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A B S T R A C T

Alzheimer's disease (AD) is a severe neurodegenerative disorder characterized by loss of memory and reduction
in cognitive functions due to progressive degeneration of neurons and their connections, eventually leading to
death. In this paper, we consider the problem of simultaneously predicting several different cognitive scores
associated with categorizing subjects as normal, mild cognitive impairment (MCI), or Alzheimer's disease (AD) in
a multi-task learning framework using features extracted from brain images obtained from ADNI (Alzheimer's
Disease Neuroimaging Initiative). To solve the problem, we present a multi-task sparse group lasso (MT-SGL)
framework, which estimates sparse features coupled across tasks, and can work with loss functions associated
with any Generalized Linear Models. Through comparisons with a variety of baseline models using multiple
evaluation metrics, we illustrate the promising predictive performance of MT-SGL on ADNI along with its ability
to identify brain regions more likely to help the characterization Alzheimer's disease progression.

1. Introduction

Alzheimer's disease (AD) is a severe neurodegenerative disorder that
results in a loss of mental function due to the deterioration of brain
tissue, leading directly to death (Khachaturian, 1985). It accounts for
60–70% of age related dementia, affecting an estimated 30 million
individuals in 2011 and the number is projected to be over 114 million
by 2050 (Wimo et al., 2003). The cause of AD is poorly understood and
currently there is no cure for AD. AD has a long preclinical phase,
lasting a decade or more. There is increasing research emphasis on
detecting AD in the pre-clinical phase, before the onset of the irrever-
sible neuron loss that characterizes the dementia phase of the disease,
since therapies/treatment are most likely to be effective in this early
phase. The Alzheimer's Disease Neuroimaging Initiative (ADNI, http://
adni.loni.usc.edu/) has been facilitating the scientific evaluation of
neuroimaging data including magnetic resonance imaging (MRI), po-
sitron emission tomography (PET), along with other biomarkers, clin-
ical and neuropsychological assessments for predicting the onset and
progression of MCI (mild cognitive impairment) and AD. Early diag-
nosis of AD is key to the development, assessment, and monitoring of
new treatments for AD.

Recently, rather than predicting categorical variables as in classifi-
cation, several studies begin to estimate continuous clinical variables
from brain images. Therefore, instead of classify a subject into binary or
multiple pre-determined categories or stages of the disease, regression
focus on estimating continuous values which may help to assess pa-
tient's disease progression. The most commonly used cognitive mea-
sures are Alzheimer's Disease Assessment Scale cognitive total score
(ADAS), Mini Mental State Exam score (MMSE) and Rey Auditory
Verbal Learning Test (RAVLT). Regression analyses were commonly
used to predict cognitive scores from imaging measures. The relation-
ship between commonly used cognitive measures and structural
changes with MRI has been previously studied by regression models
and the results demonstrated there exist a relationship between base-
line MRI features and cognitive measures (Wan et al., 2014;
Stonnington et al., 2010). For example, Wan et al. has proposed an
elegant regression model called CORNLIN that employs a sparse
Bayesian learning algorithm to predict multiple cognitive scores based
on 98 structural MRI regions of interests (ROIs) for Alzheimer's disease
patients. The polynomial model used in CORNLIN can detect either a
nonlinear or linear relationship between brain structure and cognitive
decline (Wan et al., 2014). Stonnington et al. adopted relevance vector
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regression, a sparse kernel method formulated in a Bayesian frame-
work, to predict four sets of cognitive scores using MRI voxel based
morphometry measures (Stonnington et al., 2010). One of the biggest
challenges in the prediction of inferring cognitive outcomes with MRI is
the high dimensionality, which affects the computational performance
and leads to a wrong estimation and identification of the relevant
predictors. Sparse methods have attracted a great amount of research
efforts in the neuroimaging field to reduce the high dimensionality and
identify the relevant biomarkers due to its sparsity-inducing property.
Ye et al. applied sparse logistic regression with stability selection to
ADNI (Alzheimer's Disease Neuroimaging Initiative) data for robust
feature selection (Ye et al., 2012), successfully predicted the conversion
from MCI to probable AD and identified a small subset of bio-sig-
natures. Recently, the multi-task learning (MTL) based feature learning
methods with sparsity-inducing norm have been widely studied to se-
lect the discriminative feature subset from MRI features by in-
corporating inherent correlations among multiple clinical cognitive
measures (Zhou et al., 2013; Wang et al., 2011; Zhang and Shen, 2012).
For example, the ℓ2,1-norm regularization penalizes each row of para-
meters matrix as a whole and enforce sparsity among the rows, it is able
to select the most discriminative features. Wang et al. (2011) and Zhang
and Shen (2012) employed multi-task feature learning strategies for
selecting biomarkers that could predict multiple clinical scores. Spe-
cially, Wang et al. (2011) considers some important features are only
correlated to a subset of tasks, and adds an ℓ1-norm regularizer to im-
pose the sparsity among all elements and propose to use the combined
ℓ2,1-norm and ℓ1-norm regularizations to select features; Zhang pro-
posed a multi-task learning with ℓ2,1-norm to select the common subset
of relevant features for multiple variables from each modality by as-
suming that the related tasks share a common relevant feature subset.
The most limitation of the popular learning models assume linear re-
lationship between the MRI features and the cognitive outcomes. To
model these more complicated but more flexible relationship between
them, Zhang develop a multi-modal support vector regression (SVR) to
fuse the above-selected features from all modalities with the selected
feature subset (Zhang and Shen, 2012). Kernel methods have been
studied to model the cognitive scores as nonlinear functions of neu-
roimaging measures. Recently, many kernel based classification or re-
gression methods with faster optimization speed or stronger general-
ization performance have been proposed and investigated by
theoretically analyzing and experimentally evaluating (Gu and Sheng,
2016; Gu et al., 2015). Suk et al. proposed a new sparse multi-task
learning with an ℓ2,1-norm regularization (Suk et al., 2016). The multi-
task learning is unlike the conventional multi-task learning methods,
which treat all features equally. It utilizes the optimal regression
coefficients learned in the lower hierarchy as context information to
weight features adaptively. Most existing studies focus on only inferring
the cognitive outcomes on single time-point of data (cross-sectional
analysis), Ye et al. formulate the prediction problem as a multi-task
regression problem by considering the prediction at each time point as a
task, and propose a convex formulation with fused sparse group Lasso.

The formulation allows to the simultaneous selection of a common set
of biomarkers at all time points with ℓ1-norm as well as the selection of
a specific set of biomarkers at different time points with ℓ1-norm, and in
the meantime incorporates the temporal smoothness using the fused
lasso penalty (Zhou et al., 2013).

Despite of the above achievements, few regression models take into
account the covariance structure among predictors. To achieve a certain
function, brain imaging measures are often correlated with each other.
For MRI data, the groups correspond to specific regions-of-interest
(ROIs) in the brain, e.g., entorhinal and hippocampus. Individual fea-
tures are specific properties of those regions, e.g., cortical volume and
thickness. For each region (group), the multiple features are extracted
to measure the atrophy information of each ROI involving cortical
thickness, surface area and volume from gray matters and white matters
in this study. The multiple shape measures from the same region pro-
vide a comprehensively quantitative evaluation of cortical atrophy, and
tend to be selected together as joint predictors.

A recent study proposed a prior knowledge guided regression
model, using the group information to enforce the intra-group simi-
larity with group sparse methods. In recent work, these existing ideas
have been combined in Group-sparse Multitask Regression and Feature
Selection (G-SMuRFS) (Yan et al., 2015; Wang et al., 2012) which takes
into account coupled feature and group sparsity across tasks and uses
vertex-based cortical surface measures in an anatomically meaningful
manner. Since brain structures tend to work together to achieve a
certain function, brain imaging measures are often correlated with each
other. It assumes (1) possible partition exists among predictors, and (2)
predictors within one partition should have similar weights. However,
there exists three limitations of G-SMuRFS: (1) G-SMuRFS allows to
learn a common subset of brain regions across all the tasks simulta-
neously with a Group ℓ2,1-norm. This assumption is too restrictive since
different tasks may prefer different brain regions. It is desirable to select
the specific ROIs for different tasks. (2) All scores are modeled with
Gaussian (least squares) regression in G-SMuRFS, whereas it is not
appropriate for all the scores. From Fig. 1, it can be seen that the dis-
tribution of scores of TOTAL and ADAS are Gaussian and three scores
(T30, RECOG and MMSE) are Poisson. (3) The optimization of G-
SMuRFS was done based on an iterative alternative optimization (AO)
algorithm, which is an approximate gradient (not sub-gradient) descent
method to handle sparse coefficient blocks and results in an inaccurate
solution.

In order to solve these limitations, we propose a multi-task sparse
group lasso (MT-SGL) method which encourages individual feature
selection coupled with group selection with sparsity-inducing norm.
Instead of learning a shared representation from the level of feature and
region across all the tasks simultaneously, the MT-SGL formulation
which encourages (a) individual feature selection based on the utility of
the features across all tasks and (b) task specific group selection based
on the utility of the group to decouple the ROIs sharing across tasks
allowing for more flexibility. Moreover, the proposed MT-SGL frame-
work can use general loss functions, including losses derived from

Fig. 1. Response profile (histograms) for cognitive scores (tasks) considered.
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generalized linear models (GLMs). In our experiments, we consider MT-
SGL models corresponding to Gaussian regression (least squares) as well
as Poisson regression, inspired by the response profiles of some cogni-
tive scores. Fig. 2 illustrates a schematic diagram of the proposed fra-
mework for cognitive score prediction and biomarker discovery.

The proposed formulation is, however, challenging to solve since
the structured sparsity-inducing norms are non-smooth. In order to
solve the new objective function, we consider two different approaches:
proximal averaging, which takes the average the solutions from the
proximal operator for the individual regularizers and has provable
guarantees of convergence (Bauschke et al., 2008; Yu, 2013a); and
proximal composition, which the proximal operator for the composite
regularizer is the composition of the proximal operators for individual
regularizers (Yu, 2013b). We consider accelerated versions of these
methods based on suitable FISTA-style (Beck and Teboulle, 2009) ap-
plication of accelerated gradient descent. Compared with the optimi-
zation algorithm in G-SMuRFS, the AGM leads to a fast and correct
algorithm for the optimization.

Through empirical evaluation and comparison with five different
baseline methods on data from ADNI, we illustrate that MT-SGL out-
performs other baseline methods, including ridge regression, lasso,
group lasso (Yuan and Lin, 2006) applied independently to each task,
and multi-task group lasso (MT-GL) based on ℓ2,1-norm regularization
(Liu et al., 2009). Improvements are statistically significant for most
scores (tasks). MT-SGL showed similar results to G-SMuRFS, although
MT-SGL has an efficient optimization method, besides having more
general formulation which allows it to tackle a wider spectrum of
problems.

We also present a discussion on the top ROIs identified by MT-SGL,
that is, the ROIs that mostly explain the scores. We found that the se-
lected ROIs corroborate with studies in neuroscience (Devanand et al.,
2007; de Toledo-Morrell et al., 2004) as the areas of the brain that are
more affected by the Alzheimer's disease. It indicates that MT-SGL can
be a useful tool to guide further investigation on the ROIs pointed by
the algorithm.

The rest of the paper is organized as follows. Section 2 discusses the
MT-SGL formulation and optimization strategies are presented in Sec-
tion 3. Experimental analysis is performed in Section 4 and results are
compared with baseline methods. We conclude in Section 5.

2. Multi-task sparse group lasso

To identify the correlations between cognitive performance scores
and MRI features, the linear (least square) regression method is a
standard way in medical image analysis research. One of the biggest

challenge in the prediction of inferring cognitive outcomes with MRI is
the high dimensionality, which affects the computational performance
and leads to a wrong estimation and identification of the relevant
predictors. Sparse methods have attracted a great amount of research
efforts in the neuroimaging field to reduce the high dimensionality and
identify the relevant biomarkers due to its sparsity-inducing property.
Moreover, the multi-task learning (MTL) methods with sparsity-indu-
cing norm based on MRI features have been widely studied to in-
vestigate the prediction power of neuroimaging measures by in-
corporating inherent correlations among multiple clinical cognitive,
and it has been commonly used to obtain better generalization perfor-
mance than learning each task individually. It is known that there exist
inherent correlations among multiple clinical cognitive variables of a
subject. However, many works do not model dependence relation
among multiple tasks and neglect the correlation between clinical tasks
which is potentially useful. When the tasks are believed to be related,
learning multiple related tasks jointly can improve performance relative
to learning each task separately. The proposed work on multi-task
sparse group lasso (MT-SGL) builds on the existing literature on linear
regression models with sparsity structures over the regression coeffi-
cients. Our work, on the other hand, builds on the literature on sparse
multi-task learning (Argyriou et al., 2007; Evgeniou and Pontil., 2004),
which encourages related tasks to have similar sparsity structures.

We start with a basic description of the MT-SGL model. Consider a
multi-task learning (MTL) setting with k tasks. Let p be the number of
covariates, shared across all the tasks, and n be the number of samples.
Let ∈ ×X ℝn p denote the matrix of covariates, ∈ ×Y ℝn k be the matrix of
responses with each row corresponding to a sample, and ∈ ×Θ ℝp k

denote the parameter matrix, with column ∈θ ℝh
p

. corresponding to
task h, h=1, …, k, and row ∈θ ℝi

k
. corresponding to feature i, i=1,

…, p.
The MTL problem can be set-up as one of estimating the parameters

based on suitable regularized loss function:

+
∈ ×

L Y X λRmin (Θ; , ) (Θ),
Θ ℝp k (1)

where L(·) denotes a convex loss function and R(·) is a convex and
possibly nonsmooth regularization function. In the context of least
squares regression, for example, the loss function is defined as follows,

∑= − = −
=

L Y X y x(Θ) Θ Θ ,
F i

n

i iGauss

2

1 2

2

(2)

where ∈ ∈× ×y xℝ , ℝi
k

i
p1 1 are the ith rows of Y, X, respectively, cor-

responding to the multi-task response and covariates for the ith sample.
We note that the MTL framework can be easily extended to other loss

Fig. 2. Flow chart of the proposed MT-SGL method. Given a set of MRI images, we preprocess the images and parcellate a brain into ROIs. From each ROI, multiple
features are extracted to measure the atrophy information involving cortical thickness, surface area and volume from gray matters and white matters in this study.
Two sparsity-inducing norm (ℓ2,1 and G2,1) regularizations are incorporated into our MTL method to model the task relatedness and group structure of features. Our
framework not only provides cognitive scores prediction, but also identifies which are the brain areas more affected by the disease.
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functions, especially losses corresponding to generalized linear models
(GLMs) (Nelder and Baker, 1972). In particular, based on the response
profile for some tasks (see Fig. 1 in Section 4.3), one could consider loss
functions based Poisson regression given by,

= −L X X Y(Θ) [[exp( Θ)]] Θ, ,Poisson (3)

where [[exp(·)]] denotes sum over element-wise exponentiation of the
matrix argument.

For the MTL regularization R(Θ), different choices encourage dif-
ferent structures in the estimated parameters, e.g., unstructured spar-
sity (Lasso) with R(Θ)= ∥Θ ∥ 1, feature sparsity with R(Θ)= ∥Θ ∥ 2,1

(Liu et al., 2009) and structured sparsity (Yuan and Lin, 2006). Group
regularizers like group lasso (Yuan and Lin, 2006) via an ℓ2,1 regular-
ization assumes covarying variables in groups, and have been ex-
tensively studied in the multi-task feature learning. The regularization
ℓ2,1-norm ( =R (Θ) Θ G2,1), Θ G2,1 uses the ℓ2-norm within a group and
the ℓ1-norm between groups. The difference of lasso and group lasso is
illustrated in Fig. 3. The key assumption behind the group lasso reg-
ularizer is that if a few features in a group are important, then most of
the features in the same group should also be important. Group lasso
regularized multi-task learning (MT-GL) aims to improve the general-
ization performance by exploiting the shared features among tasks (Liu
et al., 2009; Gong et al., 2012). It can identify important biomarkers,
which potentially play the key roles in memory and cognition circuitry.
The MT-GL algorithm and its extensions have been successfully applied
to capture the biomarkers having affects across most or response in the
application of AD prediction, since multiple cognitive assessment scores
are essentially influenced by the same underlying pathology and only a
subset of brain regions are relevant to these scores (Guerrero et al.,
2017; Zhu et al., 2016; Yan et al., 2015). The MT-GL model via the ℓ2,1-
norm regularization considers

∑= =
=

R θ(Θ) Θ ,
i

k

i

2,1 1
.

2 (4)

and is suitable for simultaneously enforcing sparsity over features for all
tasks.

We assume the p covariates to be divided into q disjoint groups Gℓ,
ℓ=1, …, q, with each group having mℓ covariates respectively. In the
context of AD, each group corresponds to a region-of-interest (ROI) in
the brain, and the covariates in each group correspond to specific fea-
tures of that region. For AD, the number of features in each group, mℓ,
ranges from 1 to 4, and the number of groups q can be in the hundreds.
Then we introduce a G2,1-norm according to the relationship between
the brain regions (ROIs) and cognitive tasks and encourage a task-
specific subset of ROIs. The G2,1-norm Θ G2,1 is defined as:

G∑ ∑=
= =

w θΘ .
G

q

h

k

h
ℓ 1 1

ℓ ,

22,1

ℓ

(5)

where =w mℓ ℓ is the weight for each group and G ∈θ ℝh
m

,ℓ
ℓ is the

coefficient vector for group Gℓ and task h.
Plugging G2,1-norm and ℓ2,1-norm to the formulation in Eq. (1), the

objective function of multi-task sparse group lasso (MT-SGL) is given in
the following optimization problem:

+ +
∈ ×

L Y X λ λmin (Θ; , ) Θ Θ .
G

Θ ℝ
1

2,1

2p k

2,1 (6)

where λ1≥ 0, λ2≥ 0 are the regularization parameters.
MT-SGL encourages (a) individual feature selection based on the uti-

lity of the features across all tasks with ℓ2,1-norm and (b) task specific
group selection based on the utility of the group with G2,1-norm, i.e.,
brain regions of interest (ROI) for that task. Unlike basic SGL for re-
gression (Chatterjee et al., 2012; Liu and Ye., 2010; Friedman et al.,
2010), MT-SGL has a parameter coupling across tasks because of ∥θj. ∥ 2

which encourages simultaneous sparsity across tasks for individual
feature selection. Further, in the proposed MT-SGL, the group sparsity
as determined by Θ G2,1 is task specific, so that different tasks can use
different groups if needed.

The proposed MT-SGL framework is related to the recently proposed
G-SMuRFS (Yan et al., 2015; Wang et al., 2012) with three key differ-
ences: (i) unlike G-SMuRFS, MT-SGL regularization decouples the group
sparse regularization across tasks allowing for more flexibility; (ii) MT-
SGL allows the loss function to be based on generalized linear models
(GLMs), rather than just square loss which corresponds to a Gaussian
model, and (iii) the optimization in MT-SGL is done using FISTA (Beck
and Teboulle, 2009) which leads to a fast and correct algorithm for the
optimization. The motivation behind considering GLMs is that the re-
sponses in the context of AD are often non-Gaussian variables, e.g., the
number of words an individual can remember after half hour, which
can be potentially better modeled by a Poisson distribution or other
distributions over discrete counts. We will study the effectiveness of
using a GLM based MT-SGL in Section 4. Further, the formulation
makes MT-SGL applicable to more general problems and data types.
Further, while G-SMuRFS (Yan et al., 2015; Wang et al., 2012) con-
siders a related model, the optimization was done based on an ap-
proximate gradient (not sub-gradient) descent method to handle sparse
coefficient blocks. In contrast, we directly use an accelerated method
based on FISTA (Beck and Teboulle, 2009) which is provably correct
and faster. The difference between the formulations of MT-SGL and G-
SMuRFS is illustrated in Fig. 4.

3. Efficient optimization for MT-SGL

The optimization problem for MT-SGL as in (6) is a convex opti-
mization problem with a composite objective with a smooth term cor-
responding to the square loss and a non-smooth term corresponding to
the regularizer. The composite minimization problem where the ob-
jective consists of a smooth loss function and a sum of nonsmooth
functions, have received increasing attention due to the arise of struc-
tured sparsity (Bach et al., 2012), such as the graph-guided fused lasso
(Kim and Xing, 2009), fused sparse group lasso (Zhou et al., 2013) and
some others. These structured regularizers although greatly enhance
our modeling capability, introduce significant new computational
challenges as well (Yu, 2013a). In this section, we present a FISTA-style
(Beck and Teboulle, 2009) algorithm for efficiently solving the MT-SGL
problem.

Consider a general convex optimization problem with a composite
objective given by

+f gx xmin ( ) ( ),
x (7)

where ∈x ℝd, ↦f : ℝ ℝd is a smooth convex function of the type C1,1,
i.e., continuously differentiable with Lipschitz continuous gradient so
that ∥f(x)− f(w) ∥≤ κ ∥ x−w∥ where κ denotes the Lipschitz con-
stant, and ↦g: ℝ ℝd is a continuous convex function which is possibly
non-smooth. A well studied idea in efficient optimization of such
composite objective functions is to start with a quadratic approximation
of the form:

Fig. 3. The difference between lasso and group lasso. The different colors in the
square boxes indicate the weights of the features and white color means zero-
valued elements. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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≔ + − ∇ + − +Q f f κ gx x x x x x x x x( , ) ( ) , ( )
2

( ).κ
t t t t t( ) ( ) ( ) ( ) ( )

2

(8)

Ignoring constant terms in x(t), the unique minimizer of the above ex-
pression can be written as

= ⎧
⎨⎩

+ −⎛
⎝

− ∇ ⎞
⎠

⎫
⎬⎭

P g κ
κ

fx x x x x( ) arg min ( )
2

1 ( ) ,f g
κ t t t

x
,

( ) ( ) ( )
2

(9)

which can be viewed as a proximal operator corresponding to the non-
smooth function g(x). A popular approach to solving problems such as
(7) is to simply do the following iterative update:

=+ Px x( ),t
f g
κ t( 1)
,

( ) (10)

which can be shown to have a O(1/t) rate of convergence (Nesterov,
2005; Parikh and Boyd, 2013).

For our purposes, we consider a refined version of the iterative al-
gorithm inspired by Nesterov's accelerated gradient descent (Nesterov,
2005; Parikh and Boyd, 2013). The main idea, as studied in the lit-
erature as FISTA-style algorithms (Beck and Teboulle, 2009), is to
iteratively consider the proximal operator Pf g

α
, at a specific linear

combination of the previous two iterates {x(t), x(t−1)}, in particular at

= + −+ + +αz x x x( ),t t t t t( 1) ( ) ( 1) ( ) ( 1) (11)

instead of at just the previous iterate x(t). The choice of α(t+1) follows
Nesterov's accelerated gradient descent (Nesterov, 2005; Parikh and
Boyd, 2013) and is detailed in Algorithm 1. The iterative algorithm
simply updates

=+ +Px z( ).t
f g
κ t( 1)
,

( 1) (12)

As shown in (Beck and Teboulle, 2009), the algorithm has a rate of
convergence of O(1/t2).

A key building block in MT-SGL is the computation of the proximal
operator in (12) when ≡g R(·) (·)λ

λ
2
1 is the multi-task sparse group lasso

regularizer given by

= +R λ λ(Θ) Θ Θ .λ
λ

G1 2,1 22
1

2,1 (13)

For MT-SGL, the iterates x(t)≡Θ(t) are matrices, and the proximal

operator is computed at z(t+1)≡ Z(t+1)=Θ(t) + α(t+1)(Θ(t)−Θ(t−1)).
For the loss function L(·) corresponding to Gaussian (least squares) and
Poisson regression, = −+ +f Z Y XZ( )t t

FGauss
( 1) ( 1) 2 and

= −+ +f Z Y XZ( )t t
FPoisson

( 1) ( 1) 2 , respectively. The loss gradients are
given by

∇ = −
∇ = −

+ +

+ +

f Z X XZ Y
f Z X XZ Y

( ) ( ),
( ) (exp( ) ),

t T t

t T t
Gauss

( 1) ( 1)

Poisson
( 1) ( 1) (14)

with = − ∇+ + +V Z f Z( )t t
κ

t( 1) ( 1) 1 ( 1) , the problem of computing the prox-
imal operator =+ +P Z P V( ): ( )f g

κ t
λ κ
λ κ t

,
( 1)

/
/ ( 1)

2
1 is given by

argmin= + −

= + −

+

∈

+

∈

+

×

×

{ }
{ }

P V R V

R V

( ) (Θ) Θ

argmin (Θ) Θ .

λ κ
λ κ t

λ κ
λ κ t

λ
λ κ t

/
/ ( 1)

Θ ℝ
/
/ 1

2
( 1) 2

Θ ℝ
2

( 1) 2

p k

p k

2
1

2
1

2
1

(15)

The goal is to be able to compute =+ +P VΘ ( )t
λ κ
λ κ t( 1)

/
/ ( 1)

2
1 efficiently.

For simple regularizers, such as ℓp-regularization with p∈ {1, 2, ∞},
proximal operators are available in closed-form and can easily be
computed (Combettes and Pesquet, 2011). On the other hand, proximal
operators for complex regularizers are non-trivial and usually resort to
inner iterative subroutine, which becomes frustratingly slow (Yu,
2013a).

When complex regularizers are composed of the sum of simple
regularizers, researchers have looked for ways to leverage the fact that
proximal operators of the summands are easy to compute. In the fol-
lowing, two proximal operators combination strategies are discussed:
shape proximal average (Bauschke et al., 2008; Yu, 2013a) and shape
proximal composition (Jenatton et al., 2011; Yu, 2013b).

Proximal average: It simply averages the solutions from the
proximal operator for each simple regularizer, that is, ≈ ∑∑P α Pf i

k
i f

i
k

i i.
Besides having nice properties (Bauschke et al., 2008), it has been
shown that proximal average acts as a surrogate function and is a good
approximation for the original composite regularizer (Yu, 2013a). Ad-
ditionally, as proximal operators can be computed independently, it is
suitable for parallel proximal gradient algorithms.

For the MT-SGL, the proximal average operator is computed as

Fig. 4. The illustration of two group guided methods: MT-SGL and G-SMuRFS. Each column of Θ is corresponding to a single task and each row represents a feature
dimension. The MRI measure features in each region belong to a group. We assume the p features to be divided into q disjoint groups Gl, l=1, …, q, with each group
having ml features respectively. For each element in Θ, white color means zero-valued elements and color indicates non-zero values. The different colors in the square
boxes indicate the weights of the feature for the corresponding task. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)
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where Pλ1/κ and Pλ κ/2 are the proximal operators for the ℓ2,1 and G2,1

regularizers, respectively, and are discussed later in this section.
Proximal composition: Yu (2013) investigated the proximal op-

erator of the sum of multiple non-smooth functions as the composition
of the proximal operators for individual regularizers, that is,

= ∘⋯∘∑P P Pf f f
i
k

i k1 . Yu shows sufficient conditions for the decomposition
hold (see Theorem 1 in (Yu, 2013b)). Although he also shows that it
needs not hold in general, as we show in Section 4.2, such strategy
works well in practice.

Proximal composition for the MT-SGL composite regularizer (6) is
expressed as: = ∘P P P(Θ) (Θ)λ κ
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Both shape proximal average and shape proximal composition take the
proximal operators for the individual regularization terms and make a
combination of them. Next, we discuss the proximal operators of the
individual regularizers: ℓ2,1 and G2,1, which compose the MT-SGL for-
mulation. We also show that they can be executed efficiently using
suitable extensions of soft-thresholding.

The proximal map of the ℓ2,1 regularization can be written as

argmin= ⎧
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Since = ∑ =U uj
p

j
2,1

1
2
, the problem decomposes over the rows uj,

j=1, …, p. Following (Liu et al., 2009), the row-wise updates can be
done by soft-thresholding as
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where uj, vj are the jth rows of U(t+1), V(t+1) respectively.
As for the G2,1 regularization, the proximal map is defined as
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Since G= ∑ ∑= = w θΘ
G

j
q

h
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, the problem decomposes as up-

dates over the task specific groups G = … = …θ j q h k, 1, , , 1, ,h,j .
Following (Yuan et al., 2013), the task-specific group updates can be
done by soft-thresholding as
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where G GUΘ ,h h, ,j j are parameters for task-specific groups for group j and
task h in Θ(t+1) and U(t+1), respectively.

In practice, since the Lipschitz constant κ may be unknown, we
perform a backtracking line-search procedure to ensure function
minimization. The pseudocode of MT-SGL is summarized in Algorithm
1, where F(Θ) denotes the objective function of MT-SGL as in Eq. (6),
Qκ(Θ1, Θ2) denotes the quadratic approximation as in Eq. (8) for the
MT-SGL objective, and Pλ κ

λ κ
/
/

2
1 denotes the proximal operator for the MT-

SGL regularization as in Eq. (16) or (17). The algorithm can be stopped
if the change of the function values corresponding to adjacent iterations
is within a small value, say 10−4.

Algorithm 1. The MT-SGL algorithm

≤F P Z Q P Z Z( ( )) ( ( ), )R
κ t

κ R
κ t t( ) ( ) ( )

Require
γ>0 ▷ Regularization parameter
X, Y ▷Data for all tasks

1: ⟵λ γλ1 1
max ▷λ1

max is computed as (22a)
2: ⟵λ γλ2 2

max ▷λ2
max is computed as (22b)

3: Set β(0)⟵ 1 and κ(0)⟵ 1 ▷Define initial β and κ
4: Set U⟵Θ (0, 1)(0) ▷Define initial parameter matrix Θ
5: Set Z(1)⟵Θ(0)

6: t⟵ 1
7: While convergence criterion not met do
8: Find the smallest nonnegative integers it such that with = −κ κ2i t( 1)t
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14: t⟵ t+1
15: end while

In the MT-SGL, two regularization parameters need to be specified:
λ1 and λ2. Using recent results on norm regularization (Banerjee et al.,
2014), it is possible to express both parameters via a single parameter
as follows: =λ γλ1 1

max and =λ γλ2 2
max (Meier et al., 2008; Banerjee et

al., 2014), where λ1
max and λ2

max are computed as:

= ∞λ X Y ,T
1
max (22a)

G

= ∥ − ∥
∈

λ
m

X Y γλargmax 1 max{(| | ), 0} .
j

j
T

2
max

ℓ, ℓ
1
max

2
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The choices follow from the current understanding in the literature
of the correct form these parameters, in particular, in terms of the dual
norm of the gradient of the objective (Banerjee et al., 2014; Liu and Ye.,
2010). Thus, the only parameter to be empirically chosen in MT-SGL is
the scaling γ.

Python codes of the proposed algorithm are available at: https://
bitbucket.org/XIAOLILIU/mtl-sgl.

4. Experimental results

In this section, we present experimental results to demonstrate the
effectiveness of the proposed MT-SGL on characterizing AD progression
using a dataset from the Alzheimer's Disease Neuroimaging Initiative
(ADNI) (Weiner et al., 2010).

4.1. Experimental setting

MR images and data used in this work were obtained from the
Alzheimers Disease Neuroimaging Initiative (ADNI) database (ad-
ni.loni.ucla.edu) (Weiner et al., 2010). The primary goal of ADNI has
been to test whether serial MRI, PET, other biological markers, and
clinical and neuropsychological assessments can be combined to mea-
sure the progression of MCI and early AD. Approaches to characterize
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AD progression will help researchers and clinicians develop new
treatments and monitor their effectiveness. Further, being able to un-
derstand disease progression will increase the safety and efficacy of
drug development and potentially decrease the time and cost of clinical
trails. In ADNI, all participants received 1.5 Tesla (T) structural MRI.
The MRI features used in our experiments are based on the imaging
data from the ADNI database processed by a team from UCSF (Uni-
versity of California at San Francisco), who performed cortical re-
construction and volumetric segmentations with the FreeSurfer image
analysis suite (http://surfer.nmr.mgh.harvard.edu/) according to the
atlas generated in Desikan et al. (2006). The FreeSurfer software was
employed to automatically label cortical and subcortical tissue classes
for the structural MRI scan of each subject, and to extract thickness
measures of cortical regions of interests (ROIs) and volume measures of
cortical and subcortical.

Briefly, this processing includes motion correction and averaging
(Reuter et al., 2010) of multiple volumetric T1 weighted images (when
more than one is available), removal of non-brain tissue using a hybrid
watershed/surface deformation procedure (Segonne et al., 2004), au-
tomated Talairach transformation, segmentation of the subcortical
white matter and deep gray matter volumetric structures (including
hippocampus, amygdala, caudate, putamen, ventricles) (Fischl et al.,
2002, 2004) intensity normalization (Sled et al., 1998), tessellation of
the gray matter white matter boundary, automated topology correction
(Fischl et al., 2001; Segonne et al., 2007), and surface deformation
following intensity gradients to optimally place the gray/white and
gray/cerebrospinal fluid borders at the location where the greatest shift
in intensity defines the transition to the other tissue class (Dale et al.,
1999; Dale and Sereno, 1993).

Totally, 48 cortical regions and 44 subcortical regions are generated
and the number of features in each group is typically 1 or 4. The names

of cortical and subcortical regions are listed in Tables 1 and 2. For each
cortical region, the cortical thickness average (TA), standard deviation
of thickness (TS), surface area (SA) and cortical volume (CV) were
calculated as features. For each subcortical region, subcortical volume
was calculated as features. The SA of left and right hemisphere and total
intracranial volume (ICV) were also included. This yielded a total of
p=319 MRI features extracted from cortical/subcortical ROIs in each
hemisphere (Tables 1 and 2). Details of the analysis procedure are
available at http://adni.loni.ucla.edu/research/mri-post-processing/.

The ADNI project is a longitudinal study, repeatedly over a 6-month
or 1-year interval. The date when the subjects are scheduled to perform
the screening becomes baseline after approval and the time point for
the follow-up visits is denoted by the duration starting from the base-
line. In our current work, we investigate the prediction performance of
our method for inferring cognitive outcomes in a number of neu-
ropsychological assessments at baseline time. In this work, we further
performed the following preprocessing steps:

• remove features with more than 10% missing entries (for all patients
and all time points);

• remove the ROI whose name is “unknown”;

• remove the instances with missing value of cognitive scores;

• exclude patients without baseline MRI records;

• complete the missing entries using the average value.

This yields a total of n=788 subjects, who are categorized into 3
baseline diagnostic groups: Cognitively Normal (CN, n1= 225), Mild

Table 1
Cortical features (n=275).

Number ROI Laterality Type

1 Caudal Anterior Cingulate Cortex L, R CV, SA, TA, TS
2 Caudal Middle Frontal Gyrus L, R CV, SA, TA, TS
3 Cuneus Cortex L, R CV, SA, TA, TS
4 Entorhinal Cortex L, R CV, SA, TA, TS
5 Frontal Pole L, R CV, SA, TA, TS
6 Fusiform Gyrus L, R CV, SA, TA, TS
7 Inferior Parietal Cortex L, R CV, SA, TA, TS
8 Inferior Temporal Gyrus L, R CV, SA, TA, TS
9 Insula L, R CV, SA, TA, TS
10 IsthmusCingulate L, R CV, SA, TA, TS
11 Lateral Occipital Cortex L, R CV, SA, TA, TS
12 Lateral Orbital Frontal Cortex L, R CV, SA, TA, TS
13 Lingual Gyrus L, R CV, SA, TA, TS
14 Medial Orbital Frontal Cortex L, R CV, SA, TA, TS
15 Middle Temporal Gyrus L, R CV, SA, TA, TS
16 Paracentral Lobule L, R CV, SA, TA, TS
17 Parahippocampal Gyrus L, R CV, SA, TA, TS
18 Pars Opercularis L, R CV, SA, TA, TS
19 Pars Orbitalis L, R CV, SA, TA, TS
20 Pars Triangularis L, R CV, SA, TA, TS
21 Pericalcarine Cortex L, R CV, SA, TA, TS
22 Postcentral Gyrus L, R CV, SA, TA, TS
23 Posterior Cingulate Cortex L, R CV, SA, TA, TS
24 Precentral Gyrus L, R CV, SA, TA, TS
25 Precuneus Cortex L, R CV, SA, TA, TS
26 Rostral Anterior Cingulate Cortex L, R CV, SA, TA, TS
27 Rostral Middle Frontal Gyrus L, R CV, SA, TA, TS
28 Superior Frontal Gyrus L, R CV, SA, TA, TS
29 Superior Parietal Cortex L, R CV, SA, TA, TS
30 Superior Temporal Gyrus L, R CV, SA, TA, TS
31 Supramarginal Gyrus L, R CV, SA, TA, TS
32 Temporal Pole L, R CV, SA, TA, TS
33 Transverse Temporal Cortex L, R CV, SA, TA, TS
34 Hemisphere L, R SA
35 Total Intracranial Volume Bilateral CV

Table 2
Subcortical features (n=44).

Number ROI Laterality Type

1 Accumbens Area L, R SV
2 Amygdala L, R SV
3 Caudate L, R SV
4 Cerebellum Cortex L, R SV
5 Cerebellum White Matter L, R SV
6 Cerebral Cortex L, R SV
7 Cerebral White Matter L, R SV
8 Choroid Plexus L, R SV
9 Hippocampus L, R SV
10 Inferior Lateral Ventricle L, R SV
11 Lateral Ventricle L, R SV
12 Pallidum L, R SV
13 Putamen L, R SV
14 Thalamus L, R SV
15 Ventricle Diencephalon L, R SV
16 Vessel L, R SV
17 Brain Stem Bilateral SV
18 Corpus Callosum Anterior Bilateral SV
19 Corpus Callosum Central Bilateral SV
20 Corpus Callosum Middle Anterior Bilateral SV
21 Corpus Callosum Middle Posterior Bilateral SV
22 Corpus Callosum Posterior Bilateral SV
23 Cerebrospinal Fluid Bilateral SV
24 Fourth Ventricle Bilateral SV
25 Non White Matter Hypointensities Bilateral SV
26 Optic Chiasm Bilateral SV
27 Third Ventricle Bilateral SV
28 White Matter Hypointensities Bilateral SV

Table 3
Summary of ADNI dataset and subject information.

Category CN MCI AD

Number 225 390 173
Gender (M/F) 116/109 252/138 88/85
Age (y, ag ± sd) 75.87 ± 5.04 74.75 ± 7.39 75.42 ± 7.25
Education (y, ag ± sd) 16.03 ± 2.85 15.67 ± 2.95 14.65 ± 3.17

M, male; F, female; y, years; ag, average; sd, standard deviation.
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Cognitive Impairment (MCI, n2= 390), and Alzheimer's Disease (AD,
n3= 173). Table 3 lists the demographics information of all these
subjects, including age, gender and education. The 788 baseline scans
in the ADNI database were used for evaluation and a leave 5% out cross
validation was adopted as in Wolz et al. (2011). 5% of the evaluation
subjects were regarded as the test set, and the remaining 95% of the
subjects were used to train a regression model which was then applied
to the test set. This was repeated 50 times, each time selecting randomly
the test set subjects. Finally, the average (avg) and standard deviation
(std) of performance measures across the 50 repetitions were calculated
and shown as avg± std for each experiment. In each run, we ensured
that all methods received exactly the same train and test set. For all
experiments, a 5-fold nested cross validation procedure is employed to
tune the regularization parameters in each trial, with parameter values
in the range [1e-4,1e4] Data was z-scored before applying regression
methods. The reported results were the best results of each method with
the optimal parameter.

For predictive modeling, we focus on 5 widely used cognitive
measures (Yan et al., 2015; Li et al., 2012), which to the k=5 tasks in
our setting. In particular, the cognitive scores used in our analysis are:
Alzheimer's Disease Assessment Scale – cognitive total score (ADAS),
Mini Mental State Exam score (MMSE), Rey Auditory Verbal Learning
Test (RAVLT) total score (TOTAL), RAVLT 30 minutes delay score (T30)
and RAVLT recognition score (RECOG). ADAS is the gold standard in
AD drug trial for cognitive function assessment, which is the most
popular cognitive testing instrument to measure the severity of the most
important symptoms of AD. MMSE measures cognitive impairment,
including orientation to time and place, attention and calculation,

immediate and delayed recall of words, language and visuo-construc-
tional functions. RAVLT is a measure of episodic memory and used for
the diagnosis of memory disturbances, which consists of eight recall
trials and a recognition test.

For the quantitative performance evaluation, we employed the
metrics of Correlation Coefficient (CC) and Root Mean Squared Error
(rMSE) between the predicted clinical scores and the target clinical
scores for each regression task. Moreover, to evaluate the overall per-
formance on all the tasks, the normalized mean squared error (nMSE)
(Argyriou et al., 2008; Zhou et al., 2013) and weighted R-value (wR)
(Stonnington et al., 2010) are used. The average (avg) and standard
deviation (std) of performance measures are shown as avg± std for
each experiment. The rMSE, CC, nMSE and wR are defined as follows:
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−
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(y) (ŷ) (24)
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where Y and Ŷ are the ground truth cognitive scores and the predicted
cognitive scores, respectively.

4.2. Proximal-average and proximal-composition empirical convergence
analysis

In Section 3 we discussed two proximal gradient methods for sol-
ving the optimization problem associated with MT-SGL formulation,
namely shape proximal average and shape proximal composition. The
methods differ how the proximal operator of the composite regularizer
of MT-SGL (6) are computed. In this section we empirically investigate
their convergences and compare their performances.

For this analysis, we assumed Gaussian GLMs for all tasks.
Regularization parameter γ was chosen by cross-validation, with values
in the range γ∈ [1e−5,1e3]. We initially look at the convergence of the
proposed MT-SGL using both methods. Similar convergence curves can
be observed in Fig. 5, although proximal composition presented a
smoother curve.

Table 4 shows the RMSE performance of MT-SGL using both prox-
imal operator computation strategies for three groups(AD,CN and MCI).
A first glance at the results shows that MT-SGL with proximal

Fig. 5. Convergence of MT-SGL with shape proximal average and shape proximal
composition. Both strategies show similar results.

Table 4
RMSE performance of MT-SGL with proximal gradient methods using shape proximal average and shape proximal composition strategies for three groups(AD,CN and
MCI).

Method ADAS MMSE RAVLT nMSE

Total T30 RECOG

AD Prox. average 8.36 ± 2.12 2.29 ± 0.55 7.89 ± 1.96 1.95 ± 0.40 3.83±0.77 6.18 ± 1.65
Prox. composition 7.71 ± 2.08 2.49 ± 0.56 7.91 ± 1.96 2.08 ± 0.44 3.88 ± 0.80 6.07 ± 1.63

MCI Prox. average 5.66 ± 0.67 2.14 ± 0.32 8.45 ± 1.35 2.89 ± 0.47 3.44 ± 0.44 4.52 ± 0.67
Prox. composition 5.66 ± 0.67 2.03 ± 0.33 8.55 ± 1.36 2.91 ± 0.47 3.41 ± 0.49 4.52 ± 0.75

CN Prox. average 6.64 ± 1.30 2.51 ± 0.48 11.93 ± 2.59 4.73 ± 0.82 3.62 ± 0.53 9.76 ± 2.76
Prox. composition 6.78 ± 1.31 2.02 ± 0.29 11.44 ± 2.66 4.45 ± 0.84 3.31 ± 0.53 8.65 ± 2.54

ALL Prox. average 6.72 ± 0.80 2.31 ± 0.21 9.62 ± 1.13 3.39 ± 0.39 3.62 ± 0.30 4.38 ± 0.52
Prox. composition 6.59 ± 0.79 2.16 ± 0.18 9.50 ± 1.13 3.32 ± 0.38 3.54 ± 0.31 4.19 ± 0.54
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composition achieves better performances than proximal average in the
group of AD, CN and ALL, which indicates that proximal composition
optimization is more effective than the proximal average algorithm.
Based on this result, MT-SGL with proximal composition is considered
for the comparison with the baseline methods in the next section.

4.3. Comparison with baseline MTL methods

To validate the effectiveness of the proposed method, we first
compared MT-SGL with 5 different regression methods, including: ridge
regression, lasso, group lasso (Yuan and Lin, 2006), which are applied
independently to each task, multi-task group lasso (MT-GL) based on
ℓ2,1-norm regularization (Liu et al., 2009), and Group-sparse Multitask
Regression and Feature Selection (G-SMuRFS) (Yan et al., 2015), which
is one of the state-of-the-art methods for characterizing AD progression.
Additionally, we compared the performance of the MT-SGL using two
different loss functions settings derived from the GLM family: MT-SGL
[5G], where all scores are modeled with Gaussian (least squares) re-
gression; and MT-SGL[2G3P], where two scores are modeled with
Gaussian (TOTAL and ADAS) and three scores (T30, RECOG and
MMSE) with Poisson regression. The use of Poisson model is motived by
the response profiles of some cognitive scores, particularly T30, RECOG
and MMSE, as shown in Fig. 1.

Regularization parameters for methods are chosen using a nested
cross-validation strategy on the training data, with search grid in the
range of 5×10−3 to 5×103 using a log-scale for MT-SGL and G-
SMuRFS, and in the range of 10−4 to 104 using a log-scale (Liu et al.,
2009) for the other 4 methods. Prediction performance results, mea-
sured by RMSE and CC of MT-SGL and 5 different regression methods
under 5 cognitive scores are shown in Table 5 and 6.

A first glance at the results shows that our MT-SGL method achieved
the best performance compared to the competing methods. From the t-
test results, we can observe that MT-SGL(5G) and MT-SGL(2G3P) are
statistically significantly better than the competing methods with re-
spect to nMSE and wR. Specifically, we observe the following:

(1) The results show that sparse learning methods (Lasso, Group Lasso,
MT-GL, G-SMuRFS, and MT-SGL) are significantly more effective

than ridge regression on predicting all scores. Lasso and group lasso
are single-task learning methods being applied independently on
each task, whereas MT-GL, G-SMuRFS and MT-SGL are multi-task
learning methods.

(2) The multi-task learning methods: MT-SGL and MT-GL showed
smaller nMSEs and higher wR than single-task learning methods, as
they can exploit possible commonalities among scores. G-SMuRFS is
worse than lasso and MTL-GL, the observation is same as the results
in Yan et al. (2015), where G-SMuRFS did not show clear perfor-
mance improvement over the MTL-GL based on the vertex-based
surface measures, although it considers grouping the relevant sur-
face features together according to anatomic structure. The reason
may be that: (i) the strong assumption that the both features and
ROIs are shared across multiple score tasks, and (ii) the iterative
alternative optimization (AO) algorithm used in G-SMuRFS is not
appropriate for the optimization of the formulation with nonsmooth
structured regularization.

(3) We investigate the effect of group penalty in our model by com-
paring the results of MT-GL. MT-SGL(5G) outperforms MT-GL in
terms of all the metrics. The traditional MT-GL considered only the
sparsity of the regression coefficients, thus failing to capture the
group structure of features in the data. When multiple features are
extracted to measure the atrophy of each imaging biomarker, we
can find that it can further improve the prediction performance by
capturing of inherent feature structures.

(4) Compared with MT-SGL(5G), MT-SGL(2G3P) improves the regres-
sion performance on the scores of MMSE, T30 and RECOG, of which
the distributions are Poisson. The results indicate that the GLM in
MT-STL can provide a more flexible analysis approach for analyzing
the data. Modeling the relationship between MRI features and the
value of the cognitive score for each specific score task can help
improve the performances for the multi-task learning.

4.4. Selection of ROI's

In Alzheimer's disease studies, researchers are not only interested in
providing better cognitive scores prediction, but mainly to identify
which are the brain areas more affected by the disease, which can help

Table 5
RMSE: Baseline methods vs. MT-SGL. Superscript symbols † and * indicate that MT-SGL[5G] and MT-SGL[2G3P], respectively, significantly outperformed that
method on that score. Student's t-test at a level of 0.05 was used.

Method ADAS MMSE RAVLT nMSE

TOTAL T30 RECOG

Ridge 7.19 ± 0.90†* 2.55 ± 0.27†* 10.68 ± 1.14†* 3.82 ± 0.43†* 3.99 ± 0.43†* 5.34 ± 0.67†*

Lasso 6.66 ± 0.78†* 2.20 ± 0.19†* 9.54 ± 1.12* 3.43 ± 0.35†* 3.57 ± 0.31†* 4.28 ± 0.49†*

Group lasso 6.68 ± 0.80†* 2.23 ± 0.18†* 9.58 ± 1.13†* 3.42 ± 0.40†* 3.57 ± 0.31†* 4.32 ± 0.52†*

MT-GL 6.73 ± 0.77†* 2.16 ± 0.18 9.55 ± 1.11* 3.34 ± 0.36† 3.54 ± 0.31 4.25 ± 0.48*

G-SMuRFS 6.69 ± 0.80†* 2.16 ± 0.19 9.66 ± 1.11† 3.36 ± 0.38† 3.57 ± 0.33 4.30 ± 0.54†*

MT-SGL[5G]comp 6.59 ± 0.79 2.16 ± 0.18 9.50 ± 1.13 3.32 ± 0.38 3.54 ± 0.31 4.19 ± 0.54
MT-SGL[2G3P]comp 6.82 ± 0.81 2.14 ± 0.20 9.68 ± 1.19 3.34 ± 0.35 3.53 ± 0.31 4.38 ± 0.52

Table 6
CC: Baseline methods vs. MT-SGL. Superscript symbols † and * indicate that MT-SGL[5G] and MT-SGL[2G3P], respectively, significantly outperformed that method
on that score. Student's t-test at a level of 0.05 was used.

Method ADAS MMSE RAVLT wR

TOTAL T30 RECOG

Ridge 0.61 ± 0.09†* 0.38 ± 0.15†* 0.44 ± 0.11†* 0.41 ± 0.11†* 0.32 ± 0.14†* 0.43 ± 0.08†*

Lasso 0.65 ± 0.08†* 0.50 ± 0.14†* 0.53 ± 0.10 0.51 ± 0.10†* 0.42 ± 0.13†* 0.52 ± 0.08†*

Group lasso 0.65 ± 0.08† 0.49 ± 0.14†* 0.53 ± 0.11†* 0.53 ± 0.10†* 0.41 ± 0.12†* 0.52 ± 0.08†*

MT-GL 0.65 ± 0.08†* 0.51 ± 0.14† 0.53 ± 0.10 0.53 ± 0.10† 0.43 ± 0.13 0.53 ± 0.08†

G-SMuRFS 0.65 ± 0.08† 0.51 ± 0.14†* 0.52 ± 0.11†* 0.52 ± 0.09†* 0.42 ± 0.11†* 0.52 ± 0.08†*

MT-SGL[5G]comp 0.66 ± 0.08 0.52 ± 0.14 0.54 ± 0.11 0.54 ± 0.10 0.44 ± 0.13 0.54 ± 0.08
MT-SGL[2G3P]comp 0.64 ± 0.08 0.52 ± 0.14 0.53 ± 0.10 0.54 ± 0.10 0.44 ± 0.13 0.53 ± 0.08
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to diagnose early stages of the disease and how it spreads. We, then,
turn our analysis now to the identification of MRI biomarkers. Both MT-
SGL and G-SMuRFS are group sparse models which are able to identify
a compact set of relevant neuroimaging biomarkers from the region
level due to the group lasso on the features, which would provide us
with better interpretability of the brain region.

Fig. 6 are the heat maps of the regression weights (or coefficients) of
all ROIs in each hemisphere for each cognitive score at the baseline time
calculated by MT-SGL with two optimization strategies and G-SMuRFS
methods through 50 trials. The value of each item (i, j) in the heat map
indicates the weight of the ith ROI for the jth task, and is calculated by

G
∑ ∈ θw k

1
ki

2
i i

, where k is the the kth MRI feature. The larger the ab-

solute value of a coefficient, the more important its corresponding brain
region is in predicting the corresponding cognitive score. The figure il-
lustrates that the proposed MT-SGL clearly presented a much better
sparsity across all the cortical measures than G-SMuRFS from the level of
ROI, where a small portion of the brain region was identified to be re-
levant to the cognitive outcome. The sparse ROIs make the results easier to
interpret. The heat maps of MT-SGL with two optimization strategies are
nearly the same. Based on the heat map, we selected the top 10 features
according to the regression weights. The top 10 selected MRI features and
brain regions (ROI) are shown in Table 7.

Fig. 6. Heat maps of regression coefficients of 50 trials on different splits of data. (a) G-SMuRFS, (b) proximal average, (c) proximal composition.

Table 7
Top 10 selected ROIs by G-SMuRFS, proximal average and proximal composi-
tion.

Numbers Regions

G-SMuRFS MT-SGL (average) MT-SGL (composition)

1 L.Hippocampus L.Hippocampus L.Hippocampus
2 R.Entorhinal L.InfLatVent L.InfLatVent
3 L.InfLatVent R.Entorhinal R.Entorhinal
4 L.MidTemporal R.Hippocampus L.MidTemporal
5 CC_MidPost L.MidTemporal CC_MidPost
6 L.Precuneus L.Entorhinal L.Entorhinal
7 R.AccumbensArea R.Amygdala L.CerebellCtx
8 L.ParsTriang L.InfTemporal L.Precuneus
9 L.InfTemporal R.InfLatVent R.Hippocampus
10 L.LatOrbFrontal L.Parahipp R.Amygdala

Table 8
Top 10 ROIs selected via stability selection by G-SMuRFS, proximal average and
proximal composition.

Regions

G-SMuRFS MT-SGL (average) MT-SGL (composition)

L.Hippocampus L.Hippocampus L.Entorhinal
L.InfLatVent L.InfLatVent L.Hippocampus
R.Entorhinal L.Parahipp L.InfLatVent
L.ParsTriang L.ParsOper L.MidTemporal
R.Precentral R.AccumbensArea L.Parahipp
L.Paracentral R.Amygdala R.Amygdala
L.Precentral R.Entorhinal R.Entorhinal
L.Parahipp R.Fusiform R.Hippocampus
L.Entorhinal R.Hippocampus R.InfLatVent
R.TransvTemporal R.InfLatVent L.ParsOper
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The first six brain regions selected by our MT-SGL are Hippocampus
(Zhu et al., 2016; Braak and Braak, 1985; Van Hoesen et al., 1991),
Entorhinal (Yan et al., 2015), Inferior lateral ventricle (Gutman et al.,
2015; Wan et al., 2014) and Middle Temporal (Yan et al., 2015; Xu et
al., 2016; Visser et al., 2002; Zhu et al., 2016), which are highly re-
levant to the cognitive impairment. These findings are in accordance
with the known knowledge that in the pathological pathway of AD.
These identified brain regions have been pointed out in the previous
literatures and have been also shown to be highly related to clinical

functions. For example, Hippocampus are located in the temporal lobe
of the brain, which are the role of the memory and spatial navigation.
The Hippocampi are the first damaged regions in AD, showing loss of
memory and spatial or Entorhinalientation. Entorhinal cortex has long
been considered as a relevant and reliable measure to identify in-
dividuals at risk for Alzheimer's disease. As entorhinal is a part of the
memory system, the damage caused by Alzheimer's disease play a
prominent role in the memory deficits. Moreover, Devanand et al.
(2007) showed that the reduction of hippocampal and entorhinal cortex

Fig. 7. Plots show the top 10 ROI's selected by G-SMuRFS. These were the most relevant areas for predicting all cognitive scores jointly. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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volumes contribute to the conversion of patients from MCI to AD. Ad-
ditionally, changes in thickness of the inferior parietal lobule are oc-
curring early in the progression from normal to MCI, and related to
neuropsychological performance (Greene et al., 2010). So, these regions
are important biomarkers for AD, as also identified by MT-SGL.

In order to minimize falsely select variables, we used a stability
selection procedure described in Meinshausen and Bühlmann (2010).
The stability selection allows to mitigate possible spurious selected
variables due to noise and/or random fluctuation of the data. As in our
model groups of features correspond to a single ROI, to be able to
identify the most relevant ROI's for predicting cognitive scores we
performed a shape group stability selection, which is described in the

following. Let n be the number of data samples and Γ is the set of
considered regularization parameter ∈ ⊆γ Γ ℝ.

1. For each value of γ∈ Γ, do:
(a) From the data, generate N sub-samples of size ⌊n/2⌋ without

replacement;
(b) For each sub-sample i, run MT-SGL with parameter γ and obtain

the variables selection set Ŝi
γ ;

(c) With the selection sets, compute the (empirical) probability of
each variable k being selected by MT-SGL:

Fig. 8. Plots show the top 10 ROI's selected by MT-SGL with proximal average approach. These were the most relevant areas for predicting all cognitive scores jointly.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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∑= ∈ = ∈
=

k S
N

k Sℙ ℙ( ˆ ) 1 ( ˆ ),k
γ γ

i

N

i
γ

1 (27)

where (·) is the indicator function;
(d) Compute the average of probabilities ℙk

γ of the variables be-
longing to each group G = … q, ℓ 1, ,ℓ , that is,

G G
= ∑ ∈Π ℙγ

m k k
γ1

ℓ ℓ ℓ
;

2. Given the probability of each group been selected by MT-SGL for all
γ∈ Γ, GΠγ

ℓ , the set of stable groups (ROIs) are those who satisfies the
following definition:

G G G= ≥∈ π{ : max Π }γ
γstable

ℓ Γ thrℓ (28)

where 0< πthr< 1 is cutoff threshold.

The intuition behind definition (28), is that stable ROIs are those
who have been selected by MT-SGL with high probability. Using the
group stability selection procedure described with Γ∈ [1e-5,1], N=50,
and πthr = 0.9, MT-SGL was performed using both proximal average
and proximal composition.

Table 8 shows the top 10 ROIs identified by the three methods
through stability selection procedure. Fig. 7 shows the top 10 ROIs
selected by G-SMuRFS and Figs. 8 and 9 show the top 10 ROIs selected
by MT-SGL with the two different optimization methods. We observe
that, the results are accordance with the one obtained by heat map,
such as Hippocampus, InfLatVent, Entorhinal, Parahipp and Amygdala,
which are also selected by heat map. Moreover, it is found that the most
discriminative regions selected by G-SMuRFS and MT-SGL are not

Fig. 9. Plots show the top 10 ROI's selected by MT-SGL with proximal composition approach. These were the most relevant areas for predicting all cognitive scores
jointly. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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completely the same. For example, Amygdala and R.Hippocampus,
which are not identified by G-SMuRFS. Some results suggest that the
magnitude of amygdala atrophy is comparable to that of the hippo-
campus in the earliest clinical stages of AD, and is related to global
illness severity (Poulin et al., 2011).

5. Conclusion

Many clinical/cognitive measures have been designed to evaluate
the cognitive status of the patients and such measures have been used as
criteria for clinical diagnosis of probable AD. In this paper, we propose
a multi-task learning framework for predictive modeling of such cog-
nitive measures based on MRI data from ADNI. Our proposed MT-SGL
framework considers structured sparsity of parameters with both cou-
pling across tasks and group selection for individual tasks, can work
with general loss functions and GLMs, and optimization is done using
an efficient FISTA-style method.

Experiments and comparisons with baseline methods illustrate that
MT-SGL is at par and usually outperforms existing methods. The
method was also able to identify key brain areas for AD progression that
corroborate with earlier studies in AD literature. MT-SGL has shown a
promising tool not only to predict cognitive scores but also to provide
inputs for domain experts towards the understanding of AD progres-
sion. In the current work, only priori group information is incorporated
into multi-task predictive model, but lack the ability of learning the
feature groups automatically. In future work we are interested in in-
vestigations of other structure in features, such as graph structure,
whichcan help gain additional insights to understand and interpret
data.
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