
Scalable Algorithms for
Locally Low-Rank Matrix Modeling
Qilong Gu

Dept. of Computer Science and Engineering
University of Minnesota, Twin Cities

guxxx396@cs.umn.edu

Joshua D. Trzasko
Dept. of Radiology

Mayo Clinic
Trzasko.Joshua@mayo.edu

Arindam Banerjee
Dept. of Computer Science and Engineering

University of Minnesota, Twin Cities
banerjee@cs.umn.edu

Abstract—We consider the problem of modeling data matrices
with locally low rank (LLR) structure, a generalization of the
popular low rank structure widely used in a variety of real
world application domains ranging from medical imaging to
recommendation systems. While LLR modeling has been found to
be promising in real world application domains, limited progress
has been made on the design of scalable algorithms for such
structures. In this paper, we consider a convex relaxation of
LLR structure, and propose an efficient algorithm based on
dual projected gradient descent (D-PGD) for computing the
proximal operator. While the original problem is non-smooth,
so that primal (sub)gradient algorithms will be slow, we show
that the proposed D-PGD algorithm has geometrical convergence
rate. We present several practical ways to further speed up
the computations, including acceleration and approximate SVD
computations. With experiments on both synthetic and real data
from MRI (magnetic resonance imaging) denoising, we illustrate
the superior performance of the proposed D-PGD algorithm
compared to several baselines.

I. INTRODUCTION

Recent years have seen considerable advances in modeling
‘corrupted’ data matrices by assuming the true underlying
matrix has some suitable structure, such as low-rank or variants
[1], [2]. Two popular forms of corruption which have been
studied in the literature include matrices with noisy observa-
tions, typically studied in computer vision or medical imaging
domains [1], [2], and matrices with missing observations,
typically studied in the context of recommendation systems [3]–
[5]. Assuming the true underlying matrix has a structure, such
as low rank, recovering the true matrix involves an estimation
algorithm often based on a convex relaxation of a suitable
structured estimation problem [6]–[8]. Irrespective of the exact
nature of corruption, say noisy vs. missing entries, the core
challenge in designing efficient algorithms for such estimation
typically involves being able to efficiently compute the proximal
operator of the structure under consideration [3], [4].

While low-rank models have been successful in many
application domains, including medical imaging [1], [9], [10]
and recommendation systems [4], [11], recent work have found
that locally low-rank (LLR) modeling of matrices can perform
better than a low-rank model. In particular, recent work have
found that by promoting locally low-rank (LLR) structure,
the denoising performance on MRI can be greatly improved
[12]. Related developments have started in the domain of
recommendation systems [3], [13]. Locally low-rank (LLR)

structures can be viewed as a generalization of (global) low-
rank structures, and allows for more fine-tuned analysis of
large data matrices for complex problems [1], [3], [12]. A key
challenge in modeling matrices as LLR is computational: unlike
widely studied structures such as sparsity or low-rank, currently
there is limited progress on efficient algorithms for estimating
LLR approximations of a given corrupted matrix, with noisy
or missing entries. In particular, the proximal operator for the
convex relaxation of the locally low rank structure does not
have a closed form solution. In this paper, we introduce an
efficient algorithm for computing the proximal operator, and
illustrate applications of the idea on both synthetic and real
datasets.

To keep the exposition concrete, we focus on noisy cor-
ruptions, noting again that recovering structured matrices
from noisy or missing entries involve computing the proximal
operator of the structure of interest [11], [14]. In the context
of matrix denoising, one observes a ‘noisy’ matrix Z ∈ Rn×m,
which is assumed to be the sum of a ‘clean’ matrix X ∈ Rn×m
and noise W ∈ Rn×m [1], [2]. One often assumes the
clean matrix X to have some specific structure, such as low
rank, which is utilized to accurately estimate X from Z. For
estimating X , the literature considers a convex relaxation of
the estimation problem, replacing the low-rank structure of X
with a regularization based on the nuclear norm of X , i.e., an
estimator of the form

min
X

1

2
‖Z −X‖2F + λ‖X‖∗ , (1)

where ‖.‖∗ denotes the nuclear norm, and λ > 0 is a
regularization parameter [1]. One can show that (1) can be
solved using the so-called singular value thresholding (SVT) [1],
[2]. In particular, considering the singular value decomposition
(SVD) of Z to be Z = UΣV T where Σ = diag(σi), the
diagonal matrix of singular values, the solution to (1) is
given by Xλ = UΣλV

T where Σλ = diag((σi − λ)+), the
diagonal matrix of soft-thresholded singular values. The SVT
approach has been empirically and statistically analyzed, and
is considered an effective approach to image denoising [1].

In this paper, we say a matrix X ∈ Rn×m is locally
low-rank (LLR) [15] if there are sub-sets of rows of X
which are low-rank. In general, the sub-sets of rows can be
overlapping, and the setting of overlapping sub-sets constitute

the more interesting case for the estimation problem. Let
Gi ⊆ {1, 2, . . . , n}, i = 1, . . . , L, be the indices of the i-
th subset of rows so that |Gi| ≤ n, where |Gi| denotes the
cardinality of that subset. For each subset Gi, there is a
corresponding row-selection matrix QGi ∈ {0, 1}|Gi|×m so
that QGiX extracts rows in Gi from X and forms a |Gi| ×m
matrix. By the locally low-rank assumption, each submatrix
QGiX is low-rank. Then, given a collection of row-selection
matrices {QGi}Li=1 that cover all rows of X , the denoising
problem can be posed as:

min
X

1

2
‖Z −X‖2F s.t. QGiX, i = 1, . . . , L are low rank .

(2)
In this paper, we consider a convex relaxation of the problem in
(2) where the low-rank structure is captured by a regularization
based on the nuclear norm of the sub-matrices. In particular,
we focus on the following convex optimization problem:

min
X

g(X) =
1

2
‖Z −X‖2F + λ

L∑
i=1

‖QGiX‖∗ , (3)

where λ > 0 is a constant, and the collection of row-
selection matrices {QGi}Li=1 is pre-specified. Note that such
pre-specification is possible in the context of MRI denoising
using domain knowledge [12], [15]. In settings such as recom-
mendation systems, one can consider overlapping clustering of
the users (rows) [3], [16], so that each user cluster is essentially
assumed to be low-rank.

If the collection {QGi}Li=1 correspond to non-overlapping
rows, then (3) has a closed form solution, which can be obtained
by SVT of each block of Z corresponding to QGiX . In this
paper, we focus on the general case when the subsets are
allowed to overlap.

We introduce a novel dual projected gradient descent (D-
PGD) algorithm for solving (3), i.e., computing the proximal
operator of LLR structures. Note that since the primal problem
is strongly convex but non-smooth, a sub-gradient descent
algorithm based on the primal will have a sublinear O(1/

√
t)

rate of convergence [17], [18]. If we apply some acceleration
strategies, then the convergence rate of gradient algorithm can
be improved to O(1/t2) [19]. Interestingly, we show that the
proposed D-PGD algorithm will converge geometrically, i.e.,
a O(γt), γ < 1 rate of convergence. To make the D-PGD
algorithm scalable, we consider Nesterov acceleration [20] and
also partial SVD computations [21] to speed up each iteration.
Further, we consider an Adaptive Acceleration (AA) algorithm
based on D-PGD, which does a mix of basic D-PGD and
accelerated D-PGD on the dual, adaptively choosing when to
use (restart) the acceleration. Based on our results for D-PGD,
we can show that AA will also converge geometrically. We
discuss several alternative approaches to solving the problem,
including ADMM (alternating direction method of multipliers)
[22], block coordinate descent (BCD) [17], and block singular
value theresholding (B-SVT) [1], which are used as baselines
for empirical comparison. In application of MRI denoising,
we propose a parallel algorithm for D-PGD. Previous works

have shown that for parallel proximal algorithm [22], [23], we
need a master process, and in each step the master process
has to collect data from all other processes. In this work, we
propose a method to avoid master process, therefore the speed
up thought parallelization can be almost linear.

The performance of D-PGD is empirically evaluated using
both synthetic and real datasets. For real datasets, we consider
MRI (magnetic resonance imaging) denoising problems, fo-
cusing on time-resolved (i.e., dynamic) cardiac MR imaging
[15] and multi-channel brain imaging [12]. We report results
on different variants of the proposed D-PGD algorithm,
illustrating that adaptive acceleration (AA) and partial SVD
calculations lead to the most efficient versions of D-PGD,
which outperforms baselines based on ADMM and BCD. For
MRI denoising, we illustrate that D-PGD reaches the same
quality of denoised images in much shorter time compared with
the baselines for both cardiac MRI and brain MRI denoising.

The rest of the paper is organized as follows. In Section II,
we present the D-PGD algorithm for solving (3) and establish
its geometrical rate of convergence. We present scalable variants
of D-PGD in Section III. We discuss alternative algorithms
for LLR modeling in Section IV. In Section V, we discuss
the MRI denoising application and datasets, and approaches
to parallelize the computation for this application. We present
experimental results on synthetic and real datasets in Section VI,
and conclude in Section VII.

II. ALGORITHMS FOR LLR MODELING

The estimation problem (3) is essentially about computing
the proximal operator of the norm obtained as a convex
relaxation of the LLR structure. For convenience, we will
refer to the norm as overlapping nuclear norm. In this section,
we outline our way of computing the proximal operator of the
overlapping nuclear norm based on D-PGD. We show that our
algorithm in fact has a geometrical convergence rate.

A. Dual Projected Gradient Descent (D-PGD)

By making use of the dual norm of the nuclear norm [24],
we rewrite problem (3) as

min
X

max
Yi∈Ωλi ,i=1,...,L

L(X, {Yi}) =
1

2
‖Z−X‖2F+

L∑
i=1

〈QGiX,Yi〉 ,

(4)
where we define

Ωλi = {Yi ∈ R|Gi|×n : ‖Yi‖2 ≤ λ} . (5)

Algorithm 1 Dual Projected Gradient Descent Algorithm (D-
PGD)

Inputs: {QGi}Li=1, Z.
Initialize: {Y 0

i }Li=1 = {0}.
for t = 0, 1, . . . , T do

for i = 1, . . . , L do
Y t+1
i = ΠΩλi

(Y ti − 1
dmax

QGi(
∑L
i′=1Q

T
Gi′Y

t
i′ − Z)))

end for
end for

It is easy to verify that L(X, {Yi}) is convex in X and
concave in {Yi}. We can change the order of min and max.
By minimizing L(X, {Yi}) over X and reordering, we get the
dual problem

min
Yi∈Ωλi ,i=1,...,L

f({Yi}Li=1) =
1

2

∥∥∥∥∥Z −
L∑
i=1

QTGiYi

∥∥∥∥∥
2

F

(6)

In the dual problem (6), the overlapping part has been separated
into different blocks. We make use of projected gradient descent
(PGD) [17] to solve problem (6) (Algorithm 1). Given the
current iterate {Y ti }Li=1, PGD takes a gradient step and projects
onto the feasible set as follows:

Y t+1
i = ΠΩλi

(
Y ti −

1

dmax
∇f({Y ti }Li=1)

)
, i = 1, . . . , L ,

(7)
where the step size is determined by

dmax = max
j=1,...,n

|{i : j ∈ Gi}| , (8)

the maximum number of groups a row belongs to. The
demanding aspect of the computation is a projection onto
the feasible set Ωλi , and we denote the projection operator as
ΠΩλi

(·). Note that for any matrix W , the projection ΠΩλi
(W)

can be computed exactly. If the singular value decomposition of
the matrix W = UΣV T , where Σ = diag(σ(W)) and σ(W)
is the vector of all singular values of W , then

ΠΩλi
(W) = U diag(min{σ(W), λ})V T . (9)

Note that Algorithm 1 is parameter free, therefore its perfor-
mance is stable.

B. Geometrical Convergence of D-PGD

The convergence analysis of PGD has been well studied
in the literature. For general convex function and convex set
Ωi, the convergence of algorithm is known to be sub-linear,
with a O(1/t) rate of convergence [25]. While better rates are
possible for strongly convex and smooth functions, the problem
(6) is not strongly convex.

Let us first characterize the optimal solution set Y =
{Y ∗i }Li=1 of (6). A collection of variables {Yi}Li=1 satisfy the
Karush-Kuhn-Tucker (KKT) conditions of (6) if

QGi

(
Z −

L∑
i′=1

QGi′Y
∗
i′

)
∈ µi∂‖Y ∗i ‖2

µi(‖Y ∗i ‖2 − λ) = 0 , µi ≥ 0

Yi ∈ Ωλi , i = 1, . . . , L.

(10)

Since (6) is a convex optimization problem, the KKT conditions
are both necessary and sufficient for optimality. Note that if we
introduce a new variable Y such that Y =

∑L
i=1Q

T
GiYi, then

the new objective function g(Y) = 1
2‖Z − Y ‖

2
F is strongly

convex. Then, using [26, Proposition 1], we can show the
following result:

Lemma 1: For problem (6), there are a matrix Y ∗ and
µi ≥ 0, i = 1, . . . , L such that for all {Yi}Li=1 ∈ Y
L∑
i=1

QGiY
∗
i = Y ∗, QGiX

∗ ∈ µi∂‖Y ∗i ‖2, µi(‖Yi‖2−λ) = 0 ,

(11)
where X∗ = Z − Y ∗.
Lemma 1 shows that Y can be characterized by Y ∗ and µi.
By convex analysis, we also have

Y =

{
{Yi}Li=1 :

L∑
i=1

QTGiYi = Y ∗, Yi ∈ λ∂‖QGiX∗‖∗

}
,

(12)
which gives alternative optimality conditions that do not require
µi. The characterization of Y as in (12) plays an important
role in our analysis.

Our convergence analysis is based on the error bound
property (EBP) of problem (6). Let

d({Yi}Li=1,Y) = inf
{Y ′i }Li=1∈Y

√√√√ L∑
i=1

‖Yi − Y ′i ‖2F (13)

be the distance of any collection {Yi}Li=1 to optimal solution
set Y . Further, for any collection {Yi}Li=1, let

Ri(Yi) = ΠΩλi
(Yi+QGi(Z−

L∑
i′=1

QGi′Yi′))−Yi, i = 1, . . . , L

(14)
which characterizes the residual corresponding to one gradient
update of Algorithm 1.

Our first key result (Theorem 2) shows that under mild
conditions the EBP based characterization d({Yi}Li=1,Y) is of

the order
√∑L

i=1 ‖Ri(Yi)‖2F for all feasible {Yi}Li=1.
Theorem 2: Suppose there exists an {Y ∗i }Li=1 ∈ Y such that

λ ∈/ σ(Y ∗i +QGiX
∗), i = 1, . . . , L , (15)

so λ is not one of the singular values of (Y ∗i +QGiX
∗). Then

there exist constant κ > 0 such that

d({Yi}Li=1,Y) ≤ κ

√√√√ L∑
i=1

‖Ri(Yi)‖2F

for any Yi ∈ Ωλi , i = 1, . . . , L

(16)

We present a sketch of the proof below.
Proof sketch: The structure of our proof follows the frame-

work in [26]. Let

Γ(Y) =

{
{Yi}Li=1 :

L∑
i=1

QTGiYi = Y

}
, (17)

which is the solution set of a linear system. It follows from
(12) that the solution set Y = Γ(Y ∗) ∩

⊗L
i=1 λ∂‖QGiX∗‖∗

where
⊗

is the Cartesian product. If condition (15) holds, then
we can decouple the pair (Γ(Y ∗),

⊗L
i=1 λ∂‖QGiX∗‖∗) by the

following lemma.

Lemma 3: Suppose there exists a {Y ∗i }Li=1 ∈ Y satisfying

λ ∈/ σ(Y ∗i +QGiX
∗), i = 1, . . . , L

Then there exists a constant κ > 0 such that

d({Yi}Li=1,Y) ≤ κ(d({Yi}Li=1,Γ(Y ∗))+

d({Yi}Li=1,

L⊗
i=1

∂‖QGiX∗‖∗))
(18)

By Hoffman’s bound [27], there is a constant κ2 > 0 such that

d({Yi}Li=1,Γ(Y ∗)) ≤ κ2‖
L∑
i=1

QTGiYi − Y
∗‖F (19)

Further, the second term on right hand side of (18) can be
bounded by

d({Yi}Li=1,

L⊗
i=1

λ∂‖QGiX∗‖∗)) ≤ κ3

√√√√ L∑
i=1

‖Xi −QGiX∗‖2F

for all Yi ∈ ∂‖Xi‖∗
(20)

which follows the following bound for each block
Lemma 4: For any Y ∗i such that Y ∗i ∈ λ∂‖QGiX∗‖∗, there

exist constants κ′i > 0 such that

d(Yi, λ∂‖QGiX∗‖∗) ≤ κ′i‖Xi −QGiX∗‖F (21)

for all matrices {Yi, Xi} that satisfy Yi ∈ λ∂‖Xi‖∗
Let κ4 = max{κ2, κ3}. Replace the bounds from (19) and
(20) in (18), we have

d({Yi}Li=1,Y) ≤κ4(‖
L∑
i=1

QTGiYi − Y
∗‖F+√√√√ L∑

i=1

‖Xi −QGiX∗‖2F)

for all Yi ∈ ∂‖Xi‖∗

(22)

Then follows by Lemma 5.
Lemma 5: Suppose there is a constant κ4 > 0 such that (22)

holds. Then, there exist constants κ > 0 such that

d({Yi}Li=1,Y) ≤ κ

√√√√ L∑
i=1

‖Ri(Yi)‖2F

for any Yi ∈ Ωλi , i = 1, . . . , L

the error bound (16) holds.

Note that the condition (15) under which the result holds is
mild, since one just needs to choose λ not to be a singular value
of the matrix Y ∗i +QGiX

∗ for some Y ∗i Using the EBP bound
in Theorem 2 and the framework in [28], we now establish
the geometrically convergence of D-PGD in Algorithm 1.

Theorem 6: Suppose there exists an {Y ∗i }Li=1 ∈ Y such that

λ ∈/ σ(Y ∗i +QGiX
∗), i = 1, . . . , L . (23)

Then the sequence {f({Y ti }Li=1)}t≥0 generated by Algorithm

1 converge to the optimal value f∗ and there is a constant
η ∈ (0, 1) such that all t ≥ 0 satisfies

f({Y t+1
i }Li=1)− f∗ ≤ η

η + 1
(f({Y ti }Li=1)− f∗) . (24)

We present a sketch of the proof below.
Proof sketch: By our assumption, and the following lemmas

Lemma 7: For every Yi, function

gi(s) =
1

s
‖Yi −ΠΩλi

(Yi − s∇fi(Yi))‖F , s > 0

is monotonically nonincreasing.
Lemma 8: The sequence {f({Y ti }Li=1)}t≥0 generated by

PGD (1) satisfies

f({Y t+1
i }Li=1)− f∗ ≤ dmax


√√√√ L∑

i=1

‖Y ti − Y
t+1
i ‖2F+

√√√√ L∑
i=1

‖Y ti − Y ∗i ‖2F


√√√√ L∑

i=1

‖Y ti − Y
t+1
i ‖2F

(25)
we have

f({Y t+1
i }Li=1)− f∗ ≤ dmax(1 + κ)

L∑
i=1

‖Y ti − Y t+1
i ‖2F (26)

We bound right hand side of (26) by
Lemma 9: The sequence {f({Y ti }Li=1)}t≥0 generated by

PGD (1) satisfies

f({Y ti }Li=1)− f({Y t+1
i }Li=1) ≥ dmax

2

L∑
i=1

‖Y ti − Y t+1
i ‖2F

(27)
and get f({Y t+1

i }Li=1) − f∗ ≤ 2(1 + κ)(f({Y ti }Li=1) −
f({Y t+1

i }Li=1)), which implies

f({Y t+1
i }Li=1)− f∗ ≤ η

η + 1
(f({Y ti }Li=1)− f∗)

where η = 2(1 + κ).

Thus, the sequence {f({Y ti }Li=1)}t≥0 in Theorem 6 converge
geometrically, i.e., rate of convergence γt where γ = η

η+1 .

III. SCALABLE D-PGD UPDATES

In D-PGD, the projection in (9) can be computationally
demanding for large matrix W , since it requires the full SVD of
matrix W . In this section, we propose a few practical strategies
to speed up the algorithm, including efficiently computing
the projection operator using adaptive fixed rank SVD [21],
doing Nesterov acceleration [18], [20], and doing adaptive
acceleration.

A. Efficient Projection using Partial SVD

Recall that for a proper convex function f , its
proximal operator is defined as [25] proxf (W) =
argminU

{
1
2‖W − U‖

2
F + f(U)

}
. Let f∗ be the convex

conjugate of f , the Moreau decomposition [25], [29] gives

W = proxf (W) + proxf∗(W). For our algorithm, we know
that the convex conjugate of indicator function IΩi(W) is
λ‖W‖∗, and we can compute the projection as

ΠΩi(W) = W − proxλ‖.‖∗(W) . (28)

Note that the proximal operator in the r.h.s. of (28) involves
SVT. To speed up the computation in practice, one can do
adaptive fixed rank SVD decompositions, say rank svti for
the i-th block and step t, and adjusting the rank for the next
iteration based on [21, Section 3]

svt+1
i =

{
svpti +1 svpti < svti
min(svpti + round(0.05|Gi|, |Gi|)) svpti = svti

(29)
where svpti is the number of singular values in the svti singular
values that are larger than λ.

B. Acceleration Scheme

We apply Nesterov’s acceleration scheme introduced in [18],
[20]. The scheme introduced a combination coefficient θt. Start-

ing from 0, this coefficient is given by θt+1 =
1+
√

1+4(θt)2

2 .
In each update, in addition to pure gradient update, the output
is given by a combination Ỹ t+1

i = Y t+1
i + θt−1

θt+1 (Y t+1
i − Y ti),

where Y t+1
i and Y ti are gradient updates. It is unclear if this

algorithm will have a linear convergence rate. Therefore we
can consider a hybrid strategy which, after a few steps of
Nesterov update, considers a basic gradient update if that
leads to a lower objective. One way to determine which
update rule we should use is by adaptive restarting. Based
on [30], in each step we obtain both the gradient update
and the accelerated update. We compare the objective value,
and decide whether to do a gradient step or continue with
acceleration. If we choose to do pure gradient update, we also
reset the combination coefficient to 0. We refer to this method
as Adaptive Acceleration (AA).The linear convergence rate
of AA is stated in Corollary 10 and follows from Theorem
6. Empirical results in Section VI-A3 also shows that AA
improves over the performance of both PGD and ACC.

Corollary 10: Suppose there exists an {Y ∗i }Li=1 ∈ Y such
that condition (15) holds, then algorithm AA converges linearly.

IV. ALTERNATIVE ALGORITHMS FOR LLR MODELING

In this section, we briefly discuss three other optimization
algorithms for LLR modeling, respectively based on the
alternating direction method of multiplier (ADMM), block
coordinate descent (BCD), and blockwise singular value
thresholding (B-SVT).

A. ADMM Algorithm

The optimization (3) is challenging due to the overlap of the
subsets. A simple approach is to decouple the overall problem
into smaller problems corresponding to the sub-matrices and

Algorithm 2 Alternating Direction Method of Multipliers
(ADMM)

Inputs: {QGi}Li=1, Z; ρ > 0
Initialize: {Y 0

i }Li=1 = {0}.
for t = 0, 1, . . . , T do

for i = 1, . . . , L do
Xt+1
i = argminXi

1
2‖QΩλi

Xt +Y ti −Xi‖2F + λ
ρ‖Xi‖∗

end for
Xt+1 = (I + ρ

∑L
i=1Q

T
i Qi)

−1(Z + ρ
∑L
i=1Q

T
i X

t
i −

ρ
∑L
i=1Q

T
i Y

t
i)

Y t+1
i = Y ti + (QGiX −Xi)

end for

iteratively solve the smaller subproblems. A direct decoupling
reformulation of (3) is

min
X,{Xi}Li=1

1

2
‖Z −X‖2F + λ

L∑
i=1

‖Xi‖∗ s.t. QGiX = Xi ,

(30)
which can be solved using the Alternating Direction Method
of Multipliers (ADMM) [22]. The main steps of ADMM are
two primal steps

Xt+1
i = argminXi

1

2
‖QΩiX

t + Y ti −Xi‖2F +
λ

ρ
‖Xi‖∗,

i = 1, . . . , L

Xt+1 = (I + ρ

L∑
i=1

QTi Qi)
−1(Z + ρ

L∑
i=1

QTi X
t
i − ρ

L∑
i=1

QTi Y
t
i)

and a dual step Y t+1
i = Y ti +(QGiX−Xi). The matrix inverse

in the Xt+1 can be pre-computed. The updates for Xt+1
i can

be solved using SVT as discussed in Section I, but can be slow
if the sub-matrices are large. However, the Xt+1

i updates can
in principle be done in parallel over i = 1, . . . , L. One needs
to choose the parameter ρ > 0, and in practice the convergence
can vary based on this choice. The ADMM algorithm is given
by Algorithm 2

B. BCD Algorithm

For dual problem (6), instead of updating all blocks at the
same time like DPGD, we can only update one or several
blocks. We fixed the other blocks, and minimizing the objective
function with respect to the chosen blocks. The BCD algorithm
is given by Algorithm 3.

C. B-SVT Algorithm

BSVT [1] is another method for denoising. In BSVT, we
first solve singular value thresholding on each block

min
XGi

1

2
‖QGiZ −XGi‖2F + dmaxλ‖XGi‖∗ (31)

then we take the average of all solutions

X̂ =
1

dmax
QTGiXGi (32)

Algorithm 3 Block Coordinate Descent (BCD)

Inputs: {QGi}Li=1, Z.
Initialize: {Y 0

i }Li=1 = {0}, θ0 = 0, and choose a step size
ρ > 0.
for t = 0, 1, . . . , T do

choose some blocks Bt
for i = 1, . . . , L do

if i ∈ Bt then
Y t+1
i = ΠΩλi

(Y ti − ρ ·QGi(
∑L
i′=1Q

T
Gi′Y

t
i′ − Z)))

else
Y t+1
i = Y ti

end if
end for

end for

BSVT is a one pass algorithm therefore we do not need
iterations.

V. APPLICATION: MRI DENOISING

In this section, we consider an important real world applica-
tion for LLR modeling: Magnetic Resonance Imaging (MRI)
denoising. The proposed algorithms were applied to locally low
rank image denoising for both time-resolved (i.e., dynamic)
cardiac MR imaging [15] and multi-channel brain imaging
[12], two applications where locally low rank-based processing
techniques have proven beneficial. We briefly discuss the
datasets, and also how to make use of parallel updates and
BCD in these applications.
Cardiac MRI. The first data set tested represents a first pass
myocardial perfusion cardiac MRI exam performed at 3.0
T using a standard gradient-recalled echo (GRE) acquisition
sequence, wherein imaging was continuously performed fol-
lowing intravascular contrast administration to observe. In
such cases, image quality (i.e., SNR) is typically sacrificed
in exchange for high spatiotemporal resolution. The second
and third data sets represent short- and long axis cine cardiac
exams acquired using a 2D balanced steady state free precession
(bSSFP) sequence at 1.5 T. Due to RF specific absorption ratio
(SAR) limitations, cine cardiac imaging is often performed at
lower field strengths, which in turn limits the amount of signal
generated during the scan. For these data sets, the auxiliary non-
spatial dimension considered for locally low rank processing
was time. For additional details about these time-resolved
cardiac data sets, see [1], [9].
Brain MRI. The proposed algorithms were also tested on
two T1-weighted brain image data sets obtained using a T1-
weighted 3D spoiled gradient echo (SPGR) sequence with an 8-
channel phased array receiver and RF flip angle of θ = 25. For
these data sets, the auxiliary non-spatial dimension considered
for locally low rank processing was receiver channel index.
For additional details about these multi-channel data sets, see
[31].
Formulation Consider a series of T frames of Nx×Ny 2D MR
images in complex number. To apply local low rank model, we
first transform it into a NxNy×T Casorati matrix Z = X∗+W .

Fig. 1: In our parallel implementation, we only decompose
along the rows of the image. In this picture, we want to denoise
the image on the left hand side using 4 cores, so we first
decompose it like the right hand side.

Denote Gij an image block indexed by (i, j), and the size of
Gij is B×B. In MR series, Gij starts from the pixel located at
(i, j), and extends to the i+B-th column and the j+B-th row.
Operator QGij extracts a B2× T submatrix from Z with rows
corresponding to block Gij in the series. In our application for
MRI, we construct a block for each pixel in the MR image by
using cyclic way.

Parallel Updates for MRI We designed a parallel D-PGD
algorithm to work in a distributed memory environment. In
previous works for parallel proximal algorithm, one needs an
all reduce operation in each step [22], [23]. In this work, we
propose a decomposition method for MRI to avoid the all
reduce operation in our parallel implementation, therefore the
speed up through parallelization can be almost linear. Our
decomposition method makes use of structure specific to MR
images to reduce the overhead.

From our algorithm 1, update of dual variable Yij corre-
sponding to block Gij is given by

Y t+1
ij = ΠΩλij

(Y tij − ρ ·QGij (
∑
i,j

QTGijY
t
ij − Z))). (33)

In a parallel algorithm of update (33), communication between
cores is required when computing

∑
i,j Q

T
GijY

t
ij , and we need

all blocks to get it. However, in our application we only
need QGij

∑
i,j Q

T
GijY

t
ij . Therefore we can merely compute∑

Gi′j′∩Gij 6=∅
QTGi′j′Y

t
i′j′ in one core, and communicate Yij

overlapping with other cores.

In our algorithm, we decompose the image along the rows
(see figure 1), so that there will be no communication along
rows indexed by j. Denote

∑
i,j Q

T
GijY

t
ij by Ht. Suppose we

have P cores. In the p-th core (p = 1 . . . P), we store row
(p− 1) · NxP + 1 to row p · NxP +B − 1 of Ht, and denote this
submatrix as Ht

p. We can compute all Y t+1
ij with i indexed by

(p− 1) · NxP + 1 through p · NxP using Ht
p. Then in core p, we

introduce a matrix Gt+1
p , and we update it locally by

Gt+1
p =

p·NxP∑
i=(p−1)·NxP +1

∑
j

QTGijY
t
ij

Notice that Gt+1
p 6= Ht+1

p since in the first and last B − 1
rows of Gt+1

p we need to add Y t+1 from core p− 1 and core

p+ 1. By using matrix Gt+1
p , we can simply do this by

Ht+1
p (1 : B−1, :) = Gt+1

p (1 : B−1, :)+Gt+1
p−1(

Nx
P
−B+1:

Nx
P
, :)

where for a matrix A we denote A(i : j, :) as a submatrix
extracted from the i-th to the j-th rows of each frame of
corresponding MR series. We do this by sending Gt+1

p−1(NxP −
B + 1: NxP , :) to the p-th core, and the send operation can be
done from all cores in parallel. Then we get the last B − 1
rows of Ht+1

p by

Ht+1
p (

Nx
P
−B + 1:

Nx
P
, :) = Ht+1

p+1(1 : B − 1, :)

We only need to send Ht+1
p+1(1 : B − 1, :) to the p-th core for

all possible p in parallel. In our algorithm, the overlapping part
has memory continuity, and we have no pain manipulating such
data. In theory, the speed up of our parallel implementation
will be linear.

Another method we can apply to MRI series is block
coordinate descent (BCD). One way to do this is to randomly
choose some blocks and do gradient descent on these blocks.
However this does not work for our application because it has
too many blocks. If the number of blocks we choose is small
then it will take too many steps to update and too long to extract
these blocks. Our method here is to first divide the 2D matrix
into many non-overlapping blocks. In other words, for any two
blocks Gi and Gj in this update, we have Gi ∩ Gj = ∅. We
update these blocks in parallel. In the next step we modify our
previous division into blocks, work with new non-overlapping
blocks, and do another update. The process continues till all
blocks have been updated. In this way we can make the parallel
updates communication efficient.

VI. EXPERIMENTAL RESULTS

In this section, we focus on experiments to illustrate the
efficiency of our algorithms. We do a comparison of different
algorithms on synthetic matrices of different sizes.

A. Synthetic Data

We fix n = 3000, and choose m = 1000, m = 3000 and
m = 5000. We use a sliding window of 1000 adjacent rows
and stepsize 250, so that the set of row subsets with low rank
are

G ={{1, . . . , 1000}, {251, . . . , 1250}, . . . , {(J + 1)modm, . . . ,

(J + 1000)modm}}

where J = 250(|G| − 1). We sample the local low-rank matrix
in a hierarchically way, and each low rank matrix is generated
in the same way as [25] 1. We first sample a rank 2 matrix X1

of size n×m, then we sample a rank 1 matrix X(j)
2 on each

small block of size 250 ×m for j = 1, . . . , |G|. At last we

1http://stanford.edu/~boyd/papers/prox_algs/matrix_decomp.html

time (s)

0 5000 10000

o
b

je
c
ti

v
e
 (

lo
g

)

-10

-5

0

5

10
n = 5000

full SVD

partial SVD

time (s)

0 5000 10000

re
s
id

u
a
l
(l

o
g

)

-6

-4

-2

0

2

4
n = 5000

full SVD

partial SVD

Fig. 2: Comparison of full SVD PGD and partial SVD PGD
in computational timewhen n = 5000. Both algorithm use the
same number of iterations, and converge linearly. We can see
that Partial SVD based D-PGD uses considerably less time.

sample a rank 1 matrix XGi on each group for i = 1, . . . , |G|.
Matrix X∗ is the sum up of all the samples, that is

X∗ = X1 +


X

(1)
2
...

X
(|G|)
2

+QTG1XG1 + . . .+QTG|G|XGG . (34)

The rank of each block Gi is thus less that 10. We sample a
noise matrix E with i.i.d. entries from a Gaussian distribution,
and generate the output from Z = X∗ + σ√

m+
√
n
E, where σ

is the standard deviation.
1) Setup: In our experiment, we set λ = σ

dmax
. We use the

Frobenius norm εt = ‖Xt −X∗‖F to measure the closeness
of Xt to X∗, where Xt = Z −

∑L
i=1Q

T
GiY

t
i , and X∗ is the

“optimal" solution to problem (3) after running algorithm AA
for a long time. In our experiment, we stop our algorithm
when absolute error is less than 10−5. We also compare
the convergence behavior of primal objective function error
g(Xt)− g(X∗). For ADMM, stepsize ρ is chosen to be 1

dmax
,

and only full SVD is used. This experiment is performed on
core i7-6700 4 cores with 16 GB memory, our program is
implemented using Matlab.

2) Effect of Partial SVD: In this experiment, we test the
performance of partial SVD on synthetic data. Figure 2 shows
the convergence and running time of D-PGD using partial
SVD and full SVD when n = 5000. Both algorithms stop after
similar number of iterations. However, we can see that D-PGD
with partial SVD considerably outperforms D-PGD with full
SVD in terms of actual running time.

3) Performance Comparison: In this experiment, we com-
pare the performance of different algorithms on synthetic data.
We use partial SVD for D-PGD, ACC and AA. From Figure
3, we see that D-PGD, ACC and ADMM take similar number
of iterations to converge. Interestingly, ACC has similar or
sometimes worse behavior compared to D-PGD and ADMM
in terms of number of iterations, and worse than D-PGD in
terms of time. ADMM looks bad in terms of time, but that
can be attributed to ADMM using full SVD. Interestingly, the
AA algorithm outperforms all the others, both in number of
iterations and running time.

B. Sequential Deonising

In this experiment, we apply our algorithm to denoising
dynamic cardiac MRI series and brain image. The size of our
dataset is given in table (I). We have three cardiac dataset:

http://stanford.edu/~boyd/papers/prox_algs/matrix_decomp.html

time (s)

0 2000 4000 6000

ob
je

ct
iv

e
(lo

g)

-10

-5

0

5

10
n = 5000

PGD

ACC

AA

ADMM

time (s)

0 2000 4000 6000

re
si

du
al

 (l
og

)

-6

-4

-2

0

2

4
n = 5000

PGD

ACC

AA

ADMM

(a) n = 5000 time (s)

0 2000 4000

ob
je

ct
iv

e
(lo

g)

-10

-5

0

5

10
n = 3000

PGD

ACC

AA

ADMM

time (s)

0 2000 4000

re
si

du
al

 (l
og

)

-6

-4

-2

0

2

4
n = 3000

PGD

ACC

AA

ADMM

(b) n = 3000
Fig. 3: Comparison of PGD, ACC, AA, and ADMM in terms of number of iterations and computational time when n = 5000
and n = 3000. All algorithms converge linearly. AA is the fastest algorithm in running time.

0 50 100 150 200 250

time (sec)

10-4

10-2

100

102

ADMM

DPGD

BCD

(a) invivo_perfusion

0 1000 2000 3000

time (sec)

100

105
ADMM

DPGD

BCD

(b) short_axis_cine

0 1000 2000 3000

time (sec)

100

102

104

ADMM

DPGD

BCD

(c) long_axis_cine

0 500 1000

time (sec)

105

ADMM

DPGD

BCD

(d) brain imaging 1

0 200 400 600 800

time (sec)

100

102

104

ADMM

DPGD

BCD

(e) brain imaging 2
Fig. 4: Comparison of ADMM, DPDG, and BCD in terms of computational time on different dataset. We can see that on all
datasets DPGD outperforms other algorithms.

Dataset Nx Ny Nc T
invivo_perfusion 90 90 1 30

short_axis 144 192 8 19
long_axis 192 192 8 19

brain imaging 1 256 256 8 1
brain imaging 2 256 256 8 1

TABLE I: Size of different set

invivo perfusion, short axis, and long axis. The other two
datasets are brain imaging dataset.

1) Setup: We compare the speed of the three algorithms:
ADMM, DPGD with adaptive acceleration, and PGD. We
first run our DPGD algorithm for a very long time to get
an “optimal” solution X∗, then we compare the immediate
result of each iteration of our algorithms to X∗. Parameter
λ is given by “cross validation”, we run our algorithm using
different λ, and the best λ is chosen by experts by looking at
the denoised images. The best λ we get are: invivo_perfusion,
0.05; short_axis, 20; long_axis, 1; brain imaging 1, 25; brain
imaging 2, 10. We choose block size B to be 5 for all dataset.
For ADMM, we choose its step size ρ to be 1

dmax
. For BCD,

we choose its step size ρ to be 1. We run ADMM and DPGD
for 100 iterations and BCD for 200 iterations. This experiment
is performed on core i7-6700 4 cores with 16 GB memory,
our program is implemented using Matlab.

2) Performance Comparison: We plot running time opti-
mization error ‖Xt−X∗‖2 of different algorithms. We present
our plot in figure 4, in this plot ‖Xt−X∗‖2 is in log scale. From
figure 4 we can see that all three algorithms converge linearly.
The plot also shows the efficiency of the three algorithms.
BCD takes much less time for each iteration, but it is not as
good as DPGD. Besides, the BCD curve oscillate while going
down. The performance of Vanilla ADMM is not as good. Our
algorithm is the most efficient among the three algorithms.

3) Effect of Our Algorithm: We make use of the result in
section (VI-B2), and show the quality of denoised images. For

Noisy Image LLR Denoised: ADMM

LLR Denoised: DPGD LLR Denoised: BCD

(a) brain imaging 1

Noisy Image LLR Denoised: ADMM

LLR Denoised: DPGD LLR Denoised: BCD

(b) brain imaging 2
Fig. 5: Comparison of denoised images using using ADMM,
DPGD with adaptive acceleration, and BCD in Brain Imaging.
Original noisy images (upper left); Denoised images using
ADMM (upper right); Denoised images using DPGD (bottom
left); Denoised images using BCD (bottom right).

cardiac MRI series, we choose one frame from each of them.
The result is presented as figure 6. For braining imaging data,
we show both of them. The result is presented as figure 5.
From these results we can see that the denoised image become
clearer than the noisy image. We also know from the result in
(VI-B2) that to reach the same denoising quality, DPGD takes
less time than ADMM and BCD.

4) Comparison with BSVT: We compare LLR denoising
with BSVT. Our result is presented as Figure 7. In figure 7, we
show one frame from each cardiac MRI series and visualization
of two brain imaging datasets. In the top row we show the
noisy image without denoising, in the middle we show the
denoising result of BSV T , and in the last row we show the
denoising result of locally low rank. As BSVT is a heuristic
algorithm, it is not guaranteed to solve the locally low-rank
problem. Besides, DPGD can be applied to problems with
missing values.

C. Parallel Denoising

In this experiment, we apply parallel update for DPGD to
the same dataset in section (VI-B). We show show the speed
up of our algorithm giving increasing number of cores.

Noisy Image LLR Denoised: ADMM

LLR Denoised: DPGD LLR Denoised: BCD

(a) invivo_perfusion

Noisy Image LLR Denoised: ADMM

LLR Denoised: DPGD LLR Denoised: BCD

(b) short_axis

Noisy Image LLR Denoised: ADMM

LLR Denoised: DPGD LLR Denoised: BCD

(c) long_axis
Fig. 6: Comparison of denoised frames using ADMM, DPGD with adaptive acceleration, and BCD in cardiac MRI. Original
noisy images (upper left); Denoised images using ADMM (upper right); Denoised images using DPGD (bottom left); Denoised
images using BCD (bottom right).

Noisy Image

B-SVT Denoised

LLR Denoised

(a) invivo_perfusion

Noisy Image

B-SVT Denoised

LLR Denoised

(b) short_axis

Noisy Image

B-SVT Denoised

LLR Denoised

(c) long_axis

Noisy Image

B-SVT Denoised

LLR Denoised

(d) brain imaging 1

Noisy Image

B-SVT Denoised

LLR Denoised

(e) brain imaging 2
Fig. 7: Comparison of BSVT denoised image and LLR denoised image. Original images (top), Denoised images using BSVT
(middle), Denoised images using LLR (bottom)

1) Setup: We implemented a parallel version of DPGD
algorithm with adaptive acceleration using C, Open BLAS, and
Open MPI. We run our code on a node with 32 cores provided
by Intel Haswell E5-2680v3 processors and 16 GB memory.
In each run we update 50 iterations.

2) Effect of Parallel Update: We present our result in figure
(8). In this figure the top row shows the plot of running time
versus number of cores, while the row below shows the plot of
speed up versus number cores. In the top figures the blue circles
are the number of cores that we used. In the figures below the
red line is the ideal speed up, that the speed up is the same
as number of cores. From these figures we can see that the
speedup of our algorithm is almost linear with the number of
cores. This accord with our discussion in section (V), because
communication time should not change with number of cores.

VII. CONCLUSIONS

In this paper, we considered the locally low rank (LLR)
matrix denoising problem, and proposed an efficient algorithm
D-PGD for solving the problem. Even though the formulation is
not strongly convex, we proved that D-PGD converges linearly
under mild assumptions. We introduced strategies to speed

up the algorithms in practice and illustrated performance on
synthetic and real data. Applications of the LLR formulation
for missing data reconstruction will be investigated in future
work.

ACKNOWLEDGMENTS

The research was supported by NSF grants IIS-
1447566, IIS-1422557, CCF-1451986, CNS-1314560, IIS-
0953274, IIS-1029711, NASA grant NNX12AQ39A, NSF
CCF:CIF:Small:1318347 and “Mayo Clinic Discovery Transla-
tion Program”.

REFERENCES

[1] E. J. Candès, C. A. Sing-long, and J. D. Trzasko, “Unbiased Risk
Estimates for Singular Value Thresholding and Spectral Estimators,”
IEEE Transactions on Signal Processing, vol. 61, no. 19, pp. 4643–4657,
2013.

[2] D. Donoho and M. Gavish, “Minimax risk of matrix denoising by singular
value thresholding,” Annals of Statistics, vol. 42, no. 6, pp. 2413–2440,
2014.

[3] J. Lee, S. Kim, G. Lebanon, Y. Singer, and S. Bengio, “Llorma: Local
low-rank matrix approximation,” Journal of Machine Learning Research,
vol. 17, no. 15, pp. 1–24, 2016.

[4] E. J. Candès and B. Recht, “Exact matrix completion via convex
optimization,” Foundations of Computational Mathematics, vol. 9, no. 6,
pp. 717–772, 2009.

10
0

10
1

10
2

number of cores

10
2

10
3

10
4

ti
m

e
 (

s
e

c
)

10
0

10
1

10
2

number of cores

10
2

10
3

10
4

ti
m

e
 (

s
e

c
)

10
0

10
1

10
2

number of cores

10
2

10
3

10
4

ti
m

e
 (

s
e

c
)

10
0

10
1

10
2

number of cores

10
1

10
2

10
3

ti
m

e
 (

s
e

c
)

10
0

10
1

10
2

number of cores

10
1

10
2

10
3

ti
m

e
 (

s
e

c
)

0 5 10 15 20

number of cores

0

5

10

15

20

s
p

e
e
d

 u
p

Total Runtime

Ideal

(a) invivo_perfusion

0 5 10 15 20 25

number of cores

0

5

10

15

20

25

s
p

e
e
d

 u
p

Total Runtime

Ideal

(b) short_axis

0 10 20 30 40

number of cores

0

10

20

30

40

s
p

e
e
d

 u
p

Total Runtime

Ideal

(c) long_axis

0 10 20 30 40

number of cores

0

10

20

30

40

s
p

e
e
d

 u
p

Total Runtime

Ideal

(d) brain imaging 1

0 10 20 30 40

number of cores

0

10

20

30

40

s
p

e
e
d

 u
p

Total Runtime

Ideal

(e) brain imaging 2
Fig. 8: Running time of parallel DPGD using different number of cores (top). Almost linear speed up in the number of cores
(down).

[5] S. Gunasekar, A. Banerjee, and J. Ghosh, “Unified view of matrix
completion under general structural constraints,” in Advances in Neural
Information Processing Systems 28, 2015, pp. 1180–1188.

[6] S. Negahban and M. J. Wainwright, “Estimation of (near) low-rank
matrices with noise and high-dimensional scaling,” The Annals of
Statistics, vol. 39, no. 2, pp. 1069–1097, Apr. 2011.

[7] S. Chen and A. Banerjee, “Structured matrix recovery via the
generalized dantzig selector,” in Advances in Neural Information
Processing Systems 29, D. D. Lee, M. Sugiyama, U. V. Luxburg,
I. Guyon, and R. Garnett, Eds. Curran Associates, Inc., 2016,
pp. 3252–3260. [Online]. Available: http://papers.nips.cc/paper/
6394-structured-matrix-recovery-via-the-generalized-dantzig-selector.
pdf

[8] A. Banerjee, S. Chen, F. Fazayeli, and V. Sivakumar, “Estimation with
Norm Regularization,” in Advances in Neural Information Processing
Systems, 2014.

[9] S. Goud, Y. Hu, and M. Jacob, “Real-time cardiac MRI using low-rank
and sparsity penalties,” in ISBI, 2010, pp. 988–991.

[10] J. P. Haldar and Z.-P. Liang, “Spatiotemporal imaging with partially
separable functions: A matrix recovery approach,” in ISBI, 2010, pp.
716–719.

[11] J.-F. Cai, E. J. Candès, and Z. Shen, “A singular value thresholding
algorithm for matrix completion,” SIAM Journal on Optimization, vol. 20,
no. 4, pp. 1956–1982, 2010.

[12] J. D. Trzasko and A. Manduca, “Calibrationless parallel mri using clear,”
in 2011 Conference Record of the Forty Fifth Asilomar Conference on
Signals, Systems and Computers (ASILOMAR), Nov 2011, pp. 75–79.

[13] Q. Yao and J. T. Kwok, “Colorization by patch-based local low-
rank matrix completion,” in Proceedings of the Twenty-Ninth AAAI
Conference on Artificial Intelligence, ser. AAAI’15. AAAI Press, 2015,
pp. 1959–1965. [Online]. Available: http://dl.acm.org/citation.cfm?id=
2886521.2886593

[14] S. Ma, D. Goldfarb, and L. Chen, “Fixed point and bregman
iterative methods for matrix rank minimization,” Mathematical
Programming, vol. 128, no. 1, pp. 321–353, 2011. [Online]. Available:
http://dx.doi.org/10.1007/s10107-009-0306-5

[15] J. D. Trzasko, “Exploiting local low-rank structure in higher-dimensional
mri applications,” pp. 885 821–885 821–8, 2013.

[16] Y. Koren, “Factorization meets the neighborhood: A multifaceted
collaborative filtering model,” in Proceedings of the 14th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining,
2008, pp. 426–434.

[17] D. P. Bertsekas, Nonlinear Programming. Athena Scientific, 1999.
[18] Y. Nesterov, Introductory lectures on convex optimization : a basic

course, ser. Applied optimization. Boston, Dordrecht, London: Kluwer
Academic Publ., 2004.

[19] K.-C. Toh and S. Yun, “An accelerated proximal gradient algorithm for
nuclear norm regularized linear least squares problems,” Pacific Journal
of Optimization, 2010. [Online]. Available: http://www.math.nus.edu.sg/
~{}mattohkc/papers/mc11.pdf

[20] A. Beck and M. Teboulle, “A fast iterative shrinkage-thresholding
algorithm for linear inverse problems,” SIAM Journal on Imaging
Sciences, vol. 2, no. 1, pp. 183–202, 2009. [Online]. Available:
http://dx.doi.org/10.1137/080716542

[21] Z. Lin, R. Liu, and Z. Su, “Linearized Alternating Direction Method
with Adaptive Penalty for Low-Rank Representation,” in Advances
in Neural Information Processing Systems 24, no. 1, 2011, pp. 1–9.
[Online]. Available: http://arxiv.org/abs/1109.0367

[22] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed
Optimization and Statistical Learning via the Alternating Direction
Method of Multipliers,” Foundations and Trends in Machine Learning,
vol. 3, no. 1, pp. 1–122, 2010.

[23] Z. Peng, M. Yan, and W. Yin, “Parallel and distributed sparse optimiza-
tion,” in 2013 Asilomar Conference on Signals, Systems and Computers,
Nov 2013, pp. 659–646.

[24] B. Recht, M. Fazel, and P. A. Parrilo, “Guaranteed minimum-rank
solutions of linear matrix equations via nuclear norm minimization,”
SIAM Review, vol. 52, no. 3, pp. 471–501, 2010. [Online]. Available:
https://doi.org/10.1137/070697835

[25] N. Parikh and S. Boyd, “Proximal algorithms,” Foundations and Trends
in Optimization, vol. 1, no. 3, pp. 127–239, 2014.

[26] Z. Zhou and A. M.-C. So, “A Unified Approach to Error Bounds
for Structured Convex Optimization Problems,” arXiv:1512.03518,
pp. 1–32, 2015. [Online]. Available: http://arxiv.org/abs/1512.03518$\
delimiter"026E30F$nhttp://www.arxiv.org/pdf/1512.03518.pdf

[27] A. J. Hoffman, “ On Approximate Solutions of Systems of Linear
Inequalities,” Journal of Research of the National Bureau of Standards,
vol. 49, no. 4, pp. 263–265, 1952.

[28] Z. Q. Luo and P. Tseng, “Error bounds and convergence analysis of
feasible descent methods: a general approach,” Annals of Operations
Research, vol. 46-47, no. 1, pp. 157–178, 1993.

[29] J. J. Moreau, “Decomposition orthogonale d’un espace hilbertien selon
deux cones mutuellement polaires.” Comptes Rendus de l’Académie des
Sciences, vol. 255, pp. 238–240, 1962.

[30] B. O’Donoghue and E. Candés, “Adaptive Restart for Accelerated
Gradient Schemes,” Foundations of Computational Mathematics,
vol. 15, no. 3, pp. 715–732, 2015. [Online]. Available: http:
//dx.doi.org/10.1007/s10208-013-9150-3

[31] J. D. Trzasko, P. M. Mostardi, S. J. Riederer, and A. Manduca,
“Estimating t1 from multichannel variable flip angle SPGR sequences,”
Magnetic Resonance in Medicine, vol. 69, no. 6, pp. 1787–1794, 6 2013.

http://papers.nips.cc/paper/6394-structured-matrix-recovery-via-the-generalized-dantzig-selector.pdf
http://papers.nips.cc/paper/6394-structured-matrix-recovery-via-the-generalized-dantzig-selector.pdf
http://papers.nips.cc/paper/6394-structured-matrix-recovery-via-the-generalized-dantzig-selector.pdf
http://dl.acm.org/citation.cfm?id=2886521.2886593
http://dl.acm.org/citation.cfm?id=2886521.2886593
http://dx.doi.org/10.1007/s10107-009-0306-5
http://www.math.nus.edu.sg/~{}mattohkc/papers/mc11.pdf
http://www.math.nus.edu.sg/~{}mattohkc/papers/mc11.pdf
http://dx.doi.org/10.1137/080716542
http://arxiv.org/abs/1109.0367
https://doi.org/10.1137/070697835
http://arxiv.org/abs/1512.03518$\delimiter "026E30F $nhttp://www.arxiv.org/pdf/1512.03518.pdf
http://arxiv.org/abs/1512.03518$\delimiter "026E30F $nhttp://www.arxiv.org/pdf/1512.03518.pdf
http://dx.doi.org/10.1007/s10208-013-9150-3
http://dx.doi.org/10.1007/s10208-013-9150-3

