressive) LT by replicating the network as
many as time progresses and compute the influence spread
by the same slow Monte Carlo method for the resulted huge
network. This approach is practically impossible for large
networks, specially for the infinite time horizon. We also
prove that contrary to the Voter model, for which the in-
fluence maximization can be solved exactly in polynomial
time [1], the influence maximization for HC is NP-hard.
We develop an approximation (greedy) algorithm for influ-
ence maximization under HC for infinite time horizon with
guaranteed near-optimal performance. We are able to pro-
vide closed form solution for both computing the influence
spread and greedy selection step which entirely removes
the need to explicitly evaluate each node as the best seed
candidate. Our fast and scalable algorithm, C2GREEDY,
for influence maximization under the HC model removes
the computational barrier that prevented the literature from
considering the non-progressive influence models.

Our extensive experiments on several large real and syn-
thetic networks validate the efficiency and effectiveness of
our method which outperforms the state-of-the-art in terms
of both influence spread and scalability. We show that the
most influential nodes under progressive models does not
necessarily act as the most influential nodes under non-
progressive models and a designated non-progressive al-
gorithm is necessary. Moreover, we present the first real
non-progressive cascade dataset which models the non-
progressive propagation of research topics among network
of researchers. Our contribution in this paper is as follows:
• We propose the HC influence model which unifies, gen-
eralizes, and extends the existing non-progressive models.
•We show that the HC has three key properties which en-
ables us to solve the influence maximization efficiently.
• To the best of our knowledge, we are the first to present
a scalable solution for influence maximization under non-
progressive LT model.
•We demonstrate high performance and scalability of our
algorithm via extensive experiments and present the first
ever real non-progressive cascade dataset.

The rest of this paper is organized as follows. After a brief

review on the related work, we introduce our HC model
in Section 2. Next, we show how to compute the influ-
ence spread for HC in closed form in Section 3. In Section
4, we present our efficient algorithm C2GREEDY for influ-
ence maximization under the HC model. Section 5 explains
how HC unifies other non-progressive models and provides
a more complete view of the HC model. Finally we con-
duct comprehensive experiments in Section 6 to illustrate
performance of our algorithm.

Related work. After the debut of influence maximization
as a data mining problem [3], it is formulated as a dis-
crete optimization problem based on progressive influence
models (LT and IC) from social and physical sciences [2].
Kempe et al. [2] show that influence maximization is NP-
hard under LT and IC models but the influence spread is
submodular for the models which enables them to use the
greedy method. Although the algorithm is greedy it usu-
ally does not scale, because it needs to compute influence
spread many times in each iteration while influence spread
has no known closed form and is estimated by Monte Carlo
simulation. The follow-up studies [4–9] attempt to speed
up this process by avoiding or decreasing the need for the
MC simulation (for further details of the studies on pro-
gressive influence model please refer to Supplementary).
Kempe et al. [2] also introduce a non-progressive version
of the LT influence model (NLT) and try to tackle the in-
fluence maximization problem under NLT by reducing the
model to (progressive) LT, discussed in Section 1.
The Voter model, as the most well-known non-progressive
model, is originally introduced in [10, 11] and adopted for
viral marketing in [1]. Even-Dar and Shapira show that
under the Voter model, highest degree nodes are the solu-
tion of influence maximization [1]. Unfortunately since the
Voter model reaches consensus, i.e. one product remains
in long term, it can not explain the coexistence of multi-
ple product adoptions, which is a typical case in many real
product adoptions.

2 HEAT CONDUCTION INFLUENCE
MODEL

The heat conduction (HC) influence model is inspired by
the resemblance of influence diffusion through a social net-
work to heat conduction through an object, where heat is
transferred from the part with higher temperature to the part
with lower temperature. We provide a simple description of
HC in this section and defer the complete view of it as well
as its unification property to Section 5.

Considering a directed graph G = (V, E) which represents
a social (influence) network, where the directed edge from
node i to node j declares that i follows j (or equivalently
j influences i). The edge weight ωij indicates the amount
that i trusts j, and 0 ≤ ωij ≤ 1. The set of i’s neighbors,
representing the nodes that influence i, is denoted byN (i).
The influence cascade can be assumed as a binary process
in which a node who adopts the “desired” product is called



active, and inactive otherwise. Note that this assumption
holds for the cases with multiple products as well, where
the objective is to maximize the influence (publicity) of the
“desired” product, and the rest are all considered “unde-
sired”. Seed is a node that has been selected for the direct
marketing and remains active during the entire process. In
the HC model, the influence cascade is initiated from a set
of seeds S and arbitrary values for other nodes. The choice
of node i to become active or inactive at time t + 1 is a
linear function of the choices of its neighbors at time t as
well as its intrinsic (or non-social) bias toward activeness:

Pr
(
δi(t+1) = 1|N (i)

)
= βib+(1−βi)

∑
j∈N (i)

ωijδj(t), (1)

where βi ∈ (0, 1), b ∈ [0, 1], and
∑
j∈N (i) ωij = 1. In-

dicator function δi(t) is 1 when node i adopts the desired
product at time t and 0 otherwise. We refer to (1) as the
choice rule. The dependence on neighbors in (1) repre-
sents the “social” influence and the bias value b accounts
for “non-social” influence which comes from any source
out of the neighbors, e.g. media. The “non-social” in-
fluence can explain the cases where the “social” influence
alone fails to model the cascades [12]. We discuss further
interpretation and extensions of HC in Section 5.

Replacing the choice rule (1) in Pr
(
δi(t + 1)

)
=∑

Pr(δi(t + 1)|N (i))Pr(N (i)) results in the follow-
ing probabilistic interpretation of the original binary HC
model. Each node i has a value at time t denoted by u(i, t)
which represents the probability that she adopts the desired
product at time t:

u(i, t+ 1) = βib+ (1− βi)
∑

j∈N (i)

ωiju(j, t), (2)

Simple calculation shows that the bias value b can be inte-
grated into the network by adding a bias node n (assuming
that the network has n−1 nodes) with adoption probability
b. Therefore, HC dynamics converts to the following:

u(i, t+ 1) =
∑

j∈EN (i)

Piju(j, t), (3)

where EN (i) = N (i)∪{n} is the extended neighborhood,
Pin = βi, u(n, t) = b, and ∀j 6= n : Pij = (1 − βi)ωij .
Rewriting (3) in the following form shows that HC follows
the discrete form of Heat Equation [13], which reveals the
naming reason of HC influence model: u(:, t + 1) − u(:
, t) = (P − I)u(:, t), where L = I − P is the Laplacian
matrix, u(i, t) is the temperature of particle i at time t, and
“:” denotes the vector of all entries.

3 HC INFLUENCE SPREAD
The influence spread of set S for time t is defined as the ex-
pected number of active nodes at time t of a cascade started
with S. Knowing that u(i, t) is the probability of node i be-
ing active at time t, influence spread (or function) σ(S, t)

is computed from:

σ(S, t) =
∑
i∈V

u(i, t). (4)

Motivated by the classical heat transfer methods, the initial
and the boundary conditions should be specified to solve
the heat equation and find u(i, t) uniquely. In HC, the seeds
S and the bias node are the boundary nodes and the rest are
interiors. Assuming S = {n−1, n−2, ..., n−|S|} and n as
the bias node, HC is defined by the following heat equation
system:

Main equation : u(:, t+ 1)− u(:, t) = −Lu(:, t)

Boundary conditions : u(n, t) = b,

u(s, t) = 1 ∀s ∈ S (5)
Initial condition : u(:, 0) = z + [0, ..., 0, 1, ..., 1︸ ︷︷ ︸

|S|

, b]′,

where, as indicated in this formula, initial value u(:, 0) is
the sum of two vectors: the initial values of the interior
nodes (z) and the initial values of boundaries (the second
vector). The corresponding entries of boundaries in z are
zero. In the continue, exploiting probability theory and
novel Markov chain metrics, we provide a closed form so-
lution to this heat equation system.

Social network G can be interpreted as an absorbing
Markov chain where the absorbing states (boundary set B)
are the seeds and bias node, B = S ∪ {n}, and Pij is the
probability of transition from i to j. The adoption proba-
bility of the nodes at time t, i.e. u(:, t), can be written as a
linear function of initial condition (3):

u(:, t) = P tu(:, 0), (6)

where P is row-stochastic and has the following block

form: P =

[
R B
0 I

]
. The superscript indicates the time

here. The boundary set by definition have fixed values over
time and do not follow any other nodes which leads to the
zero and identity blocks I(|S|+1)×(|S|+1). Blocks R and
B represent transition probabilities of interior-to-interior
and interior-to-boundary respectively. Note that different
boundary conditions in (5), like different seed set, result
in a different P . Therefore both P and u(:, t) implicitly
depend on S.

When t goes to infinity, transient part of u vanishes and it
converges to the steady-state solution v = u(:,∞), which
is independent of time and is Harmonic, meaning that it
satisfies Pv = v [14]. Assume v =

(
vI , vB)T where I =

V \ B is the set of interior nodes, then the value of interior
nodes is computed from boundary nodes [14]:

vI = (I −R)−1BvB = FBvB = QvB. (7)

where F = (I − R)−1 is the fundamental matrix and Fij
indicates the average number of times that a random walk



started from i passes j before absorption by any absorbing
(boundary) nodes [14]. Also, the absorption probability
matrixQ = FB is a (n−|S|−1)×(|S|+1) row-stochastic
matrix, where Qij denotes the probability of absorption of
a random walk started from i by the absorbing node j [14].

From here on, without loss of generality, we assume b to
be zero in equation (5). Using (6) and (7), the influence
spreads for infinite time can be computed in closed form:

σ(S,∞) =

n∑
i=1

v(i) = |S|+
∑
i∈I

∑
s∈S

QSis. (8)

The superscript in QS and PS explicitly indicates that they
are functions of seed set S. Note that in fact they are de-
pending on the total boundary set, B = S ∪ {n}, but since
the bias node is always a boundary, throughout this paper
we discard it from the superscripts to avoid clutter.

4 INFLUENCE MAXIMIZATION FOR
HC

In this section we solve the influence maximization prob-
lem for infinite time horizon under the HC model:

S∗ = argmax
S⊆V

σ(S,∞), s.t. |S| ≤ K. (9)

4.1 INFLUENCE MAXIMIZATION FOR K = 1

Based on (8) and (9), the most influential person (MIP)
is the solution of the following optimization problem:
argmaxV\{n}

∑
i∈V\{s,n}Q

{s}
is . This equation states that

to find the MIP, we need to pick each candidate s and make
it absorbing and compute the new P as P {s} which in turn
changes Q to Q{s}, and repeat this procedure n − 1 times
for all s. This procedure is problematic because for each
Q{s} we require to recompute matrix F {s} which involves
matrix inversion. But, in the following theorem we show
that we are able to do this by only one matrix inversion in-
stead of n − 1 matrix inversions, and having matrix F ∅ is
enough to find the most influential person of the network (∅
sign indicated no seed is selected):
Theorem 1. MIP under HC (1) when t→∞ can be com-
puted in closed form from the following formula:

MIP = argmax
s∈V\{n}

∑
i∈V\{n}

F ∅is
F ∅ss

= argmax1′F̆ ∅, (10)

where F̆ ∅ is F ∅ when each of its columns is normalized by
the corresponding diagonal entry. Note that left multiplica-
tion of all ones row vector is just a column-sum operation.

4.2 INFLUENCE MAXIMIZATION FOR K > 1

Although the influence maximization can be solved opti-
mally for K = 1 , the general problem (9) under HC for
K > 1 is NP-hard:
Theorem 2. Given a network G = (V, E) and a seed set
S ⊆ V , influence maximization for infinite time horizon (9)
under HC defined by (1) is NP-hard.

In spite of being NP-hard, we show that the influence
spread σ(S,∞) is submodular in the seed set S which en-
ables us to find a provable near-optimal greedy solution. A
set function f : 2V → R maps subsets of a finite set V to
the real numbers and is submodular if for T ⊆ S ⊆ V and
s ∈ V \ S , f(T ∪ {s}) − f(T ) ≥ f(S ∪ {s}) − f(S)
holds, which is the diminishing return property. Following
theorem presents our established submodularity results.

Theorem 3. Given a networkG = (V, E), influence spread
σ(S,∞) under the HC model is non-negative monotone
submodular function.

The greedy solution adds nodes to the seed set S se-
quentially and maximizes a monotone submodular func-
tion with (1 − 1/e) factor approximation guarantee
[15]. More formally the (k + 1)-th seed is the node
with maximum marginal gain: (k + 1)th-MIPt =
argmaxs∈V\{Sk∪{n}} σ(Sk ∪ {s}, t)− σ(Sk, t), where Sk
is the set of k seeds which have been picked already. Al-
though we can compute the above objective function in
closed form, for selecting the next seed we have to test all
s to solve the problem which is the approach of all existing
greedy based method in the literature. Previously a lazy
greedy scheme have been introduced to reduce the number
testing candidate nodes s [8]. In the next section we go one
step further and show that under the HC model and for infi-
nite time horizon we can solve the marginal gain in closed
form.

4.3 GREEDY SELECTION

An important characteristic of the linear systems, like HC
when t→∞, is the “superposition” principle. We leverage
this principle to calculate the marginal gain of the nodes
efficiently and pick the one with maximum gain for the
greedy algorithm. Based on this principle, the value of each
node in HC for infinite time, and for a given seed set S, is
equal to the algebraic sum of the values caused by each
seed acting alone, while all other values of seeds have been
kept zero. Therefore, when a node s is added to the seed set
Sk, its marginal gain can be calculated as the summation of
values of the nodes when all of the values of Sk have been
turned to zero and node s is the only seed in the network,
whose value is 1− vSk(s). In this new problem, the vector
of boundary values vSk∪{s}B is a vector of all 0’s except the
entry corresponding to the node s with value 1 − vSk(s),
and the value of interior node i is obtained from (7):

v
Sk∪{s}
I (i) = Q

Sk∪{s}
is (1− vSk(s))

Substituting Q from lemma 3 result (see Supplementary),
the k + 1-th seed is determined from the following closed



form equation:

(k + 1)th-MIP

= argmax
s∈V\{Sk∪{n}}

∑
i∈V\{Sk∪{n}}

FSkis
FSkss

(
1− vSk(s)

)
,

= argmax(1− vSk)′F̆Sk (11)

Note that vector vSk is obtained in step k and is known,
and matrix FSk can be calculated from FSk−1 without any
need for matrix inversion (see Supplementary, lemma 1).
One may observe that equation (11) is the general form of
Theorem 1, since vS0 = v∅ = 0. Notice that equation
(11) intuitively uses two criteria for selecting the new seed:
its current value should be far from 1 (higher value for
(1−vSk(s)) term) which suggests that it is far from the pre-
viously selected seeds, and at the same time it should have
a high network centrality (corresponding to the FSkis /F

Sk
ss

term). Algorithm 1 summarizes our C2GREEDY method
for t → ∞: a greedy algorithm with 2 closed form steps.
Operator ⊗ in step 10 denotes the Hadamard product.

Algorithm 1 C2GREEDY

1: input: extended directed network G = (V, E) with bias
node n, maximum budget K.

2: output: seed set SK ⊆ V with cardinality K.
3: compute matrix P from G.
4: S0 := ∅
5: FS0 := (I − PS0)−1

6: s = argmax1′F̆ ∅, and S1 = S0 ∪ {s}
7: vS1 = F̆S0(:, s)
8: for k = 1 to K − 1 do

9: ∀i, j ∈ I : F
Sk∪{s}
ij = F

Sk
ij −

F
Sk
is F

Sk
sj

F
Sk
ss

10: s = argmax(1− vSk )′⊗1′F̆Sk , and Sk+1 = Sk ∪{s}
11: vSk+1 = vSk + (1− vSk (s))F̆Sk (:, s)
12: end for

5 DISCUSSION
In this section, we present the comprehensive view of the
HC model and elaborate its (unifying) relation to the other
models by providing multiple interpretations.

Social interpretation. HC can be simply extended to
model many real cases that the other influence models fail
to cover. As briefly mentioned in Section 2, the original
HC (1), models both “social” and “non-social” influences
which cover the observations from the real datasets [12].
The extension of HC which is more flexible in modeling
real world cascades is as follows:

u(i, t+1) = mαi +rγi +(1−γi−αi)
∑

j∈N (i)

ωiju(j, t), (12)

where,
∑
j∈N (i) ωij = 1, γi, αi ∈ [0, 1], m = 1, and

r = 0. Factor r models the “discouraging” factor like
intrinsic reluctance of customers toward a new product,
and m represents “encouraging” factor like media that pro-
motes the new product. These two factors can explain cases

where all neighbors of a node are active but the node re-
mains inactive, or when a node becomes active while none
of her neighbors are active [12]. Note that all of the for-
mulas and results stated so far is simply applicable to the
general HC model (12).

Unification of existing non-progressive models. HC (1)
unifies and extends many of the existing non-progressive
models. In the Voter model, a node updates its choice at
each time step by picking one of its neighbors randomly
and adopting its choice. In other words, the choice rule of
node i is the ratio of the number of her active neighbors to
her total number of neighbors. Thus, Voter’s choice rule
is the simplified form of HC’s choice rule (1) where ωij is
equal to 1

di
(di is the out-degree of node i) and all βis are

set to zero. Also, note that having βi = 0 indicates that the
Voter does not cover the “non-social” influence.

In the non-progressive LT (NLT) [2], each node is as-
signed a random threshold θ at each time step and be-
comes active if the weighted number of its active neighbors
(at previous time step) becomes larger than its threshold:∑
j∈N (i) ωijδj(t) ≥ θi(t+1), where the edge weights sat-

isfy
∑
j∈N (i) ωij ≤ 1. Thus, the choice rule of node i at

time (t+ 1) under the NLT is obtained from the following
equation:

Pr
(
δi(t+ 1) = 1|N (i)

)
= Pr

(
θi(t+ 1) ≤ ΣωNLT

ij δj(t)
)

= ΣωNLT
ij δj(t), (13)

where the second equality is the result of sampling θi(t +
1) from the uniform distribution U(0, 1). Equation (13) is
the simplified form of HC’s choice rule (1), where b = 0
and (1 − βi)ω

HC
ij = ωNLT

ij . Note that since in the NLT b
accepts only zero value, this influence model also cannot
cover encouraging “non-social” influence. Moreover, if the
edge weights’ gap in NLT, i.e. gi = 1 −

∑
j∈N (i) ω

NLT
ij ,

is zero for all the nodes, it cannot model the “non-social”
influence at all, since the corresponding βi’s in (1) would
be equal to zero in that case.

Generalized linear threshold (GLT) is another non-
progressive model proposed in [16] to model the adoption
process of multiple products. Assigning a color c ∈ C to
each product, a node updates its color, at each time step,
by randomly picking one of its neighbors based on its edge
weights and adopts the selected neighbor’s color. For bi-
nary case |C| = 2, where we only distinct between adoption
of a desired product (active) and the rest of products (inac-
tive), GLT’s choice rule reduces to the following equation:
Pr
(
δi(t+1) = 1|N (i)

)
= β

2 +(1−β)
∑
j∈N (i) ωijδj(t).

It is easy to see that this is the restricted form of HC’s
choice rule (1), where nodes are all connected to the bias
node with equal weight of β and bias value b has to be β

2 .

Physical interpretation. We showed that the existing
non-progressive models are special cases of HC, and in
this part we describe their equal heat conduction system



Table 1: Specifying the equal heat system for existing non-progressive influence models.

Model Non-Social
influence Weighted edges Boundary Init. Cond. Equivalent Physical

Heat Conduction SystemHigh T = 1 Low T < 1 = 0 6= 0
NLT1

√ √ √ √
Circular ring with a fixed-temp. point

NLT2
√ √ √ √ √ A rod with fixed-temp.

ends, one high one low
NLT3

√ √
(Isolated) circular ring

NLT4
√ √ √

Circular ring with a fixed-temp. point
Voter

√
(Isolated) circular ring

GLT
√ √ √

Circular ring with a fixed-temp. point

which are uniquely specified by the initial and boundary
conditions. Table 1 summarizes the heat interpretation of
the influence models. We introduce four variants of non-
progressive LT, based on two factors: seed and gap gi.
NLT1 and NLT2 support non-zero gaps, and NLT2 and
NLT4 allows seeds, i.e. nodes in the network that always
remain active. The non-progressive LT model presented
in [?] is equivalent to NLT2. Reluctance factor and seeds
in all models are equivalent to the low and high temperature
boundaries respectively, and initial condition addresses the
interiors’ initial values (z in (5)). The non-social influence
and edge weights factors appear in the Laplacian matrix
calculation of (5). The equivalent physical heat conduction
systems are easy to understand, here we just briefly point
out the equivalence of the Voter model and the isolated cir-
cular ring. Circular ring is a rod whose ends are connected
to each other and do not have any energy exchange with
outside [17] which explains why the Voter conserves the
total initial heat energy, and reaches to an equilibrium with
an equal temperature for all of the nodes, i.e., consensus.

Random walk interpretation. Beside the heat conduc-
tion view, the random walk prospect helps to gain a better
understanding of the models and their relations. Assume
that active and inactive nodes are colored black and white
respectively. Consider the original view of any influence
model which is the actual process that unfolds in time, so
we look at the time-forward direction. We take a snapshot
of the colored network at each time step t. Putting together
the sequence of snapshots, the result is a random walk in
the “colored graphs” state space with 2n states. On the
other hand, the dual view looks at the time-reverse direction
of influence models. It is known for both IC-based models
(like IC [?] and ConTinEst [7]) and LT-based models (Ta-
ble 1 as well as HC and LT) that a single node from N (i)
is responsible for i’s color switch, which we name it as the
parent of i. Now assuming that the process has advanced up
to the time t, we reverse the process by starting from each
node i and follow its ancestors. Here is the point where
IC and LT based models separate from each other: due to∑
j∈N (i) ωij ≤ 1 constraint, ancestors of i in the LT-based

models form a random walk starting from node i, which is
not the case in IC-based models. Note that we have n ran-
dom walks that can meet and merge, thus they are known
as coalescing random walks [18]. This view also helps us
to demonstrate the essential difference between progressive

Table 2: List of networks used in experiments.

|V| |E| Params

Synthetic
Networks

Random 1024 - [0.5, 0.5; 0.5, 0.5]

Hier. 1024 - [0.9, 0.1; 0.1; 0.9]

Core. 1024 - [0.9, 0.5; 0.5, 0.3]

ForestFire 1− 300K 2.5|V| [0.35, 0.25]

Real
Networks

KClub 34 501 -
PBlogs 1490 19087 -

WikiVote 7115 103689 -
MLWFW 10604 168918 -

and non-progressive models. Dual view of progressive LT
model is a coalescing self-avoiding walks which is the out-
come of randomizing the threshold θ only once at the be-
ginning of the process for the nodes in each realization.
This bounds the number of “live” edges [2] connected to
each node by one which prevents the creation of “loop” in
the influence paths. Note that both counting and finding the
probability of self-avoiding walks are #P hard [4].

6 EXPERIMENTS
In this section, we examine several aspects of C2GREEDY
and compare it with state-of-the-art methods. Experi-
ments mainly focus on influence maximization and tim-
ing aspects. Finally, we present one example of real non-
progressive data and illustrate the result of C2GREEDY.

6.1 DATASET
Table 2 summarizes the statistics of the networks that we
use throughout the experiments. We work with both syn-
thetic and real networks which we briefly discuss next.

Synthetic network generation. We consider the follow-
ing types of Kronecker network for extensive performance
comparison of our method with the state-of-the-art meth-
ods: random [19] (parameter matrix [0.5, 0.5; 0.5, 0.5]),
hierarchical [20] ([0.9, 0.1; 0.1; 0.9]), and core-periphery
[21] ([0.9, 0.5; 0.5, 0.3]). We generate 10 samples from
each network and report the average performance of each
method. Edge weights are drawn uniformly at random from
[0, 1] and weights of each node’s outgoing edges is normal-
ized to 1. For timing experiment, we use ForestFire [20]
(Scale-free) network with forward and backward burning
probability of 0.35 and 0.25, respectively, and set the out-
going edge weights of node i to 1/|N (i)|. The expected
density, i.e., number of edges per node, for the resulted
ForestFire networks is 2.5.
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Figure 1: For small network (a) shows C2Greedy matches the
optimal performance. For a larger network (b) compares perfor-
mance of C2Greedy with online and offline bounds.

Real Networks. Zachary’s karate club network (KClub)
is a small friendship network with 34 nodes and 501 edges
[22]. The political blogs network (PBlogs) [23], is a moder-
ate size directed network of hyperlinks between weblogs on
US politics with 1490 nodes and 19087 edges. Wikipedia
vote network (WikiVote), is the network of who-vote-
whom from wikipedia administrator elections [24] with
7115 nodes and 103689 edges. Finally, MLWFW is the
network of who-follow-whom in the machine learning re-
search community which we extract from citation networks
of combined ACM and DBLP citation network which is
available as a part of ArnetMiner [25]. For more informa-
tion about MLWFW refer to Section 6.4.

For all synthetic and real networks, after constructing the
network, we add the bias node to the network and connect
all nodes to it with weight βi = 0.1 and re-normalize the
weight of the other edges accordingly.

6.2 INFLUENCE MAXIMIZATION
In this section we investigate the performance of
C2GREEDY in the main task of influence maximization
i.e., solving the set function optimization (9). Since find-
ing the optimal solution for (9) is NP-hard, we compare
C2GREEDY with optimal solution only for a small net-
work, then for a large network we show that C2GREEDY
result is close to the online bound [8]. We also compare the
performance of C2GREEDY with the state-of-the-art meth-
ods proposed for solving (9) under different (mostly pro-
gressive) influence models.

C2GREEDY vs. optimal. For testing the quality of
C2GREEDY method, we compare its performance with the
best seed set (determined by brute force) on a small size
network. We work with the KClub network for the brute-
force experiment with K = 5. As Figure 1(a) shows
C2GREEDY selects nodes that match the performance of
the optimal seed set. In the next step, on a larger network,
we show that the performance of C2GREEDY is close to the
known online upper bound [8]. We compute the online and
offline bounds of greedy influence maximization [8] with
K = 30 for PBlogs network. Figure 1(b) illustrates that
C2GREEDY result is close to the online bound and there-
fore close to the optimal solution’s performance.

C2GREEDY vs. state-of-the-art. Next, we compare
C2GREEDY with the state-of-the-art methods of influence
maximization over three aforementioned synthetic net-
works and WikiVote real network. Among baseline meth-
ods PMIA [5] and LDAG [4] are approximation for IC and
LT models respectively and SP1M [26] is a shortest-path
based heuristic algorithm for influence maximization under
IC. ConTinEst [27] is a recent method for solving contin-
uous time model of [6] and PageRank is the well-known
information retrieval algorithm [28]. Finally, Degree se-
lects the nodes with highest degree as the most influential
and Random picks the seed set randomly.

The comparison results are depicted in Figure 2. Inter-
estingly, our algorithm outperformed all of the baselines.
Strangely, ConTinEst performs close to Random (except in
the random network). A closer look at the results for three
synthetic networks reveal that except ConTinEst’s odd be-
havior all other methods have persistence rank in perfor-
mance. C2GREEDY is the best method and is followed by
PMIA and LDAG, both in second place, which are closely
followed by SP1M. PageRank, Degree and Random are
next methods in order. In WikiVote real network of Figure
2(d) surprisingly most of the state-of-the-art methods per-
form terribly poor and Degree (as the KMIP solution to the
Voter model) is the only competitor of C2GREEDY. Result
of experiment with WikiVote shows that most influential
nodes in a progressive models are not necessary influential
in non-progressive ones, and designing non-progressive-
specific algorithms (like C2GREEDY) is required for influ-
ence maximization under non-progressive models.

6.3 SPEED AND SCALABILITY
In this part we illustrate the speed benefits of having
two closed form updates in the greedy algorithm and
also deal with the required single inverse computation of
C2GREEDY to prove the scalability of our method.

Closed form benefits. As discussed in Section 4, our main
algorithm C2GREEDY benefits from closed form compu-
tation for both influence spread (8) and greedy selection
(11). To show the gain of these closed form solutions, we
run the greedy algorithm in three different settings. First
without using any of (8) and (11) which we call GREEDY
and uses Monte Carlo simulation to estimate the influence
spread. Second we only use (8) to have the closed form
for influence spread without closed form greedy update of
(11) which results in C1GREEDY, and finally C2GREEDY
which uses both (8) and (11). Note that we can add
lazy update of [8] (see Supplementary) to GREEDY and
C1GREEDY to get LGREEDY and LC1GREEDY respec-
tively. Finally we include the original greedy method [2] of
solving LT model (progressive version of our model) and
its lazy variant, with 100 iteration of Monte Carlo simula-
tion. Note that for having a good approximation of influ-
ence spread in LT model, simulations are run for several
thousand iterations, but here we just want to illustrate that
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(b) Hierarchical network
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(c) Core-periphery network
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Figure 2: Comparing performance of C2Greedy with state-of-the-art influence maximization methods. Networks of (a), (b), and (c) are
synthetic and (d) is a real network.
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Figure 3: In (a) we compare the total timing of seven algorithms
to investigate the effect of closed updates on speed and in (b) we
show the per-seed required time for the same experiment.

the greedy algorithm for HC is much faster than LT, for
which 100 iterations is enough. Figure 3(a) illustrates the
speed in log-scale of all seven algorithms for K = 10 over
the Pblogs dataset [23]. Note that the required time of in-
verse computation (7) is also included. The results confirm
that both closed forms decrease the timing significantly (1
sec vs. 461 sec for the next best variation) and help the
greedy algorithm far more than the lazy update.

Per-seed selection time. The major computational bottle-
neck of our algorithm is the inverse computation of (7). But
fortunately this is needed once and at the beginning of the
process. Here assuming offline inverse computation, we
are interested in the cost of adding each seed. Figure 3(b)
compares the cost of selecting k-th seed for the five vari-
ation of our algorithm, plus LT and LazyLT all described
previously. As expected C2GREEDY requires the lowest
computation time per seed. Also, the timing per seed for
C2GREEDY is strictly decreasing over the size of S, be-
cause the matrix N shrinks, while per seed selection time
of LT is increasing on average, because more seeds proba-
bly lead to bigger cascades.

Inverse approximation. Going beyond networks of size
104 makes the inverse computation problematic, but fortu-
nately we have a good approximation of the inverse through
the following expansion: F = (I−R)−1 ≈ I+R1+R2+
... + RT . Since all eigenvalues of R are less than or equal
to 1 contribution of (R)i to the summation drops very fast
as i increases. The question is how many terms of the ex-
pansion, T , is enough for our application. Heuristically we
choose the (effective) diameter of the graph as the number
that provides us with a good approximation of F−1. Note
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Figure 4: Timing for inf. max. in large scale networks by ex-
ploiting (a) inverse approximation and (b) parallel programming.
Results of (b) are on FF networks with edge density 2.5.

that the ith term of the expansion pertains to the shortest
paths of size i between any pair of nodes. Since the graph
diameter is the longest shortest path between any pair of
nodes, having that many terms gives us a good approxima-
tion of F−1. This is also demonstrated by the experimental
result of Figure 4(a) where we compare the result of the
influence maximization on the WikiVote network with di-
ameter 15, with actual F−1 and its approximation for dif-
ferent T ’s. As discussed when T reaches to the diameter,
the result of the algorithm that uses inverse approximation
coincides with the algorithm that uses the exact inverse.

Scalability. Finally to show the scalability of C2GREEDY
we perform influence maximization on networks with sizes
up to 3× 105. For speeding up the large scale matrix com-
putation of the Algorithm 1 we developed an MPI version
of our code which allows us to run C2GREEDY on com-
puting clusters. Figure 4(b) shows the running time of
C2GREEDY for ForestFire networks of sizes varying be-
tween 1K to 300K with edge density 2.5 (i.e. ratio of edges
to nodes) and effective diameter of 10. The MPI code was
run on up to 400 cores of 2.8 GHz. As Figure 4(b) indi-
cates even for the largest tested network with 0.3 million
nodes and 0.75 million edges C2GREEDY takes less than
10 minutes for K = 10.

To give a sense of our achievement in scalability we briefly
mention the result of one of the state-of-the-art methods:
The scalable ConTinEst [7] runs with 192 cores for almost
60 minutes on ForestFire network of size 100K and edge
density of 1.5 to select 10 seeds, where our C2GREEDY
finishes in less than 2 minutes for the similar ForestFire
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Figure 5: In (a) we show the existence of non-progressive cas-
cade of ML research topic where white means all papers of the au-
thor is about ML. In (b) we compare C2Greedy result with other
baselines such as most cited author.

network (100K nodes and density 1.8) with 200 cores.

6.4 REAL NON-PROGRESSIVE CASCADE
Collaboration and citation networks are two well-known
real networks that have been studied in social network anal-
ysis literature [2, 29]. Here we introduce a new network
that represents who-follows-whom (WFW) in a research
community. Note that the nodes in the collaboration and
citation networks are authors and papers respectively but
in WFW network nodes are authors and edges are inferred
from citations. A directed edges (u, v) means that author u
has cited one of the papers of author v which reveals that
u follows/reads papers of v. Here we investigate the “re-
search topic adoption” cascade. Researchers adopt new re-
search topics during their careers and influence their peers
along different research communities. The process starts
with an arbitrary research topic for each author and they
are influenced by the research topic of those they follow
and switch to another topic. For example a data mining
researcher that follows mostly the papers of machine learn-
ing authors is probably going to switch his research topic
to machine learning.

For illustration, we consider only the authors who have
published papers in Machine Learning (ML) conferences
and journals in a given time period. For the list of ML
related conferences and journal we use resources of Arnet-
Miner project [25]. We consider each time step a year and
study the years 2001 - 2012. An author is an active ML
author in a given year if at least half of his publications in
that year was published in ML venues. Figure 5(a) shows
the change in the percentage of ML publication of ML au-
thors who has more than 70 publication in years between
2001 and 2012. As Figure 5(a) suggests, cascade of ML
research topic is a non-progressive process and researcher
switch back and forth between ML and other alternatives.
Among 1049 authors of Figure 5(a) about 400 of them are
core ML authors who have rarely published in any other
topic, but the non-progressive nature of the process is more
visible in the rest (bottom part of Figure 5(a)).

Next we perform influence maximization on the inferred
WFW network which we call MLWFW network. We ex-

tract the MLWFW network from the combined citation net-
work of DBLP and ACM which is publicly available as a
part of ArnetMiner project [25] and learn the edge weights
similar to the weighted cascade model of [2]. The ML-
WFW network of 2001 - 2012 time frame consists of 10604
authors and 168918 edges. Figure 5(b) compares the re-
sult of influence maximization using C2GREEDY and other
baselines. Note that other than regular baselines in this spe-
cific domain we have another well-known method which
is “most cited author” that is equal to selecting authors
with highest weighted in-degree in MLWFW network. As
Figure 5(b) illustrates, C2GREEDY outperforms all of the
other methods. Note that the list of K most influential au-
thors in this experiment means that “if” those authors were
switching to the ML topic completely (becoming a mem-
ber of seed set S) they would make the topic vastly popu-
lar. Therefore, although the seed set contains the familiar
names of well-known ML authors (e.g., Michael I. Jordan
and John Lafferty in first and second places), sometimes
we encounter exceptions. For example, in the list of top
10 authors selected by C2GREEDY we have “Emery N.
Brown” who is a renowned neuroscientist with publications
in “Neural Computation” journal.

7 CONCLUSION
We introduced the Heat Conduction Model which is able
to capture both social influence and non-social influence,
and extends many of the existing non-progressive models.
We also presented a scalable and provably near-optimal so-
lution for influence maximization problem by establishing
three essential properties of HC: 1) submodulairty of in-
fluence spread, 2) closed form computation for influence
spread, and 3) closed form greedy selection. We conducted
extensive experiments on networks with hundreds of thou-
sands of nodes and close to million edges where our pro-
posed method gets done in a few minutes, in sharp contrast
with the existing methods. The experiments also certified
that our method outperforms the state-of-the-art in terms of
both influence spread and scalability. Moreover, we exhib-
ited the first real non-progressive cascade dataset for influ-
ence maximization. We believe that our method removes
the computational barrier that prevented the literature from
considering the non-progressive influence models. Study-
ing other forms of non-progressive influence models, such
as non-progressive IC, is an interesting future work.
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