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Abstract

Topic modeling enables exploration and compact representa-
tion of a corpus. The CaringBridge (CB) dataset is a massive
collection of journals written by patients and caregivers dur-
ing a health crisis. Topic modeling on the CB dataset, how-
ever, is challenging due to the asynchronous nature of multi-
ple authors writing about their health journeys. To overcome
this challenge we introduce the Dynamic Author-Persona
topic model (DAP), a probabilistic graphical model designed
for temporal corpora with multiple authors. The novelty of
the DAP model lies in its representation of authors by a per-
sona — where personas capture the propensity to write about
certain topics over time. Further, we present a regularized
variational inference (RVI) algorithm, which we use to en-
courage the DAP model’s personas to be distinct. Our results
show significant improvements over competing topic mod-
els — particularly after regularization, and highlight the DAP
model’s unique ability to capture common journeys shared by
different authors.

1 Introduction
Topic models can compactly represent large collections of
documents by the themes running through them. We intro-
duce a topic model designed for the unique challenges pre-
sented by the CaringBridge (CB) dataset. The CB dataset
includes journals written by patients and caregivers during
a health crisis. CB journals function like a blog, and are
shared to a private community of friends and family. The
full dataset includes 13.1 million journals written by approx-
imately half a million authors between 2006 and 2016. From
the CB dataset we’re interested in capturing health journeys,
that is, authors writing about the same topics over time.

The challenges in topic modeling on the CB dataset stem
from the asynchronous nature of author’s posts. Specifically,
authors start and stop journaling at different times — both
in terms of calendar dates and how far along they are in
their health journey. Additionally, authors post at irregular
frequencies. While about 15% of CB authors post nearly ev-
eryday, the majority of authors typically post less frequently,
often corresponding to a major update, event, or anniversary
of an event. What’s more, the length of these posts can range
from just a few words to thousands of words.
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State-of-the-art topic models can identify topics (Blei, Ng,
and Jordan 2003), track how topics change over time (Blei
and Lafferty 2006; Wang and McCallum 2006; Wei, Sun,
and Wang 2007; Wang, Blei, and Heckerman 2008), or as-
sociate authors with certain topics (Rosen-Zvi et al. 2004;
Steyvers et al. 2004; McCallum, Corrada-Emmanuel, and
Wang 2005; Mimno and McCallum 2007). These models
cannot, however, describe common narratives and the au-
thors sharing them. We present the Dynamic Author-Persona
topic model (DAP), a novel approach that represents au-
thors by latent personas. Personas act as a soft-clustering
on authors based their propensity to write about similar top-
ics over time. Our approach is unique in multiple respects.
First, unlike other temporal topic models, the words making
up a topic don’t evolve over time — rather, DAP’s personas
reflect the flow of conversation from one topic to next. Sec-
ond, we introduce a regularized variational inference (RVI)
algorithm, an approach we use to encourage personas to be
distinct from one another.

Our results show that the DAP model outperforms com-
peting topic models, producing better likelihoods on held-
out data. Finally, we demonstrate that using RVI further im-
proves the DAP model’s performance, and results in per-
sonas that are rich and compelling descriptions of the health
journeys experienced by CB authors.

The rest of the paper is as follows: Section 2 is a brief
background on temporal topic models. Section 3 presents the
DAP model. Section 4 details the model’s RVI algorithm.
Section 5 introduces the evaluation dataset and procedure.
Section 6 shares the results of the experiments. Finally, in
Section 7 we summarize the contributions of this paper.

2 Background
Much of the research on topic modeling builds on the la-
tent Dirichlet allocation (LDA) model (Blei, Ng, and Jor-
dan 2003). The LDA model doesn’t account for meta-
information like authorship or time. Nevertheless, interest in
LDA has endured, in part, due its ability to richly describe
topics as distributions over words and documents as mix-
tures of topics. In the years since LDA’s introduction, others
have extended the idea to compliment corpora with a variety
of structures and metadata.

Author information is common in many corpora. A few
topic models have been designed to identify authors’ pref-



erences for certain topics, and the relationships between au-
thors (Rosen-Zvi et al. 2004; Steyvers et al. 2004; McCal-
lum, Corrada-Emmanuel, and Wang 2005; Mimno and Mc-
Callum 2007; Pathak et al. 2008). Corpora with a tempo-
ral structure, such as scientific journals or newspaper ar-
ticles, are the focus of a number of temporal topic mod-
els (Blei and Lafferty 2006; Wang and McCallum 2006;
Wei, Sun, and Wang 2007; Wang, Blei, and Heckerman
2008).

Temporal Topic Models. Two topic models set the stan-
dard of comparison for topic modeling on corpora with a
temporal element: the dynamic topic model (DTM) (Blei
and Lafferty 2006) and McCallum’s topics over time model
TOT (Wang and McCallum 2006). These two models rep-
resent very different approaches to modeling time in a topic
model.

The TOT model defines time as an observed variable,
which leads to a continuous treatment of time and the abil-
ity to predict timestamps of documents. Alternatively, the
DTM evolves topics over time using a Markov process. In
many corpora the evolution of topics provides interesting
insights. For example, Blei’s model of the Science corpus
shows words associated with a topic on physics changing
over a century.

Building directly on the DTM, in 2008 Wang et al. de-
veloped the continuous time dynamic topic model (CDTM)
which uses continuous Brownian motion to model the evolu-
tion of topics over time (Wang, Blei, and Heckerman 2008).
This is a major development in temporal topic models be-
cause, unlike the DTM, it doesn’t require partitioning the
data into discrete time periods. Instead, the model assumes
that at each time step the variance in the topic proportions in-
creases proportional to the duration since the previous doc-
ument. Similar to Wang et al., the Dynamic Mixture Model
(DMM) is built for continuous streams of text (Wei, Sun,
and Wang 2007). In the DMM, however, topics are fixed in
time and the model captures the evolution of document-level
topic proportions over time.

Topic Modeling of Health Journeys. In many topic mod-
eling applications to temporal corpora, the time component
is ignored. For example, Wen et al. model cancer event tra-
jectories from users of an online forum for breast cancer
support (Wen and Rose 2012). Wen’s approach uses LDA
to extract cancer event keywords, which are then linked to-
gether in time by temporal descriptions mined from the text.
This work demonstrates a quantitative approach to studying
the dynamics of social support network, and offer a powerful
look at the experiences of users in these support networks.

Numerous studies have shown that support networks,
both in person and online, are valuable tools for those
suffering from chronic conditions or life-threating illness
and caregivers (Wen et al. 2011; Rodgers and Chen 2005;
Beaudoin and Tao 2007). Additionally, online social net-
works can serve as a way to efficiently disseminate infor-
mation regarding someone’s status to their community. Un-
derstanding the health journeys of users in these social sup-
port communities is valuable information for improving user
experience. Topic models are uniquely suited to succinctly
describing and analyzing these health journeys.

3 The DAP Model
The design of the DAP model was made with journaling be-
havior in mind. Consider a CB author journaling about their
surgery: initially they may write about topics related to the
surgical procedure, but as time progresses the author is more
likely to discuss recovery, physical therapy, or returning to
normal life. In other words, the likelihood of a topic for some
document depends where the document’s author is in their
health journey. As such, DAP assumes that (1) a state space
model controls the likelihood of a topic at each time step, (2)
each persona represents a different flow of topics over time,
and (3) each author has a distribution over personas.

The DAP’s approach for modeling topics in a document,
and words in a topic follows the correlated topic model
(CTM) and LDA, respectively (Lafferty and Blei 2006;
Blei, Ng, and Jordan 2003). The idea of modeling latent per-
sonas was originally proposed by Mimno and McCallum,
however in their Author-Persona Topic model (APT) per-
sonas differ significantly from those proposed in the DAP
model. First, DAP models each author as a distribution over
a fixed number of personas. Second, we model documents as
each having their own distribution over topics. Lastly, while
DAP’s personas also correspond to a distribution over topics,
DAP evolves these topic distributions over time — thereby
capturing the inherent temporal structure resulting from an
author writing multiple documents.

The DAP model directly addresses the challenges pre-
sented by the CB dataset. First, the asynchronous nature of
health journals is handled by: (1) transforming each jour-
nal’s timestamp to the time elapsed since the author’s first
post, and (2) learning multiple personas to account for a
wide variety in topic trajectories. Second, irregular posting
behavior is managed by employing the Brownian motion
model, originally used in topic modeling by Wang, Blei, and
Heckerman to model topic variance as proportional to the
gap in time between documents.

The generative process of the model is described below.
The model assumes that each document d in the corpus has
a timestamp st associated with it. Similar to the CDTM
(Wang, Blei, and Heckerman 2008), timestamps are used
in a continuous Brownian motion model to capture an in-
crease in topic variance as time between observations in-
creases. More formally, if si and sj are timestamps at steps
j > i > 0, then ∆sj ,si is the difference in time between sj
and si. We use the shorthand ∆st to denote the difference in
time between timestamps st and st−1. For brevity the vari-
ance σ∆stI is denoted Σt, where σ is a known process noise
in the state space model.

1. Draw distribution over words βk ∼ Dir(η) for each topic
k.

2. Draw distribution over personas κa ∼ Dir(ω) for each
author a.

3. For each persona p, draw initial distribution over topics:

α0,p ∼ N (µ0,Σ0),∀p ∈ {1, . . . , P} .

4. For each time step t, where t ∈ {1, . . . , T}:



• Draw distribution over topics:

αt,p ∼ N (αt−1,p,Σt−1),∀p ∈ {1, . . . , P} .

• Update Σt according to Brownian motion model: Σt −
Σt−1 ∼ N (0, σ∆stI).
• For each document d, where d ∈ {1, . . . , Dt}:
(a) Choose persona indicator xt,d ∼ Mult(κa) where a

corresponds to the author of document dt.
(b) Draw topic distribution θt,d ∼ N (αtxt,d,Σt) for doc-

ument dt.
(c) For each word wt,d,n, where n ∈ {1, . . . , Ndt}:

i. Choose word topic indicator zn ∼Mult(π(θt,d)).
ii. Choose word wt,d,n from p(wt,d,n | βzn), a multi-

nomial probability conditioned on the topic indicator
zn.

Following the approach in the CTM and DTM, we use the
function π(·) to map the Logistic Normal θt,d, parameter-
ized by a mean αt,k,p and covariance σ∆stI , to the multi-
nomial’s natural parameters via π(θt,d) =

exp(θt,d)∑D
d exp(θt,d)

in
order to obey the constraint that the parameters lie on the
simplex.

The graphical model corresponding to this process is
shown in Figure 1. In LDA and its extensions the parame-
ter α represents a prior probability of each topic. In the DAP
model, αt,1:K,p takes on an expanded role: it’s a distribu-
tion over K topics at time step t for persona p. The choice
of letting α evolve over time, as opposed to β like in the
DTM, is that in a collection of journals there is less interest
in changes to topics themselves. In other words, we model
the words associated with a topic as static in time, but the
topics an author writes about will change over time.

4 Variational EM Algorithm
Given the model structure, next we derive an inference algo-
rithm used to estimate the model’s latent parameters. Much
like LDA and its extensions, the DAP model’s posterior:

p(κ,x, α, β, θ, z | w, ω, η) =
p(κ,x, α, β, θ, z,w | ω, η)

p(w | µ0, σ0, η, ω)
,

is intractable due to the normalization term. In order learn
optimal values to the model’s parameters we use a form of
variational inference (VI), which approximates the difficult
to compute posterior distribution p with a simpler distribu-
tion q (see Blei, Kucukelbir, and McAuliffe, 2016 for a re-
view). Variational inference casts an inference problem as an
optimization problem with the goal of finding parameters to
the variational distribution such that q = q(κ,x, α, θ, z, β)
closely approximates p = p(κ,x, α, θ, z, β | w). Our regu-
larized variational inference (RVI) algorithm seeks a distri-
bution q ∈ Q such that

q∗ = arg min
q∈Q

KL(q || p) + ρr(q) , (1)

where KL(·) is KL-Divergence. The added term r(q) is a
regularization function we’ve introduced to discourage sim-
ilar personas (further detail given in Section 4.2), and ρ the
corresponding hyperparameter.

Figure 1: Graphical representation of the Dynamic Author-
Persona topic model (DAP). On top, topic distributions for
each persona evolve over time: αt|αt−1 ∼ N (αt−1,Σ). The
distribution over words for each topic, β ∼ Dir(η), is fixed
in time. Each author a ∈ {1, . . . , A} is represented by a
distribution over personas, that is κa ∼ Dir(ω). The dis-
tribution over topics for each document is dependent on the
persona distribution xt,d for that document’s author, and the
evolving topic distribution αt.

To make q easy to compute, we apply mean field varia-
tional inference which assumes that the parameters are pos-
teriori independent. Under the mean field assumption the
variational distribution factorizes as:

K∏
k=1

q(βk | λk)

A∏
a=1

q(κa | δa)

P∏
p=1

q(α1:T,k,p | α̂1:T,k,p)×

T∏
t=1

Dt∏
d=1

q(xt,d,p | τt,d,p)q(θt,d | γt,d)
Ndt∏
n=1

q(zn | φn)

(2)

where we have introduced the following variational param-
eters: the persona for each author κa is endowed with a
free Dirichlet parameter δa; each assignment of a persona
to an author xt,d is endowed with a free Multinomial pa-
rameter τt,d; in the variational distribution of α1:T,k,p the
sequential structure is kept intact with variational observa-
tions α̂1:T,k,p; each document-topic proportion vector θt,d
is endowed with a free γd. The variance for the document-
topic parameters are vt,d and v̂t,d, for the model and varia-
tional parameter, respectively; each word-topic indicator is
endowed with a free multinomial parameter φt,d,n.

Optimization of the variational parameters proceeds using
variational expectation-maximization. The objective func-
tion in (1) cannot be computed directly, we therefore max-
imize a surrogate likelihood consisting of the Evidence
Lower BOund (ELBO) minus the regularization term (see
Wainwright and Jordan, 2007 for a review):

Lρ(δa, τt,d, γt,d, φn, λk) , Eq[log p]−Eq[log q]− ρr(q) (3)

Expanding the objective function Lρ according to the dis-
tribution associated with each parameter allows updates to



be derived for each parameter. The parameters are optimized
using a variational expectation-maximization algorithm, the
details of the algorithm are given below.

4.1 Variational E-Step
During the E-step the model estimates variational parame-
ters for each document and saves the sufficient statistics re-
quired to compute global parameters. The structure of the
DAP model, while unique, has some components that mimic
previous topic models. Specifically, the word-topic assign-
ment parameter φ has the same update found in the CTM due
to the Logistic-Normal γ parameter. Hence φ has a closed
form update: φn,k ∝ exp(γk)βk,v (Lafferty and Blei 2006).

Each author’s persona is parameterized by a τ . To find an
update for τ we select ELBO terms featuring τ , along with
the Lagrangian term λ to ensure each vector τt,d sums to
one, and then take the derivative with respect to each docu-
ment and persona.

∂L
∂τt,d,p

= Ψ(δa,p)−Ψ(

P∑
i=1

δa,i)− log τa,p − 1 + λ+

α̂t,pΣ
−1
t (γt,d − α̂t,pτt,d,p)−

1

2
Tr(Σ−1

t diag(α̂2
t,p + Σ̂t))

Since a closed form solution for τt,d doesn’t exist, we there-
fore estimate τt,d using exponential gradient descent.

Since the model includes non-conjugate terms, an ad-
ditional variational parameter ζ is introduced to preserve
the lower-bound during the expansion of the non-conjugate
pairs term Eq[log p(zn | π(θt,d))]. Taking the derivative of
all terms containing ζ and setting it to zero yields an anal-
ogous closed form update to the one found in the CTM:
ζ̂t =

∑K
k=1 exp(γt,d,k + v̂2t,k/2).

Finally, the DAP model estimates a topic distribution for
each document via the γt,d parameter. A conjugate gradient
algorithm is run using the gradient:

∂L
∂γt,d,k

=− Σ−1
t (γt,d,k − α̂t,1:P,kτt,d,k)+

Ndt∑
n=1

φn,k −
Ndt
ζ

exp(γt,d,k + v̂2t,k/2))

Whereas γt,d represents the mean of the Logistic-Normal
for a document’s topic distribution, the parameter v̂t,d is the
variance. Setting the derivative of L(v̂t,d) with respect to
v̂t,d to zero and solving yields:

∂L
∂v2t,d,k

= Σ−1
t,k,k +

1

2v̂2t,d,k
− Ndt

2ζ
exp(γt,d,k + v̂2t,k/2),

which requires Newton’s method for each coordinate, con-
strained such that v̂t,k > 0,∀k.

The parameter α̂t represents the noisy estimate of αt.
After calculating α̂t, the forward and backward equations
will be applied in the M-step to give a final posterior es-
timate αt. The terms in the ELBO containing α̂t are the
result of expanding Eq[log p(αt,p | αt−1,p)] for (4a) and
Eq[log p(θt,d | αtxt,d,Σt)] for (4b) and (4c):

L(α̂) =

T∑
t=1

P∑
p=1

−1

2
(α̂t,p − α̂t−1,p)

>Σ−1
t (α̂t,p − α̂t−1,p)+

(4a)
T∑
t=1

Dt∑
d=1

−1

2

(
(γt,d − α̂tτt,d)>Σ−1

t (γt,d − α̂tτt,d)+

(4b)
T∑
t=1

Dt∑
d=1

P∑
p=1

Tr
[
Σ−1
t diag

(
τt,d,p(α̂t,pα̂

>
t,p + Σ̂t)

)])
(4c)

Taking the derivative with respect to the mean term for
each persona gives the closed form update:

α̂t,p =
α̂t−1,p +

∑Dt
d=1(γt,d + 1)τt,d,p

1 +
∑Dt
d=1 τ

2
t,d,p

(5)

We solve for α̂t,p sequentially over time steps. For the
initial time step t = 1, we use the prior µ0 in place of α̂t−1,p.
Note that the summations in (5) are collected during the E-
step and α̂t,p need only be computed once after performing
inference on all documents.

4.2 Regularized Variation Inference
Our RVI algorithm nudges αt to find topic distributions that
are different for each persona. A natural choice for capturing
this idea is an inner product between each of the personas
(excluding a persona with itself). Hence, we define the reg-
ularization function by:

ρr(q) =

P∑
p=1

∑
1≤q≤P,q 6=p

Dt
2
ρα̂>t,pΣ

−1
t α̂t,q , (6)

The parameter Σ−1
t in included in the regularization for

two reasons. First, it simplifies the update to α̂t,p. In (4) the
term Σ−1 appears in every term, which allows it to be fac-
tored out and canceled. By including Σ−1 in the regulariza-
tion the same cancellation can occur. Second, since Σ−1

t ∝ I
then its inclusion has the effect of encouraging personas to
be orthogonal to one another. We include the number of doc-
uments Dt at time t in r(q) so that the regularization is ap-
plied evenly, regardless of dataset size or a skewed distribu-
tion of documents over time. After including the regulariza-
tion term in (6) with the ELBO terms in (4), the regularized
α̂t,p update is:

(1+

Dt∑
d=1

τ2d,p)α̂t,p+ρDt
∑
q 6=p

α̂t,q = α̂t−1,p+

Dt∑
d=1

(γd+1)τd,p (7)

Since the vector
∑Dt

d=1(γd + 1)τd,p (of length K) is com-
puted during the E-step, then the RHS is known. Similarly,
the term (1+

∑Dt

d=1 τ
2
d,p) is known, and in combination with

ρDt form the weights over the unknown vector α̂t,p, also of
length K. Therefore, (7) can be solved as a system of lin-
ear equations. Through experiments we’ve found an optimal
value of ρ ∈ [0, 0.5]. The model exhibits sensitivity to the



hyperparameter ρ, if ρ is large (e.g. > 1.0) then model qual-
ity drops due to personas overfitting to a single topic. Since
α̂ is only used to estimate the global parameter α during the
M-step, computing α̂ isn’t necessary for inference on hold-
out datasets.

4.3 M-Step
In the M-step the global parameters α, κ, and β are updated
such that the lower bound of the log likelihood of the data
is maximized. Note, the update for β is exactly the same as
derived for the LDA model, and hence omitted.

The parameter δ represents the distribution over personas
for each author. The closed form update for δa,p:

δa,p ∝ ωp +

T∑
t=1

Dt∑
d=1

τt,d,p ,

shows that δ’s closed form update is an average of the per-
sona assignments, smoothed by the author-persona prior ω.

Once the variational observations α̂t,p are computed, our
approach follows the variational Kalman filtering method
from Wang’s Continuous Time Dynamic Topic Model, see
Wang, Blei, and Heckerman for further details. Specifically,
we employ the Brownian motion to model time dynamics.
However, because the DAP model’s time-varying parameter
is a distribution over latent topics, it performs best on data
discretized in time (resulting in a smaller T ). The forward
equations mimic a Kalman filter:

mt,p =
α̂t,pPt,p +mt−1,pŵt

Pt,p + ŵt

Vt,p = ŵt
Pt,p

Pt,p + ŵt

where ŵt is the known process noise, and Pt,p = Vt−1,p +
σ∆st captures the increase in variance as time between data
points grows. Finally, the backward equations:

αt−1,p = mt−1,p
σ∆st

Pt,p
+ αt,p

Vt−1,p

Pt,p

Σt−1,p = Vt−1,p +
(Vt−1,p)

2

(Pt,p)2
(Σt,p − Pt,p) ,

give the updates to the remaining global parameters.

5 Experiments
5.1 CaringBridge Dataset
The creation of our model is inspired by a desire to discover
topics on a unique dataset consisting of 14 million journals
posted by half a million authors on the social networking
site CaringBridge (CB). Established in 1997, CaringBridge
is a 501(c)(3) non-profit organization focused on connecting
people and reducing the feelings of isolation that are often
associated with a patient’s health journey. Due to their con-
tent, CB data has been anonymized prior to analysis.

From the CB dataset we draw an evaluation dataset con-
sisting of journals written by authors who posted, on aver-
age, at least twice a month over a one year period. Jour-
nal posts are only kept if they contain 10 or more words.

These constraints help identify a set of active users. From
the 123K authors meeting these criteria, 2,000 were ran-
domly selected. Journals written by these 2,000 authors total
114,532. Overall, authors in this dataset journal an average
of 57 times, with a mean of 5 days between journal posts.

5.2 Evaluation
Journals are split into training and test sets with 90% of
each author’s journals (N = 103, 018) for training and 10%
(N = 11, 728) for testing. Further, variance in model per-
formance is estimated by repeating this splitting procedure
for 10-fold cross validation.

The performance of our model is compared to three other
models representing the state-of-the-art in this area. The
first model for comparison is LDA, which ignores author-
ship and temporal structure in the data. In order to evalu-
ate LDA’s performance over time, we train LDA on time
steps up through t − 1 and testing on time step t (similar to
the evaluation method in Wang and McCallum, 2006). The
DTM also serves as an important baseline for comparison
because it models the evolution of topics over discrete time
steps. Lastly, we compare out model to CDTM, which builds
on DTM and introduces a continuous treatment of time. Fol-
lowing the approach of others, we simply fix the number of
topics at 25 for all models. The number of personas learned
by the DAP model is fixed at 15.

To evaluate the models we compute the per-word log-
likelihood (PWLL) on heldout data, which measures how
well the model fits the data and is computed by PWLL =∑D

d=1 log p(wd)∑D
d=1Nd

. Note that perplexity, another common met-
ric used to compare topic models, is related to PWLL via
perplexity = exp(−PWLL). It has been shown that per-
plexity (and hence PWLLs) don’t correlate with a model
finding coherent topics (Chang et al. 2009). Nevertheless,
PWLLs provide a fair way to compare how well each
model optimizes their objective functions.

6 Results
In addition evaluating model fit, we perform a qualitative
analysis of the DAP model to highlight the quality and use-
fulness of the personas discovered. In particular, we estab-
lish that the personas are unique from one-another and cap-
ture meaningful experiences shared by authors.

6.1 Model Comparison
In Table 1 we list the per-word log-likelihood and stan-
dard deviation between cross-validation sets for each of the
competing models. There is a significant improvement in
the DAP model’s performance after regularization. Further
analysis of the likelihood computation reveals that the reg-
ularization term contributes a relatively small drop in likeli-
hood compared to the total likelihood during training. Nev-
ertheless, these results show that even a small amount of
regularization can nudge the model to seek out quality re-
sults. In testing additional ρ values we found that, in gen-
eral, ρ ∈ [0.1, 0.3] faired comparably. Larger values of ρ
can cause model instability and the document likelihoods



Model Per-word Log-Likelihood Std. Dev.

DAP (ρ=0.0) -7.22 0.04
DAP (ρ=0.2) -6.47 0.04
LDA -9.23 0.02
DTM -9.65 0.03
CDTM -8.82 0.03

Table 1: Overall comparison of models. Per-word log-
likelihoods for documents in the test dataset are computed.
Standard deviation in performance computed over the cross-
validation sets. While the basic DAP model without regular-
ization performs significantly better than competing model,
the RVI approach further increases log-likelihoods.

Figure 2: In general the DAP model performs better than
competing models over time steps. The regularized DAP
model further improves performance and reduces variable
results found in the first time step of the unregularized
model. Error bars show one standard deviation in document-
level PWLL.

to have long-tailed distributions. The emergence of out-
lier document-likelihoods is unsurprising, regularization en-
courages the personas to focus on different topics — hence,
large values of ρ inevitably result in personas that overfit.

Figure 2 shows mean per-word log-likelihoods at each
time step. The best performing DAP model shows consis-
tently better results over competing models. However, the
unregularized DAP model has a significant drop in perfor-
mance in the first time step.

6.2 Persona Quality
To evaluate personas we focus on three key elements: au-
thors are described by one persona, personas are distinct,
and personas capture coherent health journeys.

1:1 Author-Persona Mappings. Authors are modeled as
a distribution over personas; however, to create interpretable
results we want these distributions to focus on a single per-
sona. The DAP model achieves this in the majority of cases:
71% of authors are concentrated on a single persona (> 90%
probability for that persona), and 27% of authors are evenly
split between two personas. This shows that, in general, the

model finds personas that generalize well enough to describe
the majority of authors.
Distinct Personas. The DAP model includes a regulariza-
tion term specifically for encouraging personas with unique
combinations of topics. We examined the top three topics
associated with each persona. In the unregularized model,
the 15 personas are only a mix of 6 different topics. In fact,
a topic on ”Weather” appears as a common topic for all 15
personas. On the other hand, the regularized DAP model’s
personas are a mix of 18 different topics. Further, the most
frequently appearing topic is ”Cancer (general)” (in 6 of
15 personas), which is appropriate given that approximately
half of authors report cancer as a health condition.

Personas Reflect Coherent Health Journeys. In Figure
3 we show the top three topics evolving over time for se-
lected personas. Labels for each topic are created manually
based on words and journals most associated with the topic.
Words most associated with each topic are listed in Tables
2. The persona plots in Figure 3 paint a compelling picture
of common health journeys experienced by CB users.

Personas reflect broad trends, often encompassing a range
of health journeys. Consider Persona 9, which reflects health
journeys beginning with a physical element, such as physical
therapy or a health issue taking a physical toll, followed by
intensive care and attention to weight. Many Persona 9 au-
thors are beginning physical therapy following an accident,
caring for a premature baby or child with a congenital disor-
der. However, a number of rare disorders follow Persona 9’s
pattern. For instance, one Persona 9 author writes about a
family member with Guillain-Barré syndrome, a rare rapid-
onset disorder in which the immune system attacks the ner-
vous system resulting in muscle pain, weakness, and even
paralysis. The syndrome often requires admittance to an in-
tensive care unit, followed by rehabilitation – all common
themes of Persona 9.

7 Conclusion
The Dynamic Author-Persona topic model is uniquely suited
to modeling text data with a temporal structure and written
by multiple authors. Unlike previous temporal topic models,
DAP discovers latent personas — a novel component that
identifies authors with similar topics trajectories. Our RVI
algorithm further improves the DAP model’s performance
over competing models and results in the discovery of dis-
tinct personas. In evaluating the DAP model, we introduce
the CaringBridge dataset: a massive collection of journals
written by patients and caregivers, many of who face serious,
life-threatening illnesses. From this dataset the DAP model
extracts compelling descriptions of health journeys.
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Figure 3: The unregularized DAP model finds compelling, unique personas corresponding to common health journeys experi-
enced by CaringBridge users. The three most likely topics for personas are plotted over time. Results shown for six personas
that highlight diversity in topic focus. Personas 0, 6, 8, and 14 highlight nuances in how an author writes about a topic like
cancer. Personas 0 and 14 engage with their community, and are less clinical when writing about cancer. Persona 14’s journals,
however, are more religious and often include prayer. On the other hand, when discussing health, Personas 6 and 8 write about
cancer using clinical terminology. When persona 6 is not sharing health updates the conversation is often on school, family, and
celebrations. Whereas, persona 8’s non-health updates are deep, reflective, and prayerful.

Community Support Physical Therapy Reflect on Life Hopeful Prayer Family Fun Infection Weather School

family therapy life god christmas blood nice school
friend rehab know pray play infection weather shot
church therapist child prayer birthday fluid walk go
thank physical never lord game fever lunch appt
card pt love bless fun antibiotic cold class
love chair year please kid pressure snow tomorrow
service speech live heal party kidney outside grandma
friends progress people trust year iv breakfast teacher
support move cancer peace enjoy lung rain home
gift arm moment continue dinner clot go aunt

Cancer (clinical) Cancer (general) Intensive Care Well Wishes Hair Loss Surgery Bedtime Weight

chemo cancer tube dad hair surgery sleep weight
blood treatment breathe mom leg surgeon night mommy
count radiation oxygen everyone wear heart bed gain
bone scan lung message head dr wake feed
marrow chemo feed guestbook look office nurse daddy
platelet tumor x ray please cut op say bottle
round oncologist chest prayer knee procedure asleep pound
clinic dr nurse read hat cardiologist time feeding
transfusion ct vent visit wig valve room oz
url result stomach update shave ha tell milk

Table 2: Top 10 words associated with the most prevalent topics found by the DAP model (ρ = 0.2). Topic labels are selected
manually in order to aid reference with Figure 3. The words time and URL refer to the result of text pre-processing steps
for capturing common patterns like the time of day and website URLs, respectively.
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