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Abstract

Hidden semi-Markov models (HSMMs) are
latent variable models which allow latent
state persistence and can be viewed as a
generalization of the popular hidden Markov
models (HMMs). In this paper, we introduce
a novel spectral algorithm to perform infer-
ence in HSMMs. Our approach is based on
estimating certain sample moments, whose
order depends only logarithmically on the
maximum length of the hidden state per-
sistence. Moreover, the algorithm requires
only a few spectral decompositions and is
therefore computationally efficient. Empir-
ical evaluations on synthetic and real data
demonstrate the promise of the algorithm.

1 Introduction

Hidden semi-Markov models (HSMMs) are discrete la-
tent variable models, which allow temporal persistence
of latent states and can be viewed as a generalization of
the popular hidden Markov models (HMMs) [6, 15, 22].
In HSMMs, the stochastic model for the unobservable
process is defined by a semi-Markov chain: latent state
at the next time step is determined by the current la-
tent state as well as time elapsed since the entry into
the current state. Ability to flexibly model such latent
state persistence turns out to be useful in many ap-
plication areas, including anomaly detection [19, 21],
activity recognition [20], and speech synthesis [24].

Given a set of training sequences, one can formulate
two distinct but related problems: learning, i.e., es-
timating model parameters and inference, i.e., com-
puting the probability of an observed and/or latent
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variable sequence. The methods proposed for learning
HSMM usually follow the initial idea due to Rabiner
[18] based on the modifications of the Baum-Welch al-
gorithm [5], which are all variants of the expectation
maximization (EM) framework, presented in [7]. Once
the parameters are estimated, we can then perform in-
ference using, e.g., the forward-backward algorithm of
Yu et al. [23]. However, since EM, in general, has no
guarantees in estimating the parameters correctly and
can suffer from slow convergence, such methods can be
inefficient and/or inconsistent.

In recent years, there has been an increased interest
in spectral algorithms, which provide computationally
efficient, local-minimum-free, provably consistent al-
gorithms for parameter estimation and/or inference.
For example, Anandkumar et al. [2, 3] have proposed
spectral methods for learning the parameters of a wide
class of tree-structured latent graphical models, in-
cluding Gaussian mixture models, topic models, and
latent Dirichlet allocation. Hsu et al. [8] have pro-
posed an efficient spectral algorithm for inference in
HMMs. The algorithm learns a so called observable
representation and uses it to do inference on observ-
able variables. The approach, however, was specific
to HMMs and not easily extendable to other latent
variable graphical models. Parikh et al. [17] have in-
troduced a spectral algorithm to perform inference in
latent tree graphical models with arbitrary topology,
and later in [16] a general spectral inference framework
for latent junction trees.

In this paper, we utilize the framework of [16] and
introduce a novel spectral algorithm for inference in
HSMMs. Since we address a more specific problem
than [16], our results shed more light into the details of
the spectral framework for HSMMs, allow for a sharper
analysis, and yield a significantly more efficient algo-
rithm than the general framework in [16]. There are
two main technical contributions in this work. First,
by exploiting the homogeneity of HSMMs we make our
algorithm more efficient and accurate than if we di-
rectly follow the recipe in [16] for general graphs. In



A Spectral Algorithm for Inference in Hidden semi-Markov Models

particular, our approach ensures that the number of
matrix multiplications and inverses is fixed and inde-
pendent of sequence length. Second, we show that the
order of tensors in estimated observable representation
depends only logarithmically on the maximum length
of latent state persistence. In experiments, compar-
ing our method with EM on both synthetic and real
datasets, two observations stand out: first, the spec-
tral method gets similar or better performance than
EM as the number of samples increases, and the spec-
tral method is orders of magnitude faster than EM for
the datasets we consider.

Few remarks are in order about the proposed algo-
rithm. Note that our method does not estimate model
parameters explicitly but rather learns alternative rep-
resentation to perform inference on observable vari-
ables. Moreover, our formulation cannot be directly
used to infer hidden states, although methods such as
in [14] can be potentially utilized to recover original
HSMM parameters from the learned representation.

The rest of the paper is organized as follows: We in-
troduce notation in Section 2. The inference problem
and the proposed algorithm are presented in Sections 3
and 4. In Section 5, we discuss the analysis of the al-
gorithm, followed by evaluations in Section 6 and con-
clusion in Section 7. Most of the technical analysis,
proofs, and additional details can be found in [12].

2 Notation and Preliminaries

In this section, we cover the basic facts about the ten-
sor algebra; more details can be found in [12], while a
detailed tutorial on tensors is in [9] or [10]. A ten-
sor is defined as a multidimensional array of data,
denoted by boldface script letters, e.g., X

m1,...,mN

∈

RIm1
×···×ImN , which is Nth order tensor of dimensions

Im1
×· · ·× ImN

. A specific dimension (or mode) is de-
noted by the subscript variable mi, whose size is Imi

.

Any tensor can be matrisized (or flattened) into a
matrix. If we split the modes into two disjoint sets,
one corresponding to rows and the other to columns,
e.g., {m1, . . . ,mN} = {p1, . . . , pK} ∪ {q1, . . . , qL},
then a matrisization of X is X

p1,...,pKq1,...,qL
∈

RIp1 ···IpK×Iq1 ···IqL . Multiplication of tensors is per-
formed along specific modes. For this, we flatten the
tensor to a matrix with appropriate choice for rows
and columns, perform matrix multiplication and trans-
form the result back to tensor. The multiplication is
denoted by a symbol × with an optional subscript rep-
resenting the modes along which the operation is per-
formed, e.g., multiplication along q1, . . . , qL:

Z
p1,...,pK ,r1,...,rM

= X
p1,...,pK ,q1,...,qL

×q1,...,qL Y
q1,...,qL,r1,...,rM

,

where Y ∈ RIq1×···×IqL×Ir1×···×IrM and the resulting
tensor is Z ∈ RIp1×···×IpK×Ir1×···×IrM .

An important fact about tensor multiplication is that
in a series of tensor multiplications the order is irrel-
evant as long as the multiplication is done along the

matching modes: X
sp
×s

(
Y
tr
×r Z

rs

)
=

(
X
sp
×s Z

rs

)
×r Y

tr
.

Finally, we discuss the operation of tensor inversion.
Tensor inverse X−1 is always defined with respect to
a certain subset of the modes:

X
p1,...,pK ,q1,...,qL

×q1,...,qL X−1
p1,...,pK ,q1,...,qL

= I
p1,...,pK ,p1,...,pK

,

where the inversion is performed along the modes
q1, . . . , qL. Tensor on the right hand side can also be
written as I

p1,...,pK
by dropping the duplicated modes.

To perform tensor inversion, we first matrisize it. If
the modes to be inverted along are associated with
columns of the matrix, we compute the right matrix
inverse, so that these modes get eliminated after the
product. Otherwise, if those modes associated with
rows, we compute left matrix inverse. For example,
in the above equation the matrisized tensor might be
of the form X ∈ RIp1 ···IpK×Iq1 ···IqL , and we would
compute the right matrix inverse so that the modes
q1, . . . , qL are eliminated. If X has full row rank, then
we compute its inverse, otherwise the pseudo-inverse.
Tensorizing matrix X−1 gives us desired tensor inverse.

3 Problem Formulation: Inference in
HSMMs

In this paper, we consider the problem of inference in
HSMM. From a graphical model perspective, HSMM
has three sets of variables: the observations ot ∈
{1, . . . , no}, the latent states xt ∈ {1, . . . , nx}, and an-
other latent variable dt ∈ {1, . . . , nd} which determines
the length of state persistence. HSMM is specified by
three conditional probability tables (CPTs): the ob-
servation/emission probability p(ot|xt) and the state
transition and the duration probabilities given by:

p(dt|xt, dt−1) =

{
p(dt|xt) if dt−1 = 1

δ(dt, dt−1−1) if dt−1 > 1
(1)

p(xt|xt−1, dt−1) =

{
p(xt|xt−1) if dt−1 = 1

δ(xt, xt−1) if dt−1 > 1
, (2)

where δ(a, b) denotes the Dirac delta function:
δ(a, b) = 1 if a = b and 0 otherwise. In addition,
one can consider suitable prior probabilities p(x0) and
p(d0). In essence, dt works as a down counter for state
persistence. When dt−1 > 1, the model remains in the
same state xt = xt−1, while when dt−1 = 1, one sam-
ples a new state xt and the new duration in that state



Igor Melnyk, Arindam Banerjee

otxt

xt

dtxtdt−1xtxt−1dt−1dt−1xt−1dt−2 xtdt−1xt−1dt−2xt−1xt−2dt−2
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Figure 1: Left: Hidden semi-Markov Model (HSMM). Right: Junction Tree for HSMM. Ovals represent cliques,
rectangles denote separators. Symbols within shapes show variables on which the corresponding objects depend.

dt|xt. For our analysis, we assume p(dt|xt, dt−1 = 1) to
be a multinomial distribution over {1, . . . , nd} where
nd denotes the largest duration of state persistence.

The considered inference problem can be posed as fol-
lows: given a set of sequences {S1, . . . ,SN} drawn in-
dependently from the HSMM model, where each se-
quence is Si = {oi1, . . . , oiTi}, i = 1, . . . , N , our goal is
to develop a provably correct spectral algorithm for
computing p(Stest) of any given test sequence Stest =
(otest1 , . . . , otestT ).

We start by considering the matrix forms of the
HSMM parameters and writing the computations in
tensor notation, as introduced in Section 2. Specifi-
cally, p(dt|xt, dt−1 = 1) is denoted as D ∈ Rnd×nx ,
p(xt|xt−1, dt−1 = 1) is denoted as X ∈ Rnx×nx , and
p(ot|xt) as O ∈ Rno×nx . We make the following as-
sumptions on the HSMM parameters:

Assumptions 3.1

1. X is full rank and has non-zero probability of vis-
iting any state from any other state.

2. D has a non-zero probability of any duration in
any state.

3. O is full column rank and nx ≤ no.

To express the joint probability p(o1, . . . , oT ) for an
observation sequence in tensor form, we utilize the
junction tree [4] corresponding to the graphical model
of HSMM (see Figure 1). We proceed by embed-
ding the clique CPTs of the junction tree into ten-
sors. For example, the clique Xt, containing the CPT
of p(xt|xt−1, dt−1) is embedded into tensor X

xt|xt−1dt−1

.

For ease of exposition, the tensor’s modes are named
based on the variables on which the tensor depends.
Similarly, we embed the clique Dt with its CPT
p(dt|xt, dt−1) into tensor D

dt|xtdt−1

, and Ot containing

p(ot|xt) into tensor O
ot|xt

.

If we denote the joint probability of the observed se-
quence p(o1, . . . , oT ) as P

o1,...,oT
then the message pass-

ing algorithm for the junction tree in Figure 1 can be
represented as tensor multiplications:

P
o1,...,oT

=
∏
t

D
dt−1|xt−1xt−1dt−2

×xt−1dt−1

×xt−1dt−1

(
X

xtxt|xt−1dt−1dt−1

×xt O
ot|xt

)
, (3)

where, for simplicity, we denoted by
∏

t the tensor
product over multiple time steps. Observe that the
tensors are multiplied along the modes (dimensions)
which are the separator variables between the cliques
in Figure 1. A certain mode of the tensor is dupli-
cated the number of times such variable appears in
the separators adjacent to the clique, ensuring that
tensor multiplication remains valid. In what follows,
we represent expression (3) in the observable form so
that all the factors can be estimated directly from data
using certain sample moments and provide a practical
algorithm implementing these ideas.

4 Spectral Algorithm for Inference in
HSMM

Observe that the expression for the joint probability in
(3) depends on the unknown model parameters. Our
goal is to change the tensor representation such that

P
o1,...,oT

can be written in terms of the quantities di-

rectly computable from data. To that end, we fol-
low [16] and between every two neighboring factors in
(3) introduce an identity tensor with the modes corre-
sponding to the modes along which the multiplication
is performed. Intuitively, this operation corresponds
to the marginalization step, expressed in tensor form.
For example, consider a part of expression (3) after
introducing identity tensors:

× I
xt−1dt−2

×xt−1dt−2 D
dt−1|xt−1xt−1dt−2

×xt−1dt−1 I
xt−1dt−1

×xt−1dt−1

×xt−1dt−1

(
X

xtxt|xt−1dt−1dt−1
×xt I

xt
×xt O

otxt

)
×xtdt−1 I

xtdt−1
×

where all the identity tensors have duplicated modes
but are not shown. Now rewrite each of the identity
tensors as a multiplication of some factor times its in-
verse. For example, I

xt
= F

ωxtxt
×ωxt

F−1
ωxtxt

, for some in-

vertible factor F
ωxtxt

. Note that the choice of mode xt
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xtxt−1xt−2 xt+1

dt−2 dt−1 dt dt+1

ot−2 ot−1 ot ot+1

ORt

ORt−1
OLt−1

OLt

Figure 2: Conditional independence in HSMM. OLt

and ORt are independent conditioned on xt−1dt−1,
similarly, OLt−1

and ORt−1
are conditionally in-

dependent given xt−1dt−2. We defined OLt =
{. . . , ot−2, ot−1} and ORt = {ot+1, ot+2, . . .}.

is fixed and is determined by the modes of the identity
tensor I

xt
, while the mode ωxt is not fixed and we have

a freedom in selecting it. Moreover, since the tensor
inversion is done along the mode ωxt , if the matrix F
has its rows associated with ωxt , then this matrix must
have full column rank for the inverse to exist and for
the product F−1F to equal identity matrix (see Sec-
tion 2). Based on this, we choose the modes ωxt such
that (i) ωxt are the observed variables, (ii) F

ωxtxt
is in-

vertible and (iii) interpret this factor as corresponding
to a conditional probability distribution, i.e., p(ωxt |xt)
and write as F

ωxt |xt
.

After expanding each of the identity tensors, regroup-
ing the factors and recalling that in a series of tensor
multiplication the order is irrelevant, we can identify
the tensors

D̃
ωxt−1dt−2ωxt−1dt−1

= F−1
ωxt−1dt−2 |xt−1dt−2

×xt−1dt−2

D
dt−1|xt−1xt−1dt−2

×xt−1dt−1 F
ωxt−1dt−1 |xt−1dt−1

,

X̃
ωxt−1dt−1ωxtωxtdt−1

= F−1
ωxt−1dt−1 |xt−1dt−1

×xt−1dt−1(
X

xtxt|xt−1dt−1dt−1
×xt F

ωxt |xt

)
×xtdt−1 F

ωxtdt−1 |xtdt−1

and Õ
ωxtot

= F−1
ωxt |xt

×xt O
ot|xt

. Note that although

each of the above tensors depends only on the ob-
served variables ω, it is not clear yet how to es-
timate them: the expressions on the right depend
on the unknown model parameters, while the ten-
sors on the left do not correspond to valid probabil-
ity distributions (due to the presence of inverses F−1).
For example, D̃

ωxt−1dt−2ωxt−1dt−1
is not a tensor form of

p(ωxt−1dt−2 , ωxt−1dt−1).

Next, we discuss the choice of the observable set ω
in the factors F. From Figure 1 we can see that

there are three types of separators: xt−1dt−1, xtdt−1
and xt, consequently, there are three types of identity
tensors which we introduced: I

xt−1dt−1

, I
xtdt−1

and I
xt

.

Therefore, we need to define three types of observable
sets ωxt−1dt−1

, ωxtdt−1
and ωxt . There could be mul-

tiple choices for these sets, one of them is ωxt−1dt−1
=

ωxtdt−1
= {ot+1, ot+2, . . .} and ωxt = ot for all t. The

detailed description of how and what number of these
observations to select is deferred until Section 5. In
what follows, we define ORt := {ot+1, ot+2, . . .}, to
emphasize that this is a set of observations starting at
time stamp t + 1 and going to the right (or forward
in time), see Figure 2. With these definitions, we can
now rewrite (3) in the form:

P
o1,...,oT

=
∏
t

D̃
ORt−1

ORt
×ORt

(
X̃

ORtotORt
×ot Õ

otot

)
. (4)

Comparing (3) and (4) we see that the above equa-
tion expresses the joint probability distribution in the
observable form. As noted above, we cannot yet use
this formula in practice since we do not know how to
compute the transformed tensors. In what follows, we
show how to estimate such tensors directly from data,
without the need of the model parameters.

4.1 Estimation of Observable Tensors

Consider the tensor D̃:

D̃
ORt−1ORt

= F−1
ORt−1 |xt−1dt−2

×xt−1dt−2 D
dt−1|xt−1xt−1dt−2

×xt−1dt−1 F
ORt |xt−1dt−1

, (5)

whose modes are the observable variables ORt−1
and

ORt . To estimate this tensor from data, consider
OLt−1 , a set of the observed variables such that OLt−1

and ORt−1
are independent, conditioned on xt−1dt−2

(see Figure 2). The tensor form of this relationship is:

M
OLt−1ORt−1

= F
OLt−1 |xt−1dt−2

×xt−1dt−2 F
ORt−1 |xt−1dt−2

×xt−1dt−2 K
xt−1dt−2

, (6)

where tensor K represents the marginal p(xt−1, dt−2).
Note that, though not shown, the modes xt−1 and dt−2
need to appear twice in K, since it interacts with both
other terms. The set OLt−1

is defined in a way similar
to ORt but with the set of observations starting at
time stamp t− 2 and going to the left (or backward in
time), i.e., OLt−1 := {. . . , ot−3, ot−2} (see Figure 2).

Next, express the inverse of the tensor F
ORt−1

|xt−1dt−2
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from (6) and substitute back to (5).

D̃
ORt−1ORt

= M−1
OLt−1ORt−1

×OLt−1
F

OLt−1 |xt−1dt−2
×xt−1dt−2

K
xt−1dt−2

×xt−1dt−2 D
dt−1|xt−1xt−1dt−2

×xt−1dt−1 F
ORt |xt−1dt−1

= M−1
OLt−1ORt−1

×OLt−1
M

OLt−1ORt
, (7)

where we eliminated all the latent variables by mul-
tiplying the last four terms on the first line. Observe
that the tensors M

OLt−1ORt−1
and M

OLt−1ORt
represent valid

probability distributions and though they are defined
using unknown model parameters, we can readily es-
timate them from data. For example, M

OLt−1ORt
is a

tensor, where each entry is computed from the fre-
quency of co-occurrence of tuples of the observed sym-
bols {. . . , ot−3, ot−2, ot+1, ot+2, . . .}. The specific num-
ber and order of this symbols will be determined in
Section 5. Similar derivations can be used to find the
estimates for tensors X̃

ORtotORt
= M−1

OLtORt
×OLt

M
OLtORtot

and Õ
otot

=M−1
otot+1

×ot+1 M
otot+1

(see [12] for details).

4.2 Spectral Algorithm

In the previous section, we expressed the tensors D,
X and O in terms of the moments directly computable
from data, so now we can obtain the spectral algo-
rithm to compute P

o1,...,oT
entirely using the observed

variables. The basic version of the spectral HSMM
algorithm, which follows from the framework of [16],
can be described as a two step process: in the learning
step, compute D̃

ORt−1
ORt

, X̃
ORt−1

otORt
and Õ

otot
for all t

using the data. In the inference step, use (4) to com-
pute p(Stest).

If we denote the number of required observations in
OR or OL as ` (in Section 5 we will show that ` =
d1+ lognd

lognx
e), then the algorithm’s computational com-

plexity is O
(
(n3`o +N`)T

)
for learning and O

(
n3`o T

)
for inference, mainly determined by tensor inversions,
multiplications, and the estimation of tensors M in
(7) and in X̃

ORtotORt
and Õ

otot
for all t. Here, N is the

number of training samples and T is the length of the
observation sequences. Note that for large ` accurate
estimation of tensors M for each t will require large
number of training sequences which might not be avail-
able, leading to inaccurate and unstable computations.

A novel aspect of our work is the improvement of the
accuracy and efficiency of the basic algorithm men-
tioned above by exploiting the homogeneity property
of HSMM and estimating the tensors X̃, D̃ and Õ in
the batch, by averaging across all t. Thus, we compute

only three tensors for all t, as opposed to computing
these tensors for each t. For example, using (7), the
batch form of tensor D̃ takes a form:

D̃ =

(
1

T

∑
t

M
OLt−1

ORt−1

)−1
×OL

(
1

T

∑
t

M
OLt−1

ORt

)
,

where OL denotes a generic mode of the averaged ten-
sor M, corresponding to OLt−1 for all t. Similar ex-
pressions can be defined for other tensors; the detailed
derivations are provided in [12]. This modification re-
duced the computational complexity of the learning
phase to O

(
(n2`o +N`)T

)
(the cost of inference step

still remains O
(
n3`o T

)
), where the main operations

are now tensor additions and estimation of tensors M.
Note that the number of inverses and multiplications
in the learning phase is now fixed and independent of
sequence length. This is in contrast to the basic ver-
sion of algorithm, which involves tensor inverses and
multiplications at every step t (e.g., see (7)). More-
over, such averaging improves the accuracy of the re-
sulting algorithm since the estimates obtained in this
form have lower variance, which in turn ensures that
the computed inverses are more stable and accurate.

5 Rank Analysis of Observable
Tensors

In Section 4.1, when we derived D̃
ORt−1

ORt
, X̃
ORt−1

otORt

and Õ
otot

, we glossed over the question of the existence

of tensor inverses M−1
OLt−1ORt−1

, M−1
OLtORt

and M−1
otot+1

. In this

section, our task is to analyze the rank structure of
these tensors and impose restrictions on the sets OL

and OR to ensure that the rank conditions are satis-
fied. For example, consider equation (7) and expand
all its terms using (6) to get

D̃
ORt−1ORt

= F−1
ORt−1 |xt−1dt−2

× F−1
OLt−1 |xt−1dt−2

× K−1
xt−1dt−2

×

× K
xt−1dt−2

× F
OLt−1 |xt−1dt−2

× D
dt−1|xt−1dt−2

× F
ORt |xt−1dt−1

,

where we dropped the multiplication subscripts and
the duplicated modes, which can be inferred from the
context. Observe, that in order for the above equation
to produce (5), the terms in the middle must multiply
out into identity tensor, i.e.,

I
xt−1dt−2

= K−1
xt−1dt−2

×xt−1dt−2 K
xt−1dt−2

(8)

I
xt−1dt−2

= F−1
OLt−1 |xt−1dt−2

×OLt−1
F

OLt−1 |xt−1dt−2

. (9)

Moreover, recall that F
ORt−1 |xt−1dt−2

was originally intro-

duced as part of the identity tensor

I
xt−1dt−2

= F−1
ORt−1 |xt−1dt−2

×ORt−1
F

ORt−1 |xt−1dt−2
, (10)
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therefore, we can conclude that for (7) to exist, the
identity statements in (8), (9) and (10) must be sat-
isfied. These statements have implications for the
ranks of K

xt−1dt−2
, F
OLt−1 |xt−1dt−2

and F
ORt−1 |xt−1dt−2

, which

in turn determine the length of the observation se-
quences OLt−1 and ORt−1 .

Since K
xt−1dt−2

represents a distribution p(xt−1dt−2),

its matrisized version is a diagonal matrix with
p(xt−1dt−2) on the diagonal. Using statements 1 and
2 in Assumptions 3.1, it can be concluded that the di-
agonal elements in this matrix are non-zero and it has
rank nxnd, it is thus invertible and so (8) is satisfied.

Next, consider (9) and recall from Section 2 that if we

matrisize the tensor as F
OLt−1 |xt−1dt−2

∈ Rn
|OLt−1 |
o ×nxnd

then F must have full column rank nxnd for the proper

inverse to exist, implying n
|OLt−1 |
o ≥ nxnd. Similarly,

F
ORt−1 |xt−1dt−2

in (10) must have rank nxnd. As a conse-

quence, the tensor M
OLt−1ORt−1

will have rank nxnd and,

in general, is rank-deficient. The argument above can
also be used to show that M

OLtORt
has rank nxnd and

the rank of M
otot+1

is nx (see [12] for mode details).

The key unknowns now are the sets of the observed
variables OR and OL that must be appropriately se-
lected for the corresponding tensors to have rank nxnd.
In the following, we discuss the results for the tensor

F
ORt−1

|x−1d−2
, however HSMM homogeneity property

allows to transfer the result for any t. Moreover, the
analysis for tensors with OL is similar and omitted.
Recall that we defined ORt−1 = {ot, ot+1, . . .}. As
the main contribution of our work, we established that
if we select the observations ot non-sequentially with
gaps that grow exponentially with the state size nx
then the following result holds for all t:

Theorem 5.1 Let the number of observations be
|ORt−1

| = ` and define the set of indices S ={
max

[
t, t+(nd−1)− (nix−1)

]
| i = 0, . . . , `− 1

}
,

such that ORt−1 = {ok|k ∈ S} then the rank of tensor
F

ORt−1
|xt−1dt−2

is min[n`x, nxnd].

As a consequence of this result, to achieve the rank
nxnd we will require ` = d1 + lognd

lognx
e observations,

since we need to ensure n`x = nxnd. The span of
the selected observations is nd, while their number
is only logarithmic in nd. For example, consider
the estimation of tensor M

OLt−1
ORt−1

for an HSMM

with nx = 3 and nd = 20. In this case ` = 4
and OLt−1

= {ot−21, ot−19, ot−13, ot−2} and ORt−1
=

ot

nd nd

ORt−1OLt−1

ot+19ot+17ot+11ot−2ot−13ot−21 ot−19

Figure 3: Observations required to estimate
M

OLt−1
ORt−1

from data for HSMM with nx = 3, nd = 20.

{ot, ot+11, ot+17, ot+19}. Figure 3 illustrates this exam-
ple. We note that the requirement for the span of the
selected observations to be nd, which is a maximum
state persistence, is to ensure that for a given time
stamp t, we select the observations far enough to the
right and left of it so that those observations are likely
to be sampled from different hidden states.

5.1 Proof sketch of Theorem 5.1

In the following we present main ideas to prove Theo-
rem 5.1, all the details can be found in [12]. Define by
XRt−1

= {xt, xt+1, . . .}, the sequence of hidden states
corresponding to ORt−1

= {ot, ot+1, . . .}. Using con-
ditional independence property of graphical model in
Figure 1, i.e., ORt−1 and xt−1dt−2 are independent
given XRt−1

, we can write:

F
ORt−1

|xt−1dt−2

= Q
ORt−1

|XRt−1

× T
XRt−1

|xt−1dt−2

, (11)

for some tensors Q and T, representing the appropriate
probability distributions.

Denoting ` = |ORt−1 | = |XRt−1 |, it can be verified
that the matrisized form of Q in (11) can be written

as Q = ⊗`O ∈ Rn`o×n`x , a Kronecker product of the
observation matrix O with itself ` times. According to
the Assumptions 3.1, rank(O) = nx and nx ≤ no, and
using the rank property of the Kronecker product, we
infer that rank(Q) = n`x.

Combining the above conclusion with the fact that
the matrisized form of the other two tensors in (11)

is F ∈ Rn`o×nxnd and T ∈ Rn`x×nxnd , to ensure the
rank of F is nxnd, we need to select a set of variables

XRt+1
so that rank

(
T

XRt−1
|xt−1dt−2

)
= nxnd with the

condition that n`x ≥ nxnd. Thus, the problem of the
analysis of the rank structure of tensor F

ORt−1
|xt−1dt−2

was translated to the problem of rank structure of ma-
trix T

XRt−1
|xt−1dt−2

. The main idea of the analysis of

such a matrix is to understand the mechanism how
the rank changes as the size of XRt−1 increases.

Starting with a matrix T
xt|xt−1dt−2

, its rank is nx since

it is a matrisized version of the transition probability
of the model and statement 1 in Assumptions 3.1 guar-
antees it has full rank. Next, if we add a hidden state
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Figure 4: Performance of the spectral algorithm and EM on synthetic data generated from HSMM with no =
3, nx = 2, nd = 2 (top row) and no = 5, nx = 4, nd = 6 (bottom row). (a), (d): Error for EM across different
iterations for various training datasets. The straight lines show the performance for spectral method. (b), (e):
Average error and one standard deviation over 100 runs for EM after convergence and spectral algorithm across
different number of training data. (c), (f): Runtime, in seconds, for both methods.

at the consecutive time stamp, i.e., T
xt+1,xt|xt−1dt−2

∈

Rn2
x×nxnd then it turns out that the rank of this ma-

trix is 2nx (assuming that nxnd ≥ 2nx). In general, in
can be shown that the matrix T constructed with the
hidden states at consecutive time stamp allows only
linear growth of its rank. Consequently, to have rank
nxnd would require ` = nd observations.

On the other hand, if we consider T
xt+δ,xt|xt−1dt−2

∈

Rn2
x×nxnd , for δ = 1, . . . , nx − 1, then the rank of this

matrix is (δ + 1)nx, with the largest rank of n2x (if
nxnd ≥ n2x). In general, it can be proved that if we
include hidden state at time stamp j-th, j = 1, . . . , `
by skipping njx − nj−1x − 1 time stamps, we will be
increasing rank as njx, i.e., exponentially fast up to a
maximum achievable rank nxnd. As a result, the num-
ber of required observations is only ` = d1 + lognd

lognx
e.

To illustrate this, refer back to Figure 3 where nx = 3
and nd = 20. The ` = 4 observations we include for
ORt−1 are ot+19, ot+17, ot+11 and ot, which lead to the
following rank growth: 3, 9, 27, 60.

6 Experiments

In this section we evaluated the performance of the
proposed algorithm both on synthetic as well as real
datasets and compared its performance to a standard
EM algorithm.

6.1 Synthetic Data

Using synthetic data, we compared the estimation
accuracy and the runtime of the spectral algorithm
with EM. For this, we defined two HSMMs, one with

no = 3, nx = 2, nd = 2 and another with no =
5, nx = 4, nd = 6. For each model, we generated
a set of N = {500, 1000, 5000, 104, 105} training and
N = 1000 testing sequences, each of length T = 100.
The accuracy of estimating likelihood for each test-
ing sequence was measured using the relative devia-

tion from the true likelihood, i.e., εi =
|p̂(Stesti )−p(Stesti )|

p(Stesti )

for i = 1, . . . , 1000. Given N = 1000 such values, we
then computed the final score, which is the root-mean-
square error (RMSE) across all the testing sequences,

RMSE =
√

1
N

∑N
i=1 ε

2
i . Figure 4 shows results.

It can be observed from plots (b) and (e) in Figure 4
that with the small training set, EM achieves smaller
errors, while as the number of training samples in-
creases, the spectral method becomes more accurate,
outperforming EM. Also, comparing the plots (a), (b)
with (d) and (e), we can conclude that for larger mod-
els the spectral method requires more data in order to
achieve same or better accuracy than EM. This is ex-
pected since the sizes of estimated tensors grow with
the model size. Moreover, the plots (c) and (d) in Fig-
ure 4 show that spectral method is several orders of
magnitude faster than EM. Given the above results, we
can conclude that for small datasets EM is a preferable
algorithm, while for large data, the spectral algorithm
is a better choice, it achieves higher accuracy and re-
quires significantly smaller computational resources.

6.2 Real Data

We also compared the performance of the spectral al-
gorithm and EM on real NASA flight dataset [1], con-
taining over 180000 flights of 35 aircrafts from a de-
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Figure 5: Evaluation of the spectral algorithm and EM on real data. (a) and (b): Normalized joint loglikelihood
computed by spectral algorithm (a) and EM (b) for a set of 200 test flights, with 100 normal and 100 anomalous.
HSMM parameters: no = 9, nx = 8, nd = 40 (c): The Receiver Operating Characteristic (ROC) curve, illustrating
classification accuracy of the algorithms.

Parameters no=9, nx=8, nd=40 no=9, nx=7, nd=30 no=9, nx=6, nd=20 no=9, nx=5, nd=10

Time
Spectral 6.8 hours 6.4 hours 6.4 hours 6.3 hours

EM > 2 days > 2 days > 2 days > 2 days

AUC
Spectral 0.9066 0.8010 0.7215 0.9019

EM 0.8884 0.8873 0.8959 0.9015

Table 1: Comparison of AUC scores and running time for EM and spectral algorithm for various model parameters

funct mid-western airline company. For each flight,
the data has a record of 186 parameters, sampled at
1 Hz, including sensor readings and pilot actions. We
considered a problem of anomaly detection in avia-
tion systems [11] and used HSMM to detect abnormal
flights based on pilot actions. Specifically, we modeled
the phases of the flight as hidden states and the pi-
lot actions are the observations from these phases (see
[13] for more details). We focused on a part of flight
related to approach (15− 60 minutes in duration) for
a subset of flights landing at the same airport. We
chose 9 pilot commands, among which are “selected
altitude”, “selected heading”, etc.

A simple data filter, based on the histogram of the pi-
lot actions, was applied to select 10020 normal flights
for training. A test set contained 200 flights, with
100 of them being similar to the training set and the
rest were selected from the flights rejected by the fil-
ter. Most of abnormal flights contained low occur-
rence events, such as fast descent, unusual usage of air
brakes, etc., and few significant anomalies, e.g., the
aborted descent in order to delay the flight. The length
of the considered sequences varied anywhere from 500
to 4000 time stamps.

We applied EM and spectral algorithm to compute the
normalized joint log-likelihood of the observed pilot ac-
tions, Figure 5 shows the results. The high-likelihood
sequences were considered normal and low-likelihood
ones classified as anomalous (see plots (a) and (b)).
Both algorithms achieved similar detection accuracy,
with the spectral algorithm having the Area Under

Curve (AUC) score of 0.91 and the EM had AUC
= 0.89. On the other hand, the computational time of
the spectral algorithm was orders of magnitude smaller
as compared to EM (see third column in Table 1). We
also compared performance of both algorithm on the
same flight data while varying the dimensionality of
the HSMM parameters (see Table 1). We can see that
although the performance of EM and spectral algo-
rithm is similar across many models, the latter offers
significant computational savings.

7 Conclusion

In this paper, we present a novel spectral algorithm
to perform inference in HSMM. Our approach is based
on estimating certain sample moments of size logarith-
mic in maximum state persistence and requires fixed
number of matrix multiplications and inverses, inde-
pendent of sequence length. Empirical evaluation on
synthetic and real datasets illustrate the promise of
the proposed spectral algorithm, especially for large
datasets. Going forward, we plan to explore if simi-
lar spectral methods can be developed for inference in
more general dynamic Bayesian networks.
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