
Learning to Interact with Users: A Collaborative-Bandit Approach∗

Konstantina Christakopoulou and Arindam Banerjee†

Abstract

Learning to interact with users and discover their preferences

is central in most web applications, with recommender sys-

tems being a notable example. From such a perspective,

merging interactive learning algorithms with recommenda-

tion models is natural. While recent literature has explored

the idea of combining collaborative filtering approaches with

bandit techniques, there exist two limitations: (1) they usu-

ally consider Gaussian rewards, which are not suitable for

implicit feedback data powering most recommender systems,

and (2) they are restricted to the one-item recommendation

setting while typically a list of recommendations is given. In

this paper, to address these limitations, apart from Gaussian

rewards we also consider Bernoulli rewards, the latter being

suitable for dyadic data. Also, we consider two user click

models: the one-item click/no-click model, and the cascade

click model which is suitable for top-K recommendations.

For these settings, we propose novel machine learning algo-

rithms that learn to interact with users by learning the un-

derlying parameters collaboratively across users and items.

We provide an extensive empirical study, which is the first to

illustrate all pairwise empirical comparisons across different

interactive learning algorithms for recommendation. Our ex-

periments demonstrate that when the number of users and

items is large, propagating the feedback across users and

items while learning latent features is the most effective ap-

proach for systems to learn to interact with the users.

1 Introduction

Learning to interact with users is at the core of many
web applications, ranging from search engines, to rec-
ommender systems, and more [15]. The reason is that
these systems exhibit the user-system interaction loop:
every time a user uses the system, the system has de-
cided to show a list of items to the user, from which the
user selects zero, one, or more items; then, the system
gets the user’s feedback (in terms of clicks, time spent,
and other signals) to update its model of the user’s pref-
∗The research was supported by NSF grants IIS-1563950, IIS-

1447566, IIS-1447574, IIS-1422557, CCF-1451986, CNS-1314560,
IIS-0953274, IIS-1029711, NASA grant NNX12AQ39A, and gifts

from Adobe, IBM, and Yahoo.
†Department of Computer Science & Engineering, University

of Minnesota, Twin Cities. {christa, banerjee}@cs.umn.edu

erences – which might affect the system’s future deci-
sions on this and other users.

This inherently interactive nature of web systems
creates the need for machine learning models that learn
how to interact with users over time; instead of static
models trained based on offline data, that are periodi-
cally retrained to incorporate newly acquired informa-
tion. Such interactive learning models are largely com-
posed of two parts: which technique is used to balance
the need for exploring user preferences vs. exploiting
what has been learned so far, and what are the under-
lying model assumptions for the user reward?

In this work, inspired by recent works which pose
recommendation as an interactive learning problem
[17,20,22,36], we build on two good ideas, corresponding
to each of these two parts. First, given that the recom-
mender system sequentially learns about its users and
items from repeated interactions, we make use of the
construction of multi-armed bandits, i.e., a well-known
tool used to accumulate rewards from an unknown re-
ward distribution, whose parameters are to be sequen-
tially learned [27] – we particularly focus on Thompson
Sampling thanks to its good empirical guarantees [7].
Second, the collaborative filtering principle, i.e., similar
users tend to like different items similarly, is a powerful
tool which can be used to inform the underlying inter-
active learning models. By merging the two ideas, one
can develop algorithms which learn to effectively inter-
act with users, by propagating the user feedback across
users and items. The construction, although illustrated
in the context of recommender systems, can be used in
other web systems where personalization plays a key fac-
tor, ranging from medical interventions, to personalized
search engines, and more.

Particularly, our contributions are three-fold:
1. As most user interaction data are implicit and are

an important signal for learning recommendations
[14, 16], we develop new algorithms well-suited for
Bernoulli rewards (Sections 4.1, 4.2).

2. Establishing the connection among one-item and
cascade list recommendation algorithms (Section
3), we offer the novel construction of collaborative
cascade ranking bandits (Section 4.2).

3. Empirical evaluation carefully considers both the

Copyright c© 2018 by SIAM

Unauthorized reproduction of this article is prohibited

one-item and the cascade list setup, under both
Gaussian and Bernoulli rewards; as far as we know,
this is the first study making all such pairwise
comparisons (Section 5).

Our extensive experiments show that for both the one-
item and cascade list setup, when the number of users
and items in the system is large, (1) collaborative ban-
dits outperform running individual bandits per user;
and (2) collaboratively learning across users indeed out-
performs the contextual linear and clustering principle
in the interactive learning setting.

2 Key Concepts & Overview

We start with a discussion of some useful concepts.

2.1 Collaborative Filtering. A widely used prin-
ciple in recommender systems is collaborative filtering,
which relies on the observation that similar users tend
to have similar preferences over the items [26]. Latent
factor-based collaborative filtering achieves state-of-the-
art performance in recommender systems, by learning
the latent preferences of users and items in a low dimen-
sional space [25, 26]. If M is the number of users and
N the number of items, the rating matrix R ∈ RM×N

of users’ ratings on items can be approximated by the
inner product of two low dimensional latent factor ma-
trices: U ∈ RM×d and V ∈ RN×d, which represent the
latent features of the users and items respectively.

2.2 Recommendation as Learning to Interact.
Recommender systems sequentially learn the users’ pref-
erences based on repeated interactions with them. Let’s
assume that at each interaction round, a user, randomly
drawn from the user population, comes to the system.
Then, the system-user interaction model is character-
ized by two steps:
• step 1: the decision step, where the system decides to

show an item (or list) to the user, on which the user
gives feedback (reward) explicitly or implicitly; and

• step 2: the model update step, where the system up-
dates its parameters using the user-provided feedback.

The system’s goal is to select items so that maximum
cumulative reward (or minimum cumulative regret) over
the total T interaction rounds is achieved.

Given the sequential nature of the interactions,
every user can be seen as a multi-armed bandit [27] –
that is, for every user who interacts with the system the
parameters underlying the user’s reward model have to
be sequentially learned.The arms or actions of the user-
bandit are the candidate items for recommendation. In
the rest of the paper, we will use the terms users/bandits
and items/arms interchangeably. For a user i ∈ U , let
Li be the set of active arms, which are the candidate

items for recommendation (noting that the cardinality
of Li can be less than N). The reward of item j for
a user i is denoted by rij and captures the feedback
(e.g., click/no-click, buy/not-buy, rating) user i gives on
item j. Rather than the reward matrix R = [rij] being
arbitrary, we will assume that R has a parametric form,
and specific rewards rij depend on the user i, the item
j, and the unknown parameters θ∗ (such an assumption
will be empirically evaluated in Section 5).

2.3 User Reward Models. We assume that the
rewards of the arms per bandit are stochastic [10]. This
allows for a flexible setting where user feedback is noisy,
as is the case in various recommendation scenarios,
including news and content recommendation [2]. We
consider the following two types of rewards:
• Gaussian Rewards: the reward of item j for user
i is modeled with a Gaussian distribution rij ∼
N (µ∗ij , σ

2
ij), rij = µ∗ij + εij , where εij ∼ N (0, σ2

ij) is
the noise and µ∗ij is the average rating of user i on j.

• Bernoulli Rewards: suited for settings where a user
gives binary feedback (explicit, e.g., thumbs up/down
on a song, or implicit e.g., click/skip on a news article).
Let π∗ij ∈ [0, 1] be the probability that user i likes an
item j. Then, we model the reward of user i on j with a
Bernoulli distribution rij = Ber(π∗ij), i.e., rij = 1 with
probability π∗ij and rij = 0 with probability 1− π∗ij .

In both reward models, the reward of item j ∈ Li for
every user i is modeled based on a true parameter θ∗ij
(π∗ij for Bernoulli rewards or µ∗ij for Gaussian rewards).
If we knew the true value of θ∗ij , at every round the
system would pick for incoming user i the item that
maximizes the expected reward, maxj E(rij |i, j, θ∗ij).

2.4 Random Probability Matching Principle.
Since we do not know the true value of the underly-
ing parameters θ∗, we maintain a distribution over the
parameters P (θ). If we wanted to maximize the im-
mediate reward in a pure exploit setting, one would
choose for user i the item that maximizes E[rij |i, j] =∫

E[rij |i, j, θij]P (θij |·)dθij . However, to balance the ex-
plore/exploit (EE) tradeoff, Thompson Sampling (TS)
[30] uses the probability matching heuristic, and chooses
for bandit i an action j according to its probability of
being optimal [7], i.e., with probability:∫
1

[
E[rij |i, j, θij] = max

j′∈Li

E[rij′ |i, j′, θij′]
]
P (θij |·)dθij ,

where 1[·] is the indicator function, the E inside the
integral denotes expectation over the stochastic nature
of the rewards, and the integral denotes expectation
over the parameter distribution. The integral can be
approximated by drawing for every arm j a sample from

Copyright c© 2018 by SIAM
Unauthorized reproduction of this article is prohibited

Algorithm 1 TS-based One-Item Recommendation

Require: hyper-parameters of the prior P 0(θ).
1: for round t = 1, . . . , T do
2: User i ∼ Uniform(1,M) comes to the system.
3: for j = 1, . . . , |Li| do
4: Draw θ̃ij ∼ Posterior distribution P (θij |D, ·).
5: end for
6: ∀j: estimate reward as a function of the sampled

parameters r̃ij = f(θ̃ij , ·).
7: Show the item ĵ = arg maxj r̃ij .
8: Observe reward riĵ : (i) for Bernoulli: ∼ Ber(θ∗

iĵ
), (ii)

for Gaussian: ∼ N (θ∗
iĵ
, σ2

ij).
9: Update parameters θ.

10: end for

the corresponding posterior P (θij |·). TS chooses the
arm with the largest drawn posterior sample.

Various EE strategies such as UCB [3], ε-greedy
or TS have been used in the different works posing
recommendation as a learning to interact problem [17,
20,22,36]. Throughout this work, we use TS as it can be
efficiently implemented and it has been shown to have
competitive empirical performance [7].1

2.5 Click Models.
• One/no-click: a single item is presented to the user

and the user decides to click or skip (or to explicitly
like or dislike). We interchangeably refer to this as
one-item.

• Cascade Model: originally introduced to study web
search behavior, it models the interaction of the user
with a top-K list [9]. It assumes that the user
examines the list top to bottom, and clicks one item
as soon as they find an interesting one. The user
decides whether to click on each item before moving
to the next, and the click probability on each item is
independent from the rest. Thus, if a user clicks on
item j at position k (jk), they dislike the items on
the above k − 1 positions, and ignore the items from
k + 1 onward. The probability of clicking item jk is
cjk = rjk

∏k−1
l=1 (1− rjl), where rj is the probability of

clicking item j, and 1− rj is the skipping probability.

3 Learning to Interact with Users

Recommender systems that learn to interact with users
balance the need to learn new information about the
user (explore) while also focusing on what has already
been learned about their preferences (exploit). They
achieve this for a user i in the following way. They

1Our goal is not to compare TS with other EE strategies, or to
compare alternative ways of posterior sampling; rather, keeping

TS as the EE strategy of our choice, we aim to compare the
interactive learning recommendation algorithms.

Algorithm 2 TS-based Cascade List Recommendation

Require: hyper-parameters of the prior P 0(θ).
1: for round t = 1, . . . , T do
2: User i ∼ Uniform(1,M) comes to the system.
3: for j = 1, . . . , |Li| do
4: Draw θ̃ij ∼ Posterior distribution P (θij |D, ·).
5: end for
6: ∀j: estimate r̃ij = f(θ̃ij , ·), sort items based on r̃ij ,

and show the top K items.
7: Observe feedback on position Ct (at most 1 click).
8: for l = 0, . . . ,min(Ct,K) do
9: Update parameters for item ĵ at position l.

10: end for
11: end for

start with a prior distribution over the latent parameters
of the reward distribution p0(θij) for every item j.
Typically, a conjugate prior of the likelihood p(D|θij , ·)
is used, where D is the collection of the thus far observed
rewards, so that the posterior distribution p(θij |D, ·) ∝
p(D|θij , ·)p0(θij) is of the same form as the prior. Next,
for every item j the system gets a sample from the
posterior θ̃ij ∼ P (θij |D, ·), and shows the item that
results in the largest reward r̃ij , estimated as a function

of θ̃ij . The user gives feedback on the shown item

ĵ, and based on this feedback the system updates its
belief about the underlying parameters of the reward
distribution. In the next interaction round the updated
posterior distribution becomes the new prior. The wider
the posterior distribution, the more the system explores.
As more feedback is collected, the posterior distribution
P (θij |D, ·) becomes more peaked and shifts to better
capture the mean of the true underlying parameters θ∗ij
– thus, the system exploits more.

One/no-click vs. Cascade list. Algorithms 1
and 2 show the discussed procedure for the one/no-
click model and the cascade list model respectively.
Comparing the two algorithms, it is easy to establish
the connection among learning to interact algorithms for
one-item and cascade list recommendation. The cascade
list recommendation algorithms differ from the click/no-
click ones in two aspects: (i) they select the top K items
instead of just the top one, and (ii) the model updates
its parameters based on skips/clicks for all items up
until and including the clicked one; the model performs
no update for the items after the click. Later in the
paper, we will exploit this connection to create novel
learning to interact algorithms for the cascade model.

3.1 Parametric Assumptions for User Rewards.
The various learning to interact recommendation algo-
rithms differ only in their parametric assumptions for
the reward distribution; specifically in the input prior

Copyright c© 2018 by SIAM
Unauthorized reproduction of this article is prohibited

distribution (line 0), the posterior distribution (line 4),
the definition of reward as a function of the parameters
θ (line 6), and the way they update the parameters (line
9). Some parametric assumptions are:

1. Independent [7]: The reward parameters of the items
j, j′ of a given user i are uncorrelated, i.e., θ∗ij 6= θ∗ij′ .
Also, the parameters for every user i are independent
from the parameters of every other user i′ ∈ U .

2. Contextual Linear [20,21]: Every arm j is represented
by a feature vector xj ∈ Rd representing the context.
For a user i the rewards of the different arms are
correlated via a common parameter vector θ∗i ∈
Rd capturing how important each dimension of the
context is: E[rij] = h(θ∗Ti xj), where for Gaussian
rewards h is the identity function, while for Bernoulli
rewards it is the sigmoid function σ(·) = 1

1+exp(−·) .

3. Contextual Clustering [12, 13, 18, 24]: This case as-
sumes that there exist clusters of the user population
which have similar rating behaviors over the items,
and contextual features xj ∈ Rd are available for each
item j. All users who belong to the same cluster c
will share the same reward parameter vector θ∗c ∈ Rd:
E[rij] = h(θ∗Tc xj). The parameters of cluster c are
independent from those of any other cluster c′.

4. Low-Rank CF [8, 17, 36]: Using the CF view and
particularly the low-rank assumption (Section 2.1),
both users and items can be represented by latent
feature vectors. Concretely, considering ∀i ∈ U ri ∈
R
N the vector of true underlying rewards, we assume

the reward matrix R ∈ R
M×N is drawn from a

parameter matrix Θ∗ which is a function of a low-rank
matrix. Thus, if u∗i denotes the i-th row of the true
latent user matrix U∗ and v∗j the j-th row of the true

underlying latent item matrix V ∗, E[rij] = h(u∗Ti v∗j).

Note that with the independent assumption, if ∀i ∈
U , |Li| = N , M × N parameters need to be learned.
In contrast, the other parametric models do parame-
ter sharing, coupling the items (and the users/clusters).
Contextual linear and clustering models assume that
contextual features are available and informative, which
is not always true. Also, while both clustering and CF
models share parameters among users with similar rat-
ing patterns, the former capture coarser user preferences
represented by the clusters, whereas the latter can col-
laboratively learn finer grained latent preferences.

3.2 Existing Algorithms & Outline. For One-
Item Recommendation: As far as we know, the indepen-
dent assumption has been employed only within the con-
text of a single multi-armed bandit [7], not as a baseline
in multiple user-bandits for recommender systems – we

have derived Gauss/Bernoulli Independent TS. Us-
ing the contextual linear principle has led to the pioneer-
ing work for applying bandits on news recommendation,
resulting in LinTS and LogTS for Gaussian and Bernoulli
rewards respectively [20, 21]. The contextual cluster-
ing principle has been applied for Gaussian rewards, re-
sulting in CluLinTS (in Section 5 we experiment with
the variant of [24], but other sophisticated variants ex-
ist [12, 13, 18]) – we have also devised CluLogTS for
Bernoulli rewards. The CF low-rank principle has been
applied on interactive recommenders for Gaussian re-
wards, giving rise to Gauss Low Rank TS [17] (also, the
CF principle has been applied using co-clustering in-
stead of matrix factorization in [22]). In Section 4.1, we
will offer collaborative low-rank bandits for Bernoulli re-
wards as well. Its predecessor was Gauss/ Bernoulli

ICF, standing for Interactive Collaborative Filtering,
where the items’ latent factors V are pre-learned and
used as contextual features, allowing to pose the prob-
lem in a contextual linear setting [36].

For the Cascade setup, the independent assump-
tion has been applied, resulting to Gauss/Bernoulli

Independent Cascade TS [19]. Also, the contextual
linear principle has been used, leading to CascadeLinTS

[37] for Gaussian feedback – we have also devised
CascadeLogTS for Bernoulli rewards. On the one hand,
these methods are suitable for large-scale recommenda-
tion data, since the independent assumption does not
scale well when the number of items candidate for rec-
ommendation is large (as is usually the case) [37]. On
the other hand, they suffer from the following draw-
backs: they rely on contextual features, and they do not
propagate feedback among users, thus neglecting that
similar users tend to like the various items similarly.
In Section 4.2, we will apply the low-rank CF assump-
tion, giving rise to the novel construction of collaborative
low-rank cascade bandits. Also, we have devised Gauss/

Bernoulli ICF Cascade TS; specifically we have for-
mulated the problem as a separate CascadeLinTS or
CascadeLogTS per user, and used as contextual features
the pre-learned latent attributes of the items.2

The parameter updates of the existing and novel
interactive recommendation algorithms are in the sup-
plementary material.3

4 Learning to Collaboratively Interact with
Users: Proposed Algorithms

In this section we proceed with our novel contributions
on learning to interact with users by collaboratively

2We omit the development of clustering cascade bandits, as

early experiments showed the value of low-rank.
3https://www-users.cs.umn.edu/~chri3275/

suppl-230-sdm-2018.pdf

Copyright c© 2018 by SIAM

Unauthorized reproduction of this article is prohibited

learning parameters across them.
In our formulations, we build on two good ideas: (1)

collaborative filtering and (2) interactive learning. The
merge of these two ideas is key for efficiently propagat-
ing feedback among users, while at the same time learn-
ing the low dimensional embeddings of users and items
on the same underlying latent space. The construction
is suited for scenarios where contextual features are not
explicitly given, and the fine-grained similar rating pat-
terns are to be discovered collaboratively.

Although the combination of the two ideas has been
explored in [8,17,22], we propose two technical develop-
ments: (1) We develop collaborative bernoulli bandits
referred to as Bernoulli Low Rank TS, considering the
popular logistic matrix factorization model [16] which
is successful for modeling click/no-click data, which are
widely available in recommender systems. This is use-
ful as most recommendation algorithms for top-K rec-
ommendation are powered from implicit type data [14].
(2) Having realized the connection among the one-item
and cascade setup (Section 3), we develop collaborative
interactive learning algorithms for the cascade setting
both for Gaussian and Bernoulli user reward models.

4.1 One-Item Bernoulli Collaborative Bandits.
In this setting, we use the low-rank CF assumption to
couple the probabilities {πij} across users {i}Mi=1 and
items {j}Nj=1. We assume that every entry πij of the

matrix Π ∈ RM×N (i.e., the probabilities of how much
each user likes every item) will be estimated by the
sigmoid function of the inner product of ui and vj .
The sigmoid function is used to map the entries to the
range of [0, 1] as they represent probabilities. Partic-
ularly, Bernoulli Low Rank TS assumes that E[rij] =
σ(uTi vj) = 1/(1 + exp(−uTi vj)). The model considered
for parameter estimation follows the modeling assump-
tions of probabilistic logistic matrix factorization [16]
and is also related to [11]. At step t:

∀i : uti ∼ N (û
(t−1)
i , St−1ui

) ∀j : vtj ∼ N (v̂
(t−1)
j , St−1vj

)

∀ij : πtij = σ(ut
T

i vtj), r
t
ij ∼ Bernoulli(πtij)

The log of the posterior distribution over the user and
the item latent features U, V is:∑

i

∑
ĵ

rt
iĵ

lnπt
iĵ

+ (1− rt
iĵ

) ln(1− πt
iĵ

)

− 1

2

M∑
i=1

(uti − û
(t−1)
i)TS(t−1)−1

ui
(uti − û

(t−1)
i)

− 1

2

N∑
j=1

(vtj − v̂
(t−1)
j)TS(t−1)−1

vj
(vtj − v̂

(t−1)
j).(4.1)

If we fix the latent item features V and consider
a single user i, Equation (4.1) reduces to a logistic
regression problem with parameter vector ui. Given
that exact Bayesian inference for logistic regression
is intractable, we use the Laplace approximation to
approximate the conditional posterior of ui with a
Gaussian distribution q(ui) = N (ui|ûi, Sui

, ·), where
ûi = uMAP

i is the mode of the posterior and Sui
is the

Hessian matrix of second derivatives of the negative log
posterior [4]. We compute the mode of the posterior
by minimizing the negative log posterior with online
gradient descent ût+1

i ← ûti − ηt∇tui
:

∇tui
= S(t−1)−1

ui
(ûti − ût−1i) + (πt

iĵ
− rt

iĵ
)vt
ĵ
,

where the step size follows the Adagrad rule ηt =

1/
√∑t−1

τ=0∇u2
i,τ . The inverse of Sui

, denoted as S−1ui
,

is constructed online as:

(4.2) St+1−1

ui
= St

−1

ui
+ πt

iĵ
(1− πt

iĵ
)vt
ĵ
vt

T

ĵ
.

using moment matching [4]. Similarly, we approximate
the posterior distribution of the latent feature of items
q(vj) = N (vj |v̂j , Svj

, ·). In practice, to efficiently
compute the inverse of Sui , Svj , we used the Woodburry
matrix identity [34].

Concretely, Bernoulli Low Rank TS proceeds as
follows: At every round that user i interacts with the
recommender system, we sample ũi from the posterior
N (ui|ûi, Sui

, ·), and for every arm j ∈ Li, we sample ṽj
from the posterior N (vj |v̂j , Svj , ·). We show the item

ĵ = arg maxj ũTi ṽj (as sigmoid is a monotonic function).
The user provides feedback riĵ . Based on this feedback,
we update ûi, Sui

, v̂ĵ , Svĵ
, thus updating the posteriors.

At the next round, the posteriors become the new priors.

4.2 Collaborative Cascade Ranking Bandits.
Here, we propose a novel algorithm assuming the low-
rank CF principle for the cascade list recommendation
setting. Recall that the cascade list setting is suitable
for systems learning to interact with users in a top-
K list recommendation setup (Section 2.5). We model
the reward of an item j for user i with E[rij] = uTi vj
for Gaussian rewards, and E[rij] = sigmoid(uTi vj) for
Bernoulli rewards similarly to Section 4.1.

Gauss/Bernoulli Low Rank Cascade TS pro-
ceeds: At every user i-system interaction round we
sample ũi ∼ N (ui|ûi, Sui , ·), and ṽj ∼ N (vj |v̂j , Svj , ·)
∀ candidate item j. Sorting the estimated rewards
r̃ij = ũTi ṽj , we present the list of items with the top
K rewards. We observe the user’s click on an item
from the top-K list (if any), and update ûi, Sui

, v̂ĵ , Svĵ

for every item ĵ at position ≤ the position of the click

Copyright c© 2018 by SIAM

Unauthorized reproduction of this article is prohibited

using as feedback riĵ = 0 for the skipped items, and
riĵ = 1 for the clicked item.

This new collaborative cascade ranking formulation
does not need contextual features, and can learn the
underlying implicit structure among users and items on
the fly. This is what allows for effective propagation of
the feedback across items and users via the learned em-
bedding; and can lead to improved regret performance.

5 Experimental Results

We present our experiments with the goal of addressing
the following questions:
RQ1 For one-item recommendation, which TS-based

interactive recommendation algorithm is the most
effective?

RQ2 For top-K cascade list recommendation, how
collaborative cascade ranking bandits compare to
the other learning to interact algorithms?

5.1 Experimental Procedure. For each question
we consider both Gaussian rewards and Bernoulli re-
wards, using the corresponding set of algorithms.4

Methods. We compare ten algorithms for the
click/no-click setup – five for Gaussian and five for
Bernoulli; and eight algorithms for the cascade click
setup – four for Gaussian and four for Bernoulli rewards.
Additionally, we included the baseline strategies of:
(i) Random, an explore-only strategy, which at every
round, selects for the incoming user i a random item
from the set of active arms Li, and (ii) Low Rank (LR)

Greedy, an exploit-only low-rank CF strategy, which at
every round, instead of sampling from the distributions
P (ui|ûi, Sui

, ·), P (vĵ |v̂ĵ , Svĵ
, ·), operates according to

the distribution means ûi, v̂ĵ , following precisely [23].
Evaluation Metric. We evaluate the algorithms

in terms of cumulative regret, as learning to interact
algorithms aim to minimize the difference between
their actual performance and the optimal performance
[27]. Formally, the cumulative regret over T rounds is

RT = E[
∑T
t=1 rA∗,θ∗ −rAt,θt)], where A∗ is the optimal

item/list maximizing the reward at any time t, At what
the system actually showed at round t, and r denotes
the reward. Smaller values of RT are better, with 0
indicating optimal system performance.

Datasets. We used real recommendation data,
whose statistics are shown in Table 1. Particularly,
we considered three movie datasets: Movielens 100K,
Movielens 1M, Netflix and a musical artist dataset from
Yahoo!. For the Yahoo! dataset we first selected the
1,000 most popular items and then the 6,000 most
heavy users, re-scaling the ratings to the scale of 1-6.

4A comparison among the two sets though is not applicable,
due to the separate reward generation procedures.

Dataset # Users # Items # Ratings
Movielens 100K 943 1,682 100,000
Movielens 1M 6,040 3,706 1,000,209
Netflix 5,000 500 1,922,815
Yahoo! 6,000 1,000 3,522,232

Table 1: Real Data Statistics

Similarly for the Netflix dataset, we considered a dense
sub-matrix containing the 500 most popular items and
the 5,000 most heavy users.

Offline to Interactive Setup. Evaluating learn-
ing to interact algorithms on offline datasets, is a known
issue and an active research topic [21]. Most public
recommendation data, including the ones considered
in Table 1, contain ratings on user-item interactions
without giving access to the counter-factual response,
i.e., how every user would have interacted with other
items, had they been shown to them. Although rejec-
tion sampling and importance sampling techniques have
been proposed, they typically require large-scale explo-
ration data [20,21]; however, the collected recommenda-
tion data are far from being purely exploratory. Thus,
adopting the setup used in other interactive recommen-
dation works (e.g., [17]), we incrementally showed en-
tries of the observed rating matrix as follows: At the
0-th interaction round, no entry of the reward matrix R
has been revealed. At every round t, we randomly sam-
ple one of the users present in the data it to interact
with the system; this can be a user the system has al-
ready interacted with in previous rounds (warm-start),
or a new one (cold-start). We consider as the active set
of arms for user i, i.e., Li, only the items he has rated
in the original dataset. The under evaluation algorithm
decides which arm(s)/item(s) to recommend to the user.

Feedback Simulation. We simulate the user’s
feedback on the shown item ĵt using the two reward
models discussed in Section 2.3. For this, we need
access to (i) the true underlying parameters θ∗ and
(ii) for Gaussian rewards, the noise level. For (i), we
performed a transformation of the rating values of the
original datasets. The original Movielens 100K and 1M
contain ratings in a scale of 1 to 5 stars, while Netflix
and Yahoo! have ratings in a 1 to 6 scale. To set
the µ∗ij of Gaussian rewards, we converted all ratings
≥ 4 to 1 (user likes the item), and < 4 to 0.01 (user
dislikes the item). For Bernoulli rewards, we set the true
user probability of liking an item π∗ij by transforming
the original ratings of scale [1, 5 or 6] to the scale [0, 1)
so as to represent probabilities. For this, we used the
mapping [4.5, 6] → 0.9, [4, 4.5) → 0.85, [3.5, 4) → 0.8,
[0.5, 3.5) → 0.05, [0, 0.5) → 0 which indicates that the
higher the rating, the more likely the user will click on
the item. For (ii), for the one/no-click model, we set
noise σij to 0.5 ∀i, j; in contrast, for the cascade click

Copyright c© 2018 by SIAM

Unauthorized reproduction of this article is prohibited

Figure 1: Comparison of learning to interact algorithms for the One Item setup w.r.t cumulative regret. The
low-rank hypothesis achieves the best performance, except for Movielens 100K Gauss, where LinTS is the best.

model we set noise to 0 (1 is a click, and 0.01 a skip).
Parameter Setting. We set the number of in-

teraction rounds T to 1,000,000. We initialize the
parameters of the prior distributions as follows: For
Independent (Cascade) TS, we set the prior to a
broad one, i.e., N (0, 1). For Bernoulli Low Rank

(Cascade) TS, we set the variance of the user and item
latent features to 0.1, i.e., σ2

u = σ2
v = 0.1. For Gauss

Low Rank (Cascade) TS, we set σ2
u, σ

2
v to 0.001. These

choices were made as we found that larger variance
values can lead to deteriorated performance. In any
method assuming low-rank structure, a rank of 2 is used,
similarly to [17]. For clustered bandits, the number of
clusters is set to 10. In practice, one should do param-
eter tuning. In the supplementary material, we explore
Low Rank TS’s sensitivity to the various parameters.

5.2 RQ1: Which interactive recommender is
the best for one/no-click recommendation? Fig-
ure 1 shows the performance of the learning to interact
recommendation algorithms for the one/no-click setup.
Results only for Movielens 1M (Gauss and Bernoulli)
and Movielens 100K (Gauss) are shown for brevity.

Low rank vs. Independent. In all four datasets,
both for Bernoulli and Gaussian rewards, Low Rank TS

is (among) the best strategies. Particularly, for datasets
with a larger number of observations (Movielens 1M,
Netflix and Yahoo!), Low Rank TS seems to couple
users and items in the low dimensional embedding
effectively; thus making the value of the low rank
representation more prominent. In these cases, Low

Rank TS clearly outperforms Independent TS (IndTS),
whose performance is close to Random. In contrast, for
datasets with fewer observations (Movielens 100K), the
gap between Low Rank TS and Independent TS closes.

Greedy vs. TS. For Gaussian rewards, for Movielens
100K and Movielens 1M LR Greedy performs closely to
Low Rank TS – this is due to the small value of noise;
while for larger scale datasets Low Rank TS is the best.
For Bernoulli rewards, LR Greedy surpasses Low Rank

TS, indicating that the low-rank part is more important
than the exploration part. This happens because we set
π∗ij very close to the extremes of 0 and 1.

Latent context vs. Explicit context. Recall that
CluLinTS, LinTS, CluLogTS and LogTS are the only
algorithms which use the contextual information. We
evaluate these algorithms’ performance only for Movie-
lens 100K and Movielens 1M, as these are the only
datasets which contain explicit context. We used as
contextual features the items’ genre features, since it
has been found that genre correlates well with the
users’ ratings for these datasets [29]. Every such fea-
ture is represented as an one-hot encoding of the gen-
res characterizing the movie, and has dimension the
total number of genres (19 for Movielens 100K and
18 for Movielens 1M). We can see that for Movielens
100K, the genre feature is informative enough, as af-
ter about 400,000 interaction rounds LinTS outperforms
Low Rank TS. However, for the larger dataset of Movie-
lens 1M, even though Low Rank TS does not take ad-
vantage of the explicit context information, it is able to
surpass LinTS by learning both user and item features.
For Bernoulli rewards, for both datasets, treating rec-
ommendation as a low-rank bandit problem instead of
a contextual linear bandit is better.

Comparing the contextual algorithms, we see that
for Bernoulli rewards, sharing feedback among the
clusters outperforms having independent LogTS per user
for Movielens 1M, whereas the opposite trend is found in
Movielens 100K. For Gaussian rewards, in both datasets
LinTS is better than CluLinTS, but the performance gap
closes for the larger Movielens 1M.

Fixing V vs. learning V . Recall that ICF uses an
independent LinTS per user using as contextual features
pre-learned item latent features V . Following [17], for
ICF we learn V by performing online Gaussian/Logistic
matrix factorization in the first 20%T of the interaction
rounds, during which we randomly show an item while
updating vj and the user covariance matrix Sui

. After

20%T rounds, we fix vj and we show the item ĵ =

Copyright c© 2018 by SIAM
Unauthorized reproduction of this article is prohibited

Figure 2: Comparison of learning to interact algorithms for the Cascade List setup in terms of cumulative regret.
For larger datasets, the low rank principle for the cascade ranking setup achieves the smallest regret.

arg maxj ũTi vj . In all the datasets, learning the latent
features of both users and items via Low Rank TS

surpasses ICF both for Gaussian and Bernoulli rewards.

5.3 RQ2: Which interactive recommender is
the best for cascade list recommendation? Figure
2 shows how collaborative cascade bandits compare
to the rest cascade learning to interact algorithms.
Based on results from all datasets (although only the
performance for Movielens 1M Bernoulli, Movielens
100K Gauss, and Yahoo! Gauss are depicted due to
space constraints), we observe the following:

Independent vs. Low Rank. When enough observa-
tions are available (Movielens 1M, Netflix, Yahoo!), Low
Rank Cascade TS outperforms Independent Cascade

TS. But when the number of these observations is small
(Movielens 100K), Independent Cascade TS is better.

Latent context vs. Explicit context. For Movie-
lens 100K, using the genre feature as context is
enough to achieve quite good performance; partic-
ularly, for Gaussian rewards, CascadeLinTS is the
best performing strategy. In contrast, in the larger
dataset of Movielens 1M, learning on the fly the
latent attributes of users and items via Low Rank

Cascade TS results in a smaller regret compared to
CascadeLinTS/CascadeLogTS for either reward setting.

We conclude that for both Bernoulli and Gaussian
rewards, Low Rank Cascade TS is the best performing
strategy for large-scale datasets. The only exception is
the Yahoo! dataset for Gaussian rewards, where ICF

Cascade TS surpasses Low Rank Cascade TS; which
however again is a low-rank cascade bandit strategy.

6 Related Work

Here we highlight some pairwise comparisons among the
various learning to interact for recommendation algo-
rithms which have happened in the literature: (1) Li et
al. devised contextual linear bandits and showed that

their proposed algorithm LinUCB outperforms several
baselines (e.g., popular, random, user segment-based al-
gorithms) [20]. (2) The authors of [24] using the cluster-
ing parametric assumptions on top of LinUCB, devised
CluLinUCB and showed that it outperforms having an
independent LinUCB for each user, and performs simi-
larly or better than the closely related baseline proposed
in [13]. (3) Zhao et al. proposed ICF, posing recommen-
dation as a contextual linear bandit with context the
learned item features, and showed that it outperforms
interview-based and active learning strategies with a few
user-system interactions [36]. (4) In [17], Kawale et al.
showed that combining TS with online matrix factoriza-
tion, while maintaining particle filters to sample from
the posterior, outperforms ICF as well as alternative
ways of posterior sampling. A similar model was pro-
posed for conversational recommender systems [8]. (5)
In [22], Li et al.’s collaborative filtering bandits, which
implement the CF view via co-clustering, were shown
to surpass LinUCB and the clustering bandits in [6, 13].
Other relevant works are [12, 18, 32, 35], which all com-
bine the clustering or CF principle with contextual fea-
tures on the Gaussian rewards, one-item setup.

Other works balancing the EE tradeoff in recom-
mendation are: [1] which gives bayesian schemes for
serving content, [31] which combines Gaussian pro-
cesses with EE, [5] which proposes an ε-greedy user-user
neighbor-based CF method, [28] which gives an ε-greedy
online matrix factorization method, and [33] which com-
bines CF with TS and topic models.

7 Conclusions

In this paper, we tackled the problem of learning to
interact with users, which is central in recommender
systems, and made the following contributions:
• Algorithms: We (a) developed interactive learning

recommendation algorithms suitable for dyadic data,
and (b) offered the novel collaborative cascade bandits.
• Experiments: (a) We provided an extensive study

making all pairwise comparisons among various learn-
ing to interact algorithms for recommendation: 10 al-

Copyright c© 2018 by SIAM
Unauthorized reproduction of this article is prohibited

gorithms for one-item (5 for Bernoulli, 5 for Gaussian),
and 8 algorithms for cascade list (4 for Bernoulli, 4 for
Gaussian). (b) We showed that for large-scale data,
collaboratively learning to interact algorithms are the
best performing ones.

References

[1] D. Agarwal, B.-C. Chen, and P. Elango. Ex-
plore/exploit schemes for web content optimization. In
ICDM, pages 1–10, 2009.

[2] D. Agarwal, B.-C. Chen, P. Elango, and R. Ramakrish-
nan. Content recommendation on web portals. Com-
munications of the ACM, 56(6):92–101, 2013.

[3] P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite-time
analysis of the multiarmed bandit problem. Machine
learning, 47(2-3):235–256, 2002.

[4] A. Banerjee. On bayesian bounds. In ICML, pages
81–88, 2006.

[5] G. Bresler, G. H. Chen, and D. Shah. A latent source
model for online collaborative filtering. In NIPS, pages
3347–3355, 2014.

[6] N. Cesa-Bianchi, C. Gentile, and G. Zappella. A gang
of bandits. In NIPS, pages 737–745, 2013.

[7] O. Chapelle and L. Li. An empirical evaluation of
thompson sampling. In NIPS, pages 2249–2257, 2011.

[8] K. Christakopoulou, F. Radlinski, and K. Hofmann.
Towards conversational recommender systems. In
KDD, pages 815–824, 2016.

[9] N. Craswell, O. Zoeter, M. Taylor, and B. Ramsey. An
experimental comparison of click position-bias models.
In WSDM, pages 87–94, 2008.

[10] V. Dani, T. P. Hayes, and S. M. Kakade. Stochastic
linear optimization under bandit feedback. In COLT,
pages 355–366, 2008.

[11] M. A. Davenport, Y. Plan, E. van den Berg, and
M. Wootters. 1-bit matrix completion. Information
and Inference, 3(3):189–223, 2014.

[12] C. Gentile, S. Li, P. Kar, A. Karatzoglou, G. Zappella,
and E. Etrue. On context-dependent clustering of
bandits. In ICML, pages 1253–1262, 2017.

[13] C. Gentile, S. Li, and G. Zappella. Online clustering of
bandits. In ICML, pages 757–765, 2014.

[14] Y. Hu, Y. Koren, and C. Volinsky. Collaborative
filtering for implicit feedback datasets. In ICDM, pages
263–272, 2008.

[15] D. Jannach, P. Resnick, A. Tuzhilin, and M. Zanker.
Recommender systems—: beyond matrix completion.
Communications of the ACM, 59(11):94–102, 2016.

[16] C. C. Johnson. Logistic matrix factorization for implicit
feedback data. In NIPS 2014 Workshop on Distributed
Machine Learning and Matrix Computations, 2014.

[17] J. Kawale, H. H. Bui, B. Kveton, L. Tran-Thanh, and
S. Chawla. Efficient thompson sampling for online?
matrix-factorization recommendation. In NIPS, pages
1297–1305, 2015.

[18] N. Korda, B. Szörényi, and L. Shuai. Distributed

clustering of linear bandits in peer to peer networks.
In ICML, pages 1301–1309, 2016.

[19] B. Kveton, C. Szepesvari, Z. Wen, and A. Ashkan.
Cascading bandits: Learning to rank in the cascade
model. In ICML, pages 767–776, 2015.

[20] L. Li, W. Chu, J. Langford, and R. E. Schapire. A
contextual-bandit approach to personalized news article
recommendation. In WWW, pages 661–670, 2010.

[21] L. Li, W. Chu, J. Langford, and X. Wang. Unbiased
offline evaluation of contextual-bandit-based news arti-
cle recommendation algorithms. In WSDM, pages 297–
306, 2011.

[22] S. Li, A. Karatzoglou, and C. Gentile. Collaborative
filtering bandits. In SIGIR, pages 539–548, 2016.

[23] J. Mairal, F. Bach, J. Ponce, and G. Sapiro. Online
learning for matrix factorization and sparse coding.
JMLR, 11(Jan):19–60, 2010.

[24] T. T. Nguyen and H. W. Lauw. Dynamic clustering of
contextual multi-armed bandits. In CIKM, pages 1959–
1962, 2014.

[25] R. Salakhutdinov and A. Mnih. Bayesian probabilistic
matrix factorization using markov chain monte carlo.
In ICML, pages 880–887, 2008.

[26] R. Salakhutdinov and A. Mnih. Probabilistic matrix
factorization. In NIPS, pages 1–8, 2011.

[27] S. L. Scott. A modern bayesian look at the multi-
armed bandit. Applied Stochastic Models in Business
and Industry, 26(6):639–658, 2010.

[28] R. Sen, K. Shanmugam, M. Kocaoglu, A. G. Dimakis,
and S. Shakkottai. Latent contextual bandits. arXiv
preprint arXiv:1606.00119, 2016.

[29] H. Shan and A. Banerjee. Generalized probabilistic
matrix factorizations for collaborative filtering. In
ICDM, pages 1025–1030, 2010.

[30] W. R. Thompson. On the likelihood that one unknown
probability exceeds another in view of the evidence of
two samples. Biometrika, 25(3/4):285–294, 1933.

[31] H. P. Vanchinathan, I. Nikolic, F. De Bona, and
A. Krause. Explore-exploit in top-n recommender
systems via gaussian processes. In RecSys, pages 225–
232, 2014.

[32] H. Wang, Q. Wu, and H. Wang. Factorization bandits
for interactive recommendation. In AAAI, pages 2695–
2702, 2017.

[33] Q. Wang, C. Zeng, W. Zhou, T. Li, L. Shwartz, and
G. Y. Grabarnik. Online interactive collaborative fil-
tering using multi-armed bandit with dependent arms.
arXiv preprint arXiv:1708.03058, 2017.

[34] M. A. Woodbury. The stability of out-input matrices.
Chicago, IL, 93, 1949.

[35] Q. Wu, H. Wang, Q. Gu, and H. Wang. Contextual
bandits in a collaborative environment. In SIGIR,
pages 529–538, 2016.

[36] X. Zhao, W. Zhang, and J. Wang. Interactive collabo-
rative filtering. In CIKM, pages 1411–1420, 2013.

[37] S. Zong, H. Ni, K. Sung, N. R. Ke, Z. Wen, and B. Kve-
ton. Cascading bandits for large-scale recommendation
problems. arXiv preprint arXiv:1603.05359, 2016.

Copyright c© 2018 by SIAM

Unauthorized reproduction of this article is prohibited

Learning to Interact with Users: A Collaborative-Bandit Approach –

Supplementary Material

Konstantina Christakopoulou and Arindam Banerjee∗

A Parameter Updates for Learning to Interact
Algorithms

Table 1 presents the parameter updates for the various
learning to interact algorithms discussed in the main pa-
per. The second, third, and fourth columns correspond
to lines 0, 4, and 9 of Algorithms 1-2 of the main paper.

B Sensitivity Analysis

Next, we present a set of experiments to determine
the sensitivity of collaborative learning to interact al-
gorithm Low Rank TS to different choices of hyper-
parameters. Specifically, we study how sensitive the
algorithm is to (a) the initial parameter setting of the
covariance matrices of the latent factors, (b) the noise
present in the Gaussian rewards, (c) the rank of the
latent factors. For the first two we consider synthetic
data which exhibit the CF principle; for (c) we use the
real datasets described in Table 1 in the main paper. In
what follows, we describe our synthetic data setup, and
then we discuss our sensitivity results.

Synthetic Data. For Gaussian rewards, we gener-
ated our data via the PMF model [8], i.e., every entry
rij of the reward matrix R is rij = u∗T

i v∗
j + εij . For

the Bernoulli rewards, we generated our data based on
the logistic matrix factorization model: every entry rij
∼ Bernoulli(sigmoid(u∗T

i v∗
j)). For both cases we cre-

ated different data sets, varying both the number of
users M and the number of items N in the range of
{10, 100, 1000}. For every M,N combination, we cre-
ated five random data sets with different random seeds
and report results averaged over them.

Effect of σu, σv for Bernoulli. To determine the
effect of the initialization of the covariance matrices
Sui , Svj on Low Rank TS, we vary σ2

u = σ2
v in the

range of {0.001, 0.01, 0.1, 1, 10, 100}. We present our
results for Bernoulli rewards for the synthetic data set
of M = 100, N = 1000 in Figure 1(a). We can see that
typically, small values of these hyper-parameters lead
to lower cumulative regret. We observed a similar trend

∗Department of Computer Science & Engineering, University
of Minnesota, Twin Cities. {christa, banerjee}@cs.umn.edu

for the real data sets for both types of rewards.
Effect of noise σij for Gaussian. Next, we study

how the noise level in the user feedback under Gaussian
rewards affects Gauss Low Rank TS compared to the
Gauss Low Rank Greedy baseline. We vary the noise
standard deviation σij to {0.5, 1.5} and report the
results in Figure 1(b) for the synthetic data set of 1,000
users interacting with 1,000 items. Similar trends hold
for the real data sets too. We can see that when the
noise level is small, Low Rank Greedy and Low Rank TS

have similar performance, and the former tends to be
better. However, when the noise is larger, TS is more
robust and outperforms Greedy. We expect real-world
user feedback to be noisy, making Thompson Sampling
a possibly better choice.

Effect of Rank. To study the effect of the rank d of
the latent factors U, V on the performance of Low Rank

TS, we vary d in the range of {2, 5, 10, 20}. Based on
Figure 1(c)-(d), we can see that for Movielens 100K
with Bernoulli rewards, rank 2 results in the lowest
cumulative regret, while for the data set of Netflix with
Gaussian rewards, rank 20 is the best, as the number
of observed ratings is an order of magnitude larger.
Although in the main paper we present results with rank
set to 2, this brief sensitivity experiment shows that a
tuned value of the rank would result in even smaller
regret.

C Underlying Parametric Assumptions for
User Rewards

Here we provide some more details in the derivation of
the learning to interact algorithms under the different
parametric assumptions described in Section 3.1 of the
main paper, and reported in Table 1 here.

C.1 Independent Bandits Independent Gaussian
Bandits. For a given user i, when rij ∼
Gaussian(θij , σ

2
ij), with σ2

ij known and fixed and un-
known mean θij for every arm j, we can model the prior
distribution of the reward mean θij with the Gaussian
distribution θij ∼ N (µ0

ij , τ
0
ij), as it is the conjugate prior

to the Gaussian distribution [3]. After incorporating the

Algorithm Prior/ Parameter Init. Posterior Parameter Update for ĵ

Independent N (θij |µ0
ij , τ

0
ij) N (θij |µ0

ij , τ
0
ij , rij) µ0

iĵ
=

σ2
iĵ
∗µ0

iĵ
+τ0

iĵ
∗riĵ

τ0
iĵ
+σ2

iĵ

Gauss TS Init. µ0
ij , τ

0
ij , Input σ2

ij τ0
iĵ

=
τ0
iĵ
∗σ2

iĵ

τ0
iĵ
+σ2

iĵ

Independent aij = bij = 1 Beta(πij |aij , bij , rij) aiĵ = aiĵ + 1[riĵ = 1]

Bernoulli TS [2] Beta(πij |aij , bij) biĵ = biĵ + 1[riĵ = 0]

LinTS [5] Ai = Id×d,bi = 0d×1 N (θi|θ̂i, A−1
i , rij) Ai = Ai + xĵx

T
ĵ

θ̂i = 0d×1 bi = bi + riĵxĵ , θ̂i = A−1
i bi

LogTS [6] Ai = Id×d ≈ N (θi|θ̂i, A−1
i , rij) πiĵ = σ(θ̃Ti xĵ)

θ̂i = 0d×1 (Laplace Approx.) Ai = Ai + πiĵ(1− πiĵ)xĵxTĵ
θ̂i ← θ̂i − η(πiĵ − riĵ)xĵ

CluLinTS [7] Ai = Id×d,bi = 0d×1 N (θc|θ̂c, A−1
c , rij) Update Ai,bi based on LinTS

θ̂i = 0d×1, # clusters Ac =
∑
i:cAi − I, bc =

∑
i:c bi

θ̂c = A−1
c bc

CluLogTS Ai = Id×d ≈ N (θc|θ̂c, A−1
c , rij) Update Ai,θi based on LogTS

θ̂i = 0d×1, # clusters (Laplace Approx.) Ac =
∑
i:cAi − I, θ̂c =

∑
i:c θi

Gauss S−1
ui

= σ2
uI N (ui|ûi, Sui

, rij) S−1
ui

= S−1
ui

+ ṽĵṽ
T
ĵ

, S−1
vĵ

= S−1
vĵ

+ ũiũ
T
i

Low Rank TS S−1
vj

= σ2
vI N (vj |v̂j , Svj

, rij) dĵ = dĵ + riĵũi, v̂ĵ = Svĵ
dĵ

[4, 9] Rand. v̂j , ûi bi = bi + riĵṽĵ , ûi = Sui
bi

Bernoulli S−1
ui

= σ2
uI ≈ N (ui|ûi, Sui , rij) S−1

ui
= S−1

ui
+ π̃iĵ(1− π̃iĵ)ṽĵṽTĵ

Low Rank TS S−1
vj

= σ2
vI ≈ N (vj |v̂j , Svj

, rij) S−1
vĵ

= S−1
vĵ

+ π̃iĵ(1− π̃iĵ)ũiũTi
Rand. v̂j , ûi (Laplace Approx.) Update ûi, v̂ĵ

Gauss S−1
ui

= σ2
vI N (ui|ûi, Sui

, rij) S−1
ui

= S−1
ui

+ ṽĵṽ
T
ĵ

ICF [9] Rand. ûi bi = bi + riĵṽĵ , ûi = Sui
bi

Bernoulli S−1
ui

= σ2
uI ≈ N (ui|ûi, Sui

, rij) S−1
ui

= S−1
ui

+ π̃iĵ(1− π̃iĵ)vĵvTĵ
ICF [9] Rand. ûi (Laplace Approx.) Update ûi

Table 1: Summary of parametric assumptions in learning to interact recommendation algorithms. After
incorporating the feedback riĵ of user i on shown item ĵ, the new prior becomes the previous posterior. Time
indices are omitted to avoid clutter. The ·̃ symbol denotes sampled values.

reward of the item shown ĵ for the incoming user i, using
Bayes rule we can update the posterior, which will also
be a Gaussian due to conjugacy, with mean and variance
specified in Table 1. We refer to this as Independent

Gauss TS.
Independent Bernoulli Bandits. For a user i, when

rij ∼ Bernoulli(πij), it is standard to model the prior
distribution of the reward of every arm j with the
Beta distribution πij ∼ Beta(aij , bij), as it is the
conjugate prior to the Bernoulli distribution. Due to
conjugacy, the posterior will be a Beta distribution
πij ∼ Beta(a

′

ij , b
′

ij) with new parameters a
′

ij , b
′

ij defined
based on number of observed successes (1) and failures
(0). This algorithm is referred to as Independent

Bernoulli TS, and details for each Bernoulli bandit can
be found in [2].

C.2 Contextual Linear Bandits LinTS. In [5], for
a given bandit i, the reward of the arms is assumed to
have linear structure: E[rij] = (θ∗

i)Txj , where note that
only d parameters, typically � N need to be learned.
LinTS assumes that the posterior distribution of θi is
N (θi|θ̂i, A−1

i) where both the mean and the variance are
updated based on online Bayesian linear regression [1].

LogTS. In [6], Li et al. extended contextual linear
bandits for the case when the rewards come from a
generalized linear model (e.g. Bernoulli, Poisson, etc.)
[1]. Here, we consider only when rewards come from a
Bernoulli distribution, where the reward assumption is

that E[rij] = σ(θ∗T

i xj) = 1/(1 + exp(−θ∗T

i xj)). LogTS

uses online logistic regression to update the underlying
parameters. Given that the posterior distribution is not
a Gaussian anymore due to the non-linearity introduced,
moment matching is employed to approximate it with a
Gaussian≈ N (θi|θ̂i, A−1

i) [1]. Also, as there is no closed

form update for θ̂i, an iterative algorithm is needed.

C.3 Contextual Clustering Bandits CluLinTS
[7]. In [7], users are allowed to move to other clusters,
based on how close their parameter vector is to the pa-
rameter vector of each of the clusters. At every round,
after the parameters of the incoming user are updated
based on LinTS, the cluster parameters are updated,
and users are re-assigned to the closest cluster. Briefly,
the posterior distribution of θc is a N (θ̂c, A

−1
c), where

the cluster parameters Ac,bc are derived by averaging
Ai,bi of the users {i} who are assigned to it (Table 1).
Details are found in [7].

(a) Synthetic Data M = 100,
N = 1000

(b) Synthetic Data M = N =
1000

(c) ML100K, Bernoulli (d) Netflix, Gaussian

Figure 1: (a) Effect of variance s = σu, σv on Bernoulli Low Rank TS for Bernoulli synthetic data with 100
users, 1000 items. Smaller values of s lead to lower RT . (b) Effect of noise σij = {0.5, 1.5} on Gauss Low Rank

TS vs. Low Rank Greedy for Gaussian synthetic data with 1000 users, 1000 items. For higher noise, Low Rank

TS outperforms Low Rank Greedy. (c)-(d) Effect of the latent factor rank d, varying in {2, 5, 10, 20} on Low Rank

TS.

(a) Movielens 100K (b) Movielens 1M (c) Netflix (d) Yahoo

Figure 2: Comparison of one-item recommendation methods for Gaussian Rewards. Low Rank (LR) TS is among
the top performing methods for Movielens 100K and Movielens 1M, and outperforms all for larger scale data sets:
Netflix and Yahoo.

(a) Movielens 100K (b) Movielens 1M (c) Netflix (d) Yahoo

Figure 3: Comparison of one-item recommendation methods for Bernoulli Rewards. Low Rank (LR) TS and
Greedy Low Rank are the best performing methods.

CluLogTS. (new method) Here, we devise a new con-
textual clustered TS algorithm for Bernoulli rewards, re-
ferred to as CluLogTS, to better capture binary data,
such as click/no-click. CluLogTS assumes that the re-
ward of item j for user i assigned to cluster c follows:

E[rij] = 1/(1+exp(−θ∗T

c xj)). The parameters of the re-
ward distribution of every user i are learned via LogTS.
Initially, users are randomly assigned to clusters, and
cluster parameters are initialized. At every round, an
item ĵ is shown to the incoming user i based on the

sampled parameters of the corresponding cluster c the
user is currently assigned to. After incorporating the
observed feedback riĵ , user i’s LogTS parameters get up-
dated, the user is allowed to move to the closest cluster
based on the proximity of the user-cluster parameters,
and the clusters’ parameters get updated based on the
parameters of the users belonging to the cluster.

C.4 CF low-rank Bandits ICF. ICF [9] was the
first work to use CF for recommendation bandits.

(a) Movielens 100K (b) Movielens 1M (c) Netflix (d) Yahoo

Figure 4: Comparison of all cascade top-N list recommendation methods for Gaussian rewards. For the larger
scale data sets, collaborative cascade bandit ranking (Casc. LR TS) is among the top performing methods.

(a) Movielens 100K (b) Movielens 1M (c) Netflix (d) Yahoo

Figure 5: Comparison of all cascade top-N list recommendation methods for Bernoulli rewards. Collaborative
cascade bandit ranking (Casc. LR TS) achieves the smallest cumulative regret in the larger-scale data sets.

However, the authors formulated the problem as a
contextual linear bandit, where they used as contextual
features the latent features of the items as pre-learned
from training PMF [8] on some user-item observations.
In their formulation, vj ’s are given as input to the
algorithm and only ui’s are learned online. They
devised both Gauss ICF and Bernoulli ICF.

Gauss Low Rank TS, variants of which have been
considered in [4], assumes that the mean reward of
the arms follows the low-rank assumption, i.e., µij =
uTi vj . In particular, Gauss Low Rank TS, using as
the underlying model PMF [8], makes the following
parametric assumptions for the underlying parameters
of the reward distribution at time step t:

∀i : uti ∼ N (û
(t−1)
i , St−1

ui
) ∀j : vtj ∼ N (v̂

(t−1)
j , St−1

vj
)

∀ij : rtij ∼ N (ut
T

i vtj , σ
2
ij)

where ûi, v̂j , Sui
, Svj

is defined in Table 1.

C.5 Cascade Ranking Bandits The parametric
assumptions of the cascade bandits are the same as the
ones from the corresponding one-item recommenders.

D Full Real Data Experiments

Figures 2-5 contain the experiments on all four real
datasets, for Bernoulli and Gaussian reward models, for
one-item and cascade list recommendation setup.

References

[1] C. M. Bishop. Pattern recognition. Machine Learning,
128, 2006.

[2] O. Chapelle and L. Li. An empirical evaluation of
thompson sampling. In NIPS, pages 2249–2257, 2011.

[3] D. Fink. A compendium of conjugate priors. page 46,
1997.

[4] J. Kawale, H. H. Bui, B. Kveton, L. Tran-Thanh, and
S. Chawla. Efficient thompson sampling for online?
matrix-factorization recommendation. In NIPS, pages
1297–1305, 2015.

[5] L. Li, W. Chu, J. Langford, and R. E. Schapire. A
contextual-bandit approach to personalized news article
recommendation. In WWW, pages 661–670, 2010.

[6] L. Li, W. Chu, J. Langford, and X. Wang. Unbiased
offline evaluation of contextual-bandit-based news arti-
cle recommendation algorithms. In WSDM, pages 297–
306, 2011.

[7] T. T. Nguyen and H. W. Lauw. Dynamic clustering of
contextual multi-armed bandits. In CIKM, pages 1959–
1962, 2014.

[8] R. Salakhutdinov and A. Mnih. Probabilistic matrix
factorization. In NIPS, volume 20, pages 1–8, 2011.

[9] X. Zhao, W. Zhang, and J. Wang. Interactive collabo-
rative filtering. In CIKM, pages 1411–1420, 2013.

	sdm-inter-rec
	suppl-230-sdm-2018

