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Alzheimer’s disease (AD), the most common type of dementia, not only imposes a huge financial burden

on the health care system, but also a psychological and emotional burden on patients and their families.

There is thus an urgent need to infer trajectories of cognitive performance over time and identify biomark-

ers predictive of the progression. In this article, we propose the multi-task learning with fused Laplacian

sparse group lasso model, which can identify biomarkers closely related to cognitive measures due to its

sparsity-inducing property, and model the disease progression with a general weighted (undirected) depen-

dency graphs among the tasks. An efficient alternative directions method of multipliers based optimization

algorithm is derived to solve the proposed non-smooth objective formulation. The effectiveness of the pro-

posed model is demonstrated by its superior prediction performance over multiple state-of-the-art methods

and accurate identification of compact sets of cognition-relevant imaging biomarkers that are consistent with

prior medical studies.
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1 INTRODUCTION

Dementia poses a serious challenge to the aging society. Alzheimer’s disease (AD) is the most
common cause of dementia. AD is a gradually progressive syndrome that mainly affects memory
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function, ultimately culminating in a dementia state where all cognitive functions are affected.
It is a devastating disease for those who are affected and presents a major burden to caregivers
and society. The worldwide prevalence of AD is predicted to quadruple from 46.8 million in 2016
(Association 2016) to 131.5 million by 2050 according to Alzheimer’s Disease Neuroimaging Ini-
tiative (ADNI’s) World Alzheimer Report (Batsch and Mittelman 2015). Dementia also has a huge
economic impact. Today, the total estimated worldwide cost of dementia is US $818 billion, and it
will become a trillion dollar disease by 2018. The huge price of caring for AD patients has made it
one of the most costly diseases in the developed countries. Caring for the disease also causes great
physical, as well as psychological suffering on the caregivers.

Accurate diagnosis or cognitive performance prediction of AD is key to the development, as-
sessment, and monitoring of new treatments for AD (Xu et al. 2015; Gao et al. 2017). Several studies
have identified strong connection between patterns of brain atrophy and AD progression, mea-
sured by means of patient’s cognitive characterization (Misra et al. 2009; Weiner et al. 2017). Many
clinical/cognitive measures such as Mini Mental State Examination (MMSE) and Alzheimer’s Dis-
ease Assessment Scale cognitive sub-scale (ADAS-Cog) have been designed to evaluate the cogni-
tive status of the patients and they have been used as an important criteria for clinical diagnosis
of probable AD.

In the literature, machine learning models have been widely studied with focus on the predic-
tion power of neuroimaging measures as biomarkers for inferring cognitive outcomes or tracking
disease progression in the AD study. These data-oriented approaches seek to infer patient’s cogni-
tive and functional abilities from neuroimaging data, such as magnetic resonance imaging (MRI),
positron emission tomography (PET) along with other biomarkers. The associated learning prob-
lem has commonly been posed as a classification, survival analysis, or a regression problem.

Classification-based models (Misra et al. 2009; Liu et al. 2013) aim to classify the patient state into
a pre-defined set of disease stages, usually categorized as: Cognitively Normal (CN), Mild Cognitive

Impairment (MCI) and AD. With survival analysis models (Doody et al. 2010; Vemuri et al. 2009),
it is possible to answer different questions such as when a patient stage will turn from MCI to AD
or patient’s survival time.

There is a sizable literature on applying regression methods in the context of AD (Ye et al. 2012,
2008; Zhou et al. 2011, 2013). Several previous works have studied the relationship between the
cognitive scores and possible risk factors such as age, ApoE gene, years of education, and gender
(Tombaugh 2005; Ito et al. 2011). The relationship between cognitive scores and imaging markers
based on MRI has been explored by correlating these features with baseline (BL) MMSE scores
(Stonningtona et al. 2010; Frisoni et al. 2010). However, several existing models do not model cor-
relation among multiple tasks, where the tasks can be different cognitive scores, or the same cogni-
tive scores over time. When the tasks and their corresponding models are believed to be related, it
is desirable to learn all of the models jointly rather than treating each task as independent of each
other and fitting each model separately. It is known that there exist inherent correlations among
different cognitive scores or the same cognitive score over time, since the underlying pathology
is the same and there is disease progression over time. Thus, joint modeling of multiple tasks is
expected to lead to better predictive ability.

Multi-task learning (MTL) is a statistical learning framework, which seeks to learn models for
several tasks jointly. The idea of MTL is to utilize the intrinsic relationships among multiple re-
lated tasks in order to improve the generalization performance (Caruana 1997; Argyriou et al.
2008; Gonçalves et al. 2016). It has been commonly used to obtain better generalization perfor-
mance than learning each task individually in the field of AD. The critical issues in MTL are to
identify how the tasks are related and build learning models to capture such task relatedness with
different assumptions. One approach to modeling multi-task relationship is to assume that all tasks
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are related and the respective models are similar to each other. In Zhang et al. (2012), the prediction
of different types of targets such as MMSE and ADAS-Cog is modeled as a MTL problem and all
models are constrained to share a common set of features. Jing et al. (Wan et al. 2012) proposed
a new sparse Bayesian MTL approach, which adaptively learns and exploits the correlation struc-
ture within each coefficient row in the multiple measurement vector model. Our previous work
adapted sparse group lasso (SGL) to consider two-level hierarchy with feature-level and group-
level sparsity and parameter coupling across tasks (Liu et al. 2016).

The focus of the current article is on MTL in the context of AD, where the tasks involve accu-
rately predicting a given same cognitive score over multiple time steps, i.e., each task focuses on
modeling a given cognitive score at a given time step, and different tasks focus on different time
steps for the same cognitive score. For AD, such longitudinal data usually consists of measurements
at a starting time point (t = 0), after 6 months (t = 6), after 12 months (t = 12), after 24 months
(t = 24), and so on usually up to 48 months (t = 48). MTL with such longitudinal data has been
considered in the literature. In Zhou et al. (2011), a MTL is used to model the longitudinal dis-
ease progression using the temporal group lasso (TGL) regularization to capture task relatedness.
TGL constrains the models at all time points to select a common set of features, and hence may
miss the temporal patterns and variability of the biomarkers during disease progression. Zhou
et al. (2013) proposed convex fused sparse group lasso (cFSGL), which allows the simultaneous
selection of a common set of biomarkers at all time points and the selection of a specific set of
biomarkers at different time points using the SGL penalty, and in the meantime incorporates the
temporal smoothness using the fused lasso penalty (Tibshirani et al. 2005). The proposed formu-
lation is challenging to solve due to the use of several non-smooth penalties. The authors show
that the proximal operator associated with the proposed formulation exhibits a certain decompo-
sition property and can be computed efficiently; thus cFSGL can be solved using a suitable variant
of the accelerated gradient method (AGM). Results demonstrate the effectiveness of the proposed
MTL formulations for disease progression in comparison with single-task learning algorithms, in-
cluding ridge and lasso regression. The limitation of TGL and cFSGL is that the fused lasso only
consider two successive time points, potentially missing out on helpful task dependencies beyond
the immediate neighbors. In essence, if every task (time step) is viewed as nodes of a graph and
edges determine task dependencies, cFSGL use a graph where there are edges between tasks, t and
(t + 1), t = 1, . . . ,T − 1, but there are no other edges.

In this article, we present a general framework called Fused Laplacian Sparse Group Lasso (FL-
SGL), which in principle allows more general weighted (undirected) dependency graphs among
the tasks. We consider a regularized MTL formulation encouraging related tasks to have sim-
ilar parameters, where the regularization depends on suitable structured sparsity based on the
graph Laplacian of the task dependency matrix. In this article, we consider weighted task de-
pendency graphs based on a Gaussian kernel over the time steps, which yields a fully connected
graph with decaying weights. We consider different bandwidths for the Gaussian kernel yielding
qualitatively different task dependencies. In particular, for small bandwidths, we obtain task de-
pendencies mainly among nearby neighbors, and for large bandwidths, dependencies are across
all neighbors. Note that while we specifically focus on Gaussian kernels for this article, one can
consider fused Laplacian MTL formulations for any task dependency graph, including recent ap-
proaches where the task dependency is also learned from the data (Zhang and Yeung 2010; Rai
et al. 2012; Gonçalves et al. 2016).

The FL-SGL MTL formulation outlined above are in the form of non-smooth optimization prob-
lems. We present two alternating direction method of multipliers (ADMM)-type algorithms for
solving the formulations. In recent years, ADMM has become popular, since it is often easy
to parallelize such algorithms. Further, ADMM has been successfully applied to a variety of
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nonconvex optimization problems, including L1-regularization (Yang and Zhang 2011), group
lasso-regularization (Deng et al. 2013), and total variation (TV) regularization problems (Wang
et al. 2008). In this article, we consider two variants, respectively, based on multi-block ADMM
and traditional two-block ADMM (Boyd et al. 2011; He et al. 2012). In both variants, we use inex-
act ADMM, which yields fast closed form updates in each iteration and which have been shown
to has the same rate-of-convergence as exact updates (Boyd et al. 2011). While the algorithms are
applied to Gaussian kernel based task dependency structures considered in this article, the ADMM
algorithms can be applied to FL-SGL formulations with any graph capturing the task dependency
structure.

We perform extensive experiments using longitudinal data from the ADNI. Five types of cogni-
tive scores are considered. We, then, empirically evaluate the performance of the proposed FL-SGL
methods along with several BL methods, including ridge regression, lasso, and the recently devel-
oped cFSGL (Zhou et al. 2013). The quantitative results indicate that FL-SGL outperforms the BLs
on the aggregated performance, i.e., predictive performance on the entire longitudinal data for a
test subject, and the improvements are statistically significant. Further, based on the FL-SGL mod-
els, stable MRI features which significant predictive power are identified using stability selection
(Meinshausen and Bühlmann 2010), and keyregions of interest (ROIs) contributing these MRI fea-
tures are discussed. We also present brain maps highlighting the top ROIs selected by the FL-SGL
algorithm. Finally, in addition to the MRI features, we use demographic and genetic information
for FL-SGL as well as the BL models. While the additional features improve the predictive perfor-
mance of all the models, FL-SGL shows substantial improvements and continue to significantly
outperform the BLs on the aggregated performance.

The rest of the article is organized as follows. In Section 2, we present the FL-SGL model for MTL.
In Section 3, we discuss details of the two ADMM algorithms proposed for the FL-SGL models. We
present experimental results on ADNI data in Section 4, and conclude in Section 5.

2 MULTI-TASK LEARNING WITH FUSED LAPLACIAN SPARSE
GROUP LASSO (FL-SGL)

Consider a MTL problem overT tasks, where each task corresponds to a time point t = 1, . . . ,T . For
each time point t , we consider a regression task based on data (yt ,Xt ), where Xt ∈ Rn×p denotes
the matrix of covariates, p is the number of covariates and n is the number of samples, shared
across all the tasks, and yt ∈ Rn is the matrix of responses. Let Θ ∈ Rp×T denote the regression
parameter matrix over all tasks, so that column θ t ∈ Rp corresponds to the parameters for the
task in time step t . In the context of AD, yt corresponds to a specific cognitive score at time step
t for n patients, so the responses yt , t = 1, . . . ,T over time (tasks) measure the progression of the
cognitive score. The question of interest is: can we model the progression of the cognitive score
based on the covariates, which are based on suitable brain images and other features?

We pose the MTL problem for Θ such that two goals are accomplished: each θt accomplishes
low regression error for each task t , and “nearby” θt are coupled to be similar, since the “nearby”
tasks are temporarily related. The notion of “nearby” needs to be suitably defined, and the cur-
rent work makes novel contributions on this aspect. For MTL problems, where the tasks are over
time t , a popular choice is to use a fused lasso style coupling where one encourages the dif-
ference γ t = θ t − θ t−1 to be sparse (Tibshirani et al. 2005). It is reasonable to assume that the
scores between two successive time points should be close (Huang et al. 2016). However, in clini-
cal practice, this assumption may not always hold. Figure 1 shows how the real ADAS, MMSE, and
RAVLT.TOTAL scores of several subjects from our dataset changed over the years. Steady periods
and sharp declines intertwined with occasional improvements. This indicates that longitudinal
clinical scores may have more complex evolution than a simple linear trend with local temporal
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Fig. 1. The change patterns of several patients’ cognitive scores over the six time points: (a) ADAS, (b) MMSE,
and (c) RAVLT.TOATL. The different colors indicate different patients from our dataset.

correlations. In this article, we take a more general perspective inspired by local non-parametric
regression, in particular kernel-based linear smoothers such as the Nadaraya–Watson kernel esti-
mator (Wasserman 2006). From such a perspective, we model the local approximation as

θ̂ t =

T∑
�=1
��t

w�,tθ �, t = 1, . . . ,T (1)

w�,t =

exp
(
− (�−t )2

σ 2

)
∑T

�′=1
�′�t

exp
(
− (�′−t )2

σ 2

) , � = 1, . . . ,T , � � t , (2)

where σ ≥ 0 is a constant bandwidth parameter. Based on such an approximation, our general
MTL formulations focus on encouraging sparsity on the residual

γ t = θ t − θ̂ t = θ t −
T∑
�=1
��t

w�,tθ �, t = 1, . . . ,T . (3)

With Γ ∈ Rp×T denoting the matrix of residuals with columnsγ t ∈ Rp , we pose the MTL problem
as the following constrained optimization problem:

min
Θ,Γ

T∑
t=1

‖yt − Xtθ t ‖2 + Rλ1

λ2
(Θ) + λ3‖Γ‖1

s.t. γ t = θ t − θ̂ t = θ t −
T∑
�=1
��t

w�,tθ �, t = 1, . . . ,T ,

(4)

where Rλ1

λ2
(Θ) is the combination of lasso and group lasso penalties, also known as the SGL penalty,

which allows simultaneous joint feature selection for all tasks and selection of a specific set of
features for each task (Yuan et al. 2013). In particular

Rλ1

λ2
(Θ) = λ1‖Θ‖1 + λ2‖Θ‖2,1, (5)

where ‖Θ‖1 is the Lasso penalty and ‖Θ‖2,1 =
∑p

j=1 ‖θ j ‖,θ j ∈ RT is the group Lasso penalty con-

sidering groups across time for each feature j, encouraging the regression models at different time
points to share a common set of features. In the formulation, λ1, λ2, λ3 > 0 are the regularization
parameters that are fixed, and will be chosen using cross validation.

In Equation (4), Γ is a linear transformation of Θ, introduced to capture the temporal smooth-
ness of the cognitive scores at different time points. For ease of exposition, assume p = 1 so that
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Fig. 2. [Best viewed in color] Illustration of three different fused regularizations: (a) Standard fused lasso, (b)
Gaussian kernel weighted fused lasso with σ = 1, and (c) Gaussian kernel weighted fused lasso with σ = 10.

θ t ,γt ∈ R and Θ, Γ ∈ R1×T . Then, in order to penalizes large deviations between predictions at
multiple time points, it can be defined as Γ = ΘD, D ∈ RT×T is the transformation matrix.

In standard fused lasso penalty (Zhou et al. 2013), it is assumed that the difference of the cog-
nitive scores between two successive time points is relatively small. In order to penalize large
deviations between predictions at neighboring time points. The temporal smoothness term can be
expressed as follows:

γ t = θ t − θ t+1, t = 1, . . . ,T − 1 (6)

Here, the sparse matrixH ∈ RT×(T−1) is defined as follows:Ht i = 1 if t = i ,Ht i = −1 if t = i + 1, i =
1 . . .T − 1, and Ht i = 0 otherwise (see Figure 2(a)).

In our work, the SGL aspect of the formulation is evident from Equation (4), and the fused
aspect comes from putting sparsity on the residual γ t . The proposed fused penalty can be written
in terms of a graph Laplacian and we use L to denote the transformation matrix. When p = 11, one
can write

Γ = ΘL⇒

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

γ1

γ2

...
γT

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

θ1

θ2

...
θT

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −w1,2 −w1,3 · · · w1,T

−w2,1 1 −w2,3 · · · −w2,T

...
...

...
...

...
−wT ,1 −wT ,2 −wT ,3 · · · 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where the matrix L is symmetric, since wt, � = w�,t , being a function of |t − � |. Note that L cor-
responds the graph Laplacian matrix for an undirected (complete) graph with T nodes, with the
edge between nodes t and � having a weight wt, � = w |t−� | . In the sequel, we will drop the double
subscripts and directly use w |t−� | . Finally, note that the graph Laplacian perspective continues to
hold when we consider the general case where θ t ,γt ∈ Rp . We will return to this perspective in
Section 3.3.

In our current work, we use a Laplacian where the weights are determined by a Gaussian kernel
as defined in Equation (2), where σ is the kernel bandwidth that must be defined. When σ is small,
the Gaussian curve decays quickly, and so the weights w |t−� | decay quickly as |t − � | increases;
on the other hand, when σ is large, the Gaussian curve decays gradually, and the weights w |t−� |
decay slowly as |t − � | increases. The graph Laplacian matrix L is illustrated in Figure 2(b) and (c).
As shown in Figure 1, one time point is not simply linear related to other time points. We consider
two values of σ , corresponding to these two regimes: σ = 1 (Figure 2(b)), where the weights decay

1Again, we are assuming γt , θt ∈ R to illustrate the idea, noting that the same ideas hold for the general matrix case. We

discuss the general matrix form in Section 3.3.
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quickly, and σ = 10 (Figure 2(c)), where the weights decay gradually, and are practically uniform
across the entire range.

In the next section, we develop ADMM-based algorithms to solve these formulations. We call
the model corresponding to the two Laplacians in Figure 2(b) and (c) FL-SGL. To distinguish the
two variants, we refer to the model with Laplacian matrix with σ = 1, as shown in Figure 2(b), as
FL-SGL1, and the one with σ = 10, as shown in Figure 2(c), as FL-SGL2. The ADMM algorithms we
describe next are applicable to both of these models. As discussed earlier, Figure 2(a) corresponds
to the standard fused lasso, the corresponding MTL problem can be solved using cFSGL (Zhou
et al. 2013). We consider an alternative approach, which we refer to as Fused Sparse Group Lasso
(F-SGL), for solving the problem corresponding to standard fused lasso. Note that the formulations
corresponding to cFSGL and F-SGL are the same, the only difference is the optimization procedures
used. For cFSGL, the optimization problem is solved by the AGM, which computes the proximal
operator in two stages including a fused lasso and a group lasso for multiple tasks. The fused lasso
stage is solved by the fused lasso signal approximator (Liu et al. 2010), in which the Subgradient
Finding Algorithm is used.

3 ADMM FOR LEARNING FL-SGL MODELS

The unconstrained optimization problem in Equation (4) can be difficult to optimize directly due to
the non-smooth and coupling terms. A simple special case of the FL-SGL formulation is fused Lasso
for which a variety of optimization algorithms have been studied (Beck and Teboulle 2009; Bach
et al. 2012). In the current context, we propose ADMM-based algorithms for the general FL-SGL
formulations, which can seamlessly handle different variations of the fused Laplacian. Further, we
focus on algorithms which can suitably decouple the updates for θ t ∈ Rp , so that the updates for
θ t can be done in parallel rather than jointly in terms of Θ.

Start by noting that the optimization problem in Equation (4) can be reformulated as the follow-
ing linearly constrained optimization problem:

min
Θ,Γ,Q,Π

T∑
t=1

1

2
‖yt − Xtθ t ‖2 + Rλ1

λ2
(Q ) + λ3‖Π‖1

s.t. Θ −Q = 0, θ t −
T∑
�=1
��t

w |t−� |θ � −γ t = 0, t = 1, . . . ,T , Γ − Π = 0.

(7)

Note that there are four variables Θ, Γ,Q,Π ∈ Rp×T in the optimization. In the feasible set, we
have Q = Θ. Further, Γ = [γ 1 · · ·γT ] captures the fused Laplacian residuals so that in the feasible

set γ t = θ t −
∑T

�=1
��t

w |t−� |θ � and also Π = Γ.

The augmented Lagrangian for the problem is given by

Lρ (Θ, Γ,Q,Π, S,U ,V ) =
T∑

t=1

1

2
‖yt − Xtθ t ‖2 + Rλ1

λ2
(Q ) + λ3‖Π‖1

+ Tr(ST (Θ −Q )) +
ρ

2
‖Θ −Q ‖2

+

T∑
t=1

⎧⎪⎪⎪⎨⎪⎪⎪⎩
uT

t

�
�
θ t −

T∑
�=1
��t

w |t−� |θ � −γ t

���
�
+
ρ

2

��������
θ t −

T∑
�=1
��t

w |t−� |θ � −γ t

��������

2⎫⎪⎪⎪⎬⎪⎪⎪⎭
+ Tr(VT (Γ − Π)) +

ρ

2
‖Γ − Π‖2,

(8)
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where S,U ,V ∈ Rp×T are the Lagrangian multipliers corresponding to the constraints Θ −Q = 0,
θ t −

∑T
�=1
��t

w |t−� |θ � −γ t = 0, and Γ − Π = 0, and ρ > 0 is penalty parameter effectively determin-

ing the step-size for dual ascent in ADMM (Boyd et al. 2011).
For convenience, let

h(Θ) =
ρ

2

T∑
t=1

��������
θ t −

T∑
�=1
��t

w |t−� |θ � −γ t

��������

2

. (9)

While the original objective function does not have terms with interactions between θ t and θ �, � �
t , the augmented Lagrangian do have such terms, and such interactions are captured in h(Θ). In
order to decouple the θ t updates, we will perform the ADMM updates by suitably linearizing
h(Θ) around the current iterate Θk . Let hk

t = ∇θ t
h(Θk ) denote the gradient with respect to θ t .

Recent work on Bregman ADMM (Wang and Banerjee 2014) and related work on inexact ADMM
(Yang and Zhang 2011; Boyd et al. 2011) have shown that ADMM updates with such linearization
continue to work.

3.1 Linearized Multi-Block ADMM

The main idea here is to linearize the h(Θ) term, so that the coupling between θ t is not there
and the individual θ t can be updated in parallel. With such a linearization, we simply update the
primal and dual variables based on a multi-block ADMM algorithm (Hong and Luo 2017; Wang
et al. 2014). While theoretical performance of multi-block ADMM is still a topic of active research
(Chen et al. 2016; Deng et al. 2017; Hong et al. 2014), in the context of the current work we focus
on extensively evaluating the empirical performance of the algorithm for the AD dataset (see Sec-
tion 4). We also consider more standard two-block ADMM (see Section 3.2) for the problem along
with comparisons with the proposed multi-block approach both in optimization performance as
well as predictive performance on AD data (see Section 4).

Update θk+1
t : From the augmented Lagrangian in Equation (8), with the linearization of h(ΘK ),

the update for each θ t can be done in parallel. In particular, the update involves solving the fol-
lowing unconstrained quadratic objective, which can be done efficiently using Cholesky decom-
position as discussed in Boyd et al. (2011)

θk+1
t = argmin

θ t

1

2
‖yt − Xtθ t ‖2 + (sk

t )Tθ t +
ρ

2
‖θ t − qt ‖2 + (uk

t + hk
t )Tθ t +

ρ1

2
‖θ t − θk

t ‖2, (10)

where ρ1 > 0 is a suitably chosen constant. In particular, since h(Θ) is smooth and has Lipschitz
continuous gradients with constant ν under 2-norm, it suffices to have ρ1 ≥ 2ν (Wang and Banerjee
2014). As we show in Section 3.3, we can choose any ρ1 ≥ 3ρ to satisfy the requirement. We use
ρ1 = 3ρ for our experiments.

Update γk+1
t : From the augmented Lagrangian in Equation (8), the update for Γ can be done in

parallel for eachγ t and the updates need to solve the following unconstrained quadratic problems:

γk+1
t = argmin

γ
t

ρ

2

��������
γ t −

�
�
πk

t + θ
k+1
t −

T∑
�=1
��t

w |t−� |θ
k+1
�

���
�
��������

2

− (uk
t − vk

t )Tγ t . (11)

Given the above form, note that the updates for γ t can in fact be done in an element-wise par-
allel manner, i.e., by solving scalar unconstrained quadratic problems, which have closed-form
solutions.
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Update Q : The update for Q effectively needs to solve the following problem:

Qk+1 = argmin
Q

ρ

2
‖Q − Θk+1‖2 − (Sk )TQ + Rλ1

λ2
(Q ), (12)

which is equivalent to computing the proximal operator for Rλ2

λ1
(·). In particular, we need to solve

Ψ
λ1/ρ

λ2/ρ
(Ok+1) = argmin

Q

{
R

λ1/ρ

λ2/ρ
(Q ) +

1

2
‖Q −Ok+1‖2

}
, (13)

where Ok+1 = Θk+1 + 1
ρ
Sk . The goal is to be able to compute Qk+1 = Ψ

λ1/ρ

λ2/ρ
(Ok+1) efficiently. It

can be shown (Yu 2013a, 2013b) that the proximal operator for the composite regularizer can be
computed efficiently in two steps, as outlined below:

Ωk+1 = Ψ
λ1/ρ
0 (Ok+1) (14a)

Qk+1 = Ψ0
λ2/ρ (Ωk+1) = Ψ

λ1/ρ

λ2/ρ
(Ok+1). (14b)

Both of these steps can be executed efficiently using suitable extensions of soft-thresholding. The
update in Equation (14a) can be computed by the soft-thresholding operator ζλ1/ρ (Ok+1), which is
defined as

ζλ (x ) = sign(x ) max( |x | − λ, 0).

Next, we focus on the update Equation (14b), which can be written as

Qk+1 = argmin
Q

{
λ2

ρ
‖Q ‖2,1 +

1

2
‖Q − Ωk+1‖

}
.

The row-wise updates can be done by soft-thresholding as

qi =
max

{
‖ωi ‖2 − λ2

ρ
, 0
}

‖ωi ‖2
,

where qi and ωi are the ith rows of Qk+1 and Ωk+1, respectively.
Update Π: The update for Π effectively needs to solve the following problem

Πk+1 = argmin
Π

ρ

2
‖Π − Γk+1‖2 − Tr((V k )T Π) + λ3‖Π‖1, (15)

which is equivalent to computing the proximal operator for L1-norm. In particular, the problem
can be solved in closed form using soft-thresholding operator as

Πk+1 = ζλ3/ρ

(
Γk+1 +

1

ρ
V k
)
. (16)

Dual Updates for S,U ,V : Following standard ADMM dual updates, the updates for the dual vari-
ables for our setting are as follows:

Sk+1 = Sk + ρ (Θk+1 −Qk+1) (17)

uk+1
t = uk

t + ρ
�
�
θk+1

t −
T∑
�=1
��k

w |t−� |θ
k+1
� −γk+1

t

���
�
, t = 1, . . . ,T (18)

V k+1 = V k + ρ (Γk+1 − Πk+1). (19)

All the dual updates can be done in an element-wise parallel manner.
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3.2 Linearized Two-Block ADMM

The constrained optimization problem in Equation (7) can be equivalently posed as follows:

min
Θ,Γ,Q,Π

T∑
t=1

1

2
‖yt − Xtθ t ‖2 + Rλ1

λ2
(Q ) + λ3‖Π‖1

s.t. Θ −Q = 0, qt −
T∑
�=1
��t

w |t−� |q� −γ t = 0, Γ − Π = 0.

(20)

Note that the residual is now defined in terms of Q , not Θ, so there is no coupling between Θ
and Γ. As a result, the above problem can be solved as a basic ADMM with two sets of variables
X = (Θ, Γ), since Θ and Γ can be updated in parallel, and Z = (Q,Π) sinceQ and Π can be updated
independently.

The augmented Lagrangian for the problem is given by

Lρ (Θ, Γ,Q,Π, S,U ,V ) =
T∑

t=1

1

2
‖yt − Xtθ t ‖2 + Rλ1

λ2
(Q ) + λ3‖Π‖1

+ Tr(ST (Θ −Q )) +
ρ

2
‖Θ −Q ‖2

+

T∑
t=1

⎧⎪⎪⎪⎨⎪⎪⎪⎩
uT

t

�
�
qt −

T∑
�=1
��t

w |t−� |q� −γ t

���
�
+
ρ

2

��������
qt −

T∑
�=1
��t

w |t−� |q� −γ t

��������

2⎫⎪⎪⎪⎬⎪⎪⎪⎭
+ Tr(VT (Γ − Π)) +

ρ

2
‖Γ − Π‖2.

(21)

As before, we use linearization to simplify the Q updates. Let

h(Q ) =
ρ

2

T∑
t=1

��������
qt −

T∑
�=1
��t

w |t−� |q� −γ t

��������

2

. (22)

Let hk
t = ∇qt

h(Qk ) denote the gradient w.r.t. qt , and let Hk be the collection of all such gradients.

Update θk+1
t : The update involves solving the following quadratic objective, which can be done

efficiently using Cholesky decomposition as discussed in Boyd et al. (2011)

θk+1
t = argmin

θ t

1

2
‖yt − Xtθ t ‖2 + (sk

t )Tθ t +
ρ

2
‖θ t − qt ‖2. (23)

Update γk+1
t : The update for γ t needs to solve the following quadratic problem:

γk+1
t = argmin

γ
t

ρ

2

��������
γt −

�
�
πk

t + qk
t −

T∑
�=1
��t

w |t−� |q
k
�

���
�
��������

2

− (uk
t − vk

t )Tγ t . (24)

Note that the Γk+1 update does not depend on Θk+1, and hence the two updates can be performed in
parallel. We can treat the overall update as that of one variableXk+1 = (Θk+1, Γk+1). Further, these

updates can be executed in a component-wise parallel manner for eachθk+1
t andγk+1

t , t = 1, . . . ,T .

In fact, the γk+1
t updates can be done in an element-wise parallel manner.
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Update Q : The update for Q is based on linearization and we need to compute the proximal

operator for Rλ2

λ1
(·):

Qk+1 = argmin
Q

ρ

2
‖Q − Θk+1‖2 − Tr((Sk + Hk +Ak )TQ ) +

ρ1

2
‖Q −Qk ‖2 + Rλ1

λ2
(Q ), (25)

where Ak is such that Tr((Ak )TQ ) =
∑T

t=1 (uk
t )T (qt −

∑
��t w |t−� |q� ), and ρ1 > 0 is a suitably cho-

sen constant. In particular, since h(Q ) is smooth and has Lipschitz continuous gradients say with
constant ν under 2-norm, it suffices to have ρ1 ≥ 2ν (Wang and Banerjee 2014). The overall ex-
pression in Equation (25) can be simplified to get in the form of a proximal operator computation

for Rλ2

λ1
(Q ), as discussed in Section 3.1.

Update Π: For the update Π, we need to compute the proximal operator for L1-norm, as discussed
in Section 3.1

Πk+1 = argmin
Π

ρ

2
‖Π − Γk+1‖2 − Tr((V k )T Π) + λ3‖Π‖1. (26)

Note that the Πk+1 update does not depend on Qk+1, and hence the two updates can be performed
in parallel. We can treat the overall update as that of one variable Zk+1 = (Qk+1,Πk+1).

Since the primal updates can be viewed as sequentially updating two variables X = (Θ, Γ) and
Z = (Q,Π), the resulting algorithm is just basic ADMM with a linearization, which has the same
rate of convergence (Boyd et al. 2011).

Dual Updates S,U ,V : Following standard ADMM dual updates, the updates for the dual vari-
ables for our setting are as follows:

Sk+1 = Sk + ρ (Θk+1 −Qk+1) (27)

uk+1
t = uk

t + ρ
�
�
qk+1

t −
T∑
�=1
��k

w |t−� |q
k+1
� −γk+1

t

���
�
, t = 1, . . . ,T (28)

V k+1 = V k + ρ (Γk+1 − Πk+1). (29)

As before, all dual updates can be done in an element-wise parallel manner.

3.3 Lipschitz Constant for Linearization

Recall that h(Θ) =
ρ

2

∑T
t=1 ‖θ t −

∑T
�=1
��t

w |t−� |θ � −γ t ‖2. For ease of exposition, we assume uniform

weights, i.e., w |t−� | =
1

T−1 which corresponds to the bandwidth σ → ∞. The analysis we present
here can be straight-forwardly extended to general weights w |t−� | as defined in Equation (2).

Since h(Θ) has Lipschitz gradients, there is a constant ν such that for any Θ, Θ̃, we have

‖∇h(Θ) − ∇h(Θ̃)‖2 ≤ ν ‖Θ − Θ̃‖2.

In this section, our focus is on characterizing ν , and to show that ν ≤ 3ρ so that the linearizations
used in Section 3.1 are well justified. Further, since the linearization used in 3.2 is essentially the
same but based on h(Q ), the same function with Q as the argument, the analysis also holds for
h(Q ).
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Recall that Θ ∈ Rp×T and θ t ∈ Rp . A direct calculation shows

1

ρ
∇θ t

h(Θ) =
�
�
θ t −

1

T − 1

T∑
�=1
��t

θ � −γ t

���
�
− 1

T − 1

T∑
�=1
��t

�
�
θ � −

1

T − 1

T∑
�′=1
�′��

θ �′ −γ �

���
�

=

(
1 +

1

T − 1

) �
�
θ t −

1

T − 1

T∑
�=1
��t

θ �

���
�
−
�
�
γ t −

1

T − 1

T∑
�=1
��t

γ �

���
�
.

It is important to note that the second term involving γ t ,γ �, � � t will be exactly the same for
1
ρ
∇θ t

h(Θ) and 1
ρ
∇θ̃ t

h(Θ̃), and will hence cancel out when we consider 1
ρ
∇θ̃ t

h(Θ) − 1
ρ
∇θ̃ t

h(Θ̃).

Hence, we will not consider these terms in the subsequent analysis.
Ignoring the constant terms, the overall gradient can be written in vectorized form as

1

ρ
vec(∇h(Θ)) =

(
1 +

1

T − 1

)
L vec(Θ), (30)

where vec(∇h(Θ)), vec(Θ) ∈ Rp×T are vectorized versions of the p ×T matrices ∇h(Θ) and Θ; and
L is given by

L =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I − 1
T−1 I −

1
T−1 I · · · −

1
T−1 I

− 1
T−1 I I − 1

T−1 I · · · −
1

T−1 I

...
...

...
...

...

− 1
T−1 I −

1
T−1 I −

1
T−1 I · · · I

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (31)

We note that L is the (block) graph Laplacian of a complete graph with T vertices (Merris 1994;
Chung 1997). The eigenvalues of a complete graph withT vertices are 0 and T

T−1 with a multiplicity
of (T − 1) (Merris 1994).

Then,
1

ρ
(vec(∇h(Θ)) − vec(∇h(Θ̃))) =

(
1 +

1

T − 1

)
L(vec(Θ) − vec(Θ̃)).

Denoting z = vec(Θ) − vec(Θ̃) for convenience, we have

1

ρ
‖ vec(∇h(Θ)) − vec(∇h(Θ̃))‖2 ≤

(
1 +

1

T − 1

)
‖Lz‖2

≤
(
1 +

1

T − 1

) T

T − 1
‖z‖2

≤
( T

T − 1

)2
‖z‖2.

For the longitudinal AD datasets we use,T ≥ 3, which makes ( T
T−1 )2 ≤ 3. Thus, the Lipschitz con-

stant ν for the function h(Θ) in our setting satisfies ν ≤ 3ρ.
Matlab codes of the proposed algorithm are available at: https://bitbucket.org/XIAOLILIU/

fl-sgl.

4 EXPERIMENTAL RESULTS

In this section, we present experimental analysis to demonstrate the effectiveness of the proposed
framework on characterizing AD progression using a dataset from the ADNI (Weiner et al. 2010).
ADNI2 is a multi-site study that aimed to improve clinical trials for the prevention and treatment

2http://adni.loni.usc.edu/, https://en.wikipedia.org/wiki/Alzheimer’s_Disease_Neuroimaging_Initiative.
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of AD. ADNI started in 2004, currently includes researchers from 63 research centers in the United
States and Canada, and has resulted in inumerous scientific publications using the ADNI data.
ADNI has been facilitating the scientific evaluation of neuroimaging data, including MRI, PET,
along with other biomarkers, and clinical and neuropsychological assessments for predicting the
onset and progression of MCI and AD. The study gathered and analyzed thousands of brain scans,
genetic profiles, and biomarkers in blood and cerebrospinal fluid that are used to measure the
progress of disease or the effects of treatment.

ADNI is the result of efforts of many researchers from a broad range of academic institutions
and private corporations, which was designed to find more sensitive and accurate methods to de-
tect AD at earlier stages and mark its progress through biomarkers. The initial goal of ADNI was
to recruit 800 subjects, ages 55–90, including 200 normal controls, 400 individuals with MCI, and
200 subjects with mild AD at approximately 50 sites in the United States and Canada for longi-
tudinal follow up. ADNI also aims to accurately track progression of the disease and devise tests
to measure the effectiveness of potential interventions. Currently, the study involves over 1,000
participants, including people without memory problems, those with MCI, and patients with di-
agnosed AD. Early diagnosis of AD is key to the development, assessment, and monitoring of new
treatments for AD. Approaches to characterize AD progression will help researchers and clinicians
to develop new treatments and monitor their effectiveness. Further, being able to understand dis-
ease progression will increase the safety and efficacy of drug development and potentially decrease
the time and cost of clinical trails.

4.1 Experimental Setting

The ADNI project is a longitudinal study, where selected subjects are categorized into three BL
diagnostic groups: CN, MCI, and AD, repeatedly over a 6-month or 1-year interval. The date when
the subjects are scheduled to perform the screening becomes BL after approval and the time point
for the follow-up visits is denoted by the duration starting from the BL. We use the notation Month
6 (M6) to denote the time point half year after the first visit. Currently, ADNI has up to Month 48
follow-up data available for some patients. However, many patients drop out from the study for
many reasons.

In this work, we conduct empirical evaluation for the proposed methods on MRI data. The
MRI features used in our experiments are based on the imaging data from the ADNI data-
base processed by a team from UCSF (University of California at San Francisco), who per-
formed cortical reconstruction and volumetric segmentations with the FreeSurfer image analysis
suite (http://surfer.nmr.mgh.harvard.edu/). For each image, 71 cortical regions and 44 subcorti-
cal regions are generated after this pre-processing. For each cortical region, the cortical thick-
ness average (TA), standard deviation of thickness (TS), surface area (SA), and cortical volume
(CV) were calculated as features. For each subcortical region, subcortical volume (SV) was cal-
culated as feature. This yielded a total of p = 319 MRI features (including 275 cortical and 44
subcortical features) extracted from cortical and subcortical ROIs (see Tables 1 and 2 for de-
tails). In addition to the features corresponding to these cortical and sub-cortical regions, the
SA of the left and the right hemispheres, and the total intracranial volume (ICV) were also
included. Details of the analysis procedure are available at: http://adni.loni.ucla.edu/research/
mri-post-processing/.

In this work, we remove features with more than 10% missing entries (for all patients and all
time points), exclude patients without BL MRI records and complete the missing entries using the
average value. This yields a total of n = 788 subjects (173 AD, 390 MCI, and 225 CN) for BL and
for the M6, M12, M24, M36, and M48 time points the sample size are 718 (155 AD, 352 MCI, and
211 CN), 662 (134 AD, 330 MCI, and 198 CN), 532 (101 AD, 254 MCI, and 177 CN), 345 (1 AD, 189
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Table 1. Cortical Features from the Following 71 (=35 × 2 + 1)
Cortical Regions Generated by FreeSurfer

ID ROI name Laterality Type
1 Banks Superior Temporal Sulcus L, R CV, SA, TA, TS
2 Caudal Anterior Cingulate Cortex L, R CV, SA, TA, TS
3 Caudal Middle Frontal Gyrus L, R CV, SA, TA, TS
4 Cuneus Cortex L, R CV, SA, TA, TS
5 Entorhinal Cortex L, R CV, SA, TA, TS
6 Frontal Pole L, R CV, SA, TA, TS
7 Fusiform Gyrus L, R CV, SA, TA, TS
8 Inferior Parietal Cortex L, R CV, SA, TA, TS
9 Inferior Temporal Gyrus L, R CV, SA, TA, TS
10 Insula L, R CV, SA, TA, TS
11 IsthmusCingulate L, R CV, SA, TA, TS
12 Lateral Occipital Cortex L, R CV, SA, TA, TS
13 Lateral Orbital Frontal Cortex L, R CV, SA, TA, TS
14 Lingual Gyrus L, R CV, SA, TA, TS
15 Medial Orbital Frontal Cortex L, R CV, SA, TA, TS
16 Middle Temporal Gyrus L, R CV, SA, TA, TS
17 Paracentral Lobule L, R CV, SA, TA, TS
18 Parahippocampal Gyrus L, R CV, SA, TA, TS
19 Pars Opercularis L, R CV, SA, TA, TS
20 Pars Orbitalis L, R CV, SA, TA, TS
21 Pars Triangularis L, R CV, SA, TA, TS
22 Pericalcarine Cortex L, R CV, SA, TA, TS
23 Postcentral Gyrus L, R CV, SA, TA, TS
24 Posterior Cingulate Cortex L, R CV, SA, TA, TS
25 Precentral Gyrus L, R CV, SA, TA, TS
26 Precuneus Cortex L, R CV, SA, TA, TS
27 Rostral Anterior Cingulate Cortex L, R CV, SA, TA, TS
28 Rostral Middle Frontal Gyrus L, R CV, SA, TA, TS
29 Superior Frontal Gyrus L, R CV, SA, TA, TS
30 Superior Parietal Cortex L, R CV, SA, TA, TS
31 Superior Temporal Gyrus L, R CV, SA, TA, TS
32 Supramarginal Gyrus L, R CV, SA, TA, TS
33 Temporal Pole L, R CV, SA, TA, TS
34 Transverse Temporal Cortex L, R CV, SA, TA, TS
35 Hemisphere L, R SA
36 Total Intracranial Volume Bilateral CV

275 (= 34 × 2 × 4 + 1 × 2 × 1 + 1) cortical features calculated were analyzed in this study.

Laterality indicates different feature types calculated for L (left hemisphere), R (right

hemisphere) or Bilateral (whole hemisphere).

MCI, and 155 CN), 91 (0 AD, 42 MCI, and 49 CN), respectively. The amount of instances of each
task is different in Table 3 since the datasets decrease in size due to the drop out of some patients
for various reasons.

Cognitive scores: For predictive modeling, five sets of cognitive scores (Wan et al. 2014; Wang
et al. 2012) are examined: ADAS, MMSE, Rey Auditory Verbal Learning Test (RAVLT), Cate-

ACM Transactions on Knowledge Discovery from Data, Vol. 12, No. 6, Article 65. Publication date: August 2018.



Modeling Alzheimer’s Disease Progression with Fused Laplacian Sparse Group Lasso 65:15

Table 2. Subcortical Features from the Following 44 (=16 × 2 + 12)
Subcortical Regions Generated by FreeSurfer

number ROI Laterality Type
1 Accumbens Area L, R SV
2 Amygdala L, R SV
3 Caudate L, R SV
4 Cerebellum Cortex L, R SV
5 Cerebellum White Matter L, R SV
6 Cerebral Cortex L, R SV
7 Cerebral White Matter L, R SV
8 Choroid Plexus L, R SV
9 Hippocampus L, R SV
10 Inferior Lateral Ventricle L, R SV
11 Lateral Ventricle L, R SV
12 Pallidum L, R SV
13 Putamen L, R SV
14 Thalamus L, R SV
15 Ventricle Diencephalon L, R SV
16 Vessel L, R SV
17 Brain Stem Bilateral SV
18 Corpus Callosum Anterior Bilateral SV
19 Corpus Callosum Central Bilateral SV
20 Corpus Callosum Middle Anterior Bilateral SV
21 Corpus Callosum Middle Posterior Bilateral SV
22 Corpus Callosum Posterior Bilateral SV
23 Cerebrospinal Fluid Bilateral SV
24 Fourth Ventricle Bilateral SV
25 Non White Matter Hypointensities Bilateral SV
26 Optic Chiasm Bilateral SV
27 Third Ventricle Bilateral SV
28 White Matter Hypointensities Bilateral SV

44 subcortical features calculated were analyzed in this study. laterality indicates

different feature types calculated for L (left hemisphere), R (right hemisphere) or

Bilateral (whole hemisphere).

Table 3. Description of the Cognitive Scores
Considered in the Experiments

Time point Category Total
CN MCI AD

Baseline 225 390 173 788
Month 6 211 352 155 718
Month 12 198 330 134 662
Month 24 177 254 101 532
Month 36 155 189 1 345
Month 48 49 42 0 91
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Table 4. Description of the Cognitive Scores Considered
in the Experiments

Score name Description

ADAS Alzheimer’s Disease Assessment Scale
MMSE Mini-Mental State Exam

RAVLT

TOTAL Total score of the first 5 learning trials
TOT6 Trial 6 total number of words recalled
T30 30 minute delay total number of words recalled

RECOG 30 minute delay recognition

FLU
ANIM Animal total score
VEG Vegetable total score

TRAILS
A Trail making test A score
B Trail making test B score

gory Fluency (FLU), and Trail Making Test (TRAILS). ADAS is the gold standard in AD drug
trial for cognitive function assessment, which is the most popular cognitive testing instrument
to measure the severity of the most important symptoms of AD. MMSE measures cognitive
impairment, including orientation to time and place, attention, and calculation, immediate and
delayed recall of words, language, and visuo-constructional functions. RAVLT is a measure of
episodic memory and used for the diagnosis of memory disturbances, which consists of eight
recall trials and a recognition test. FLU is a measure of semantic memory (verbal fluency and
language). The subject is asked to name different exemplars from a given semantic category.
TRAILS is a test of processing speed and executive function, consists of two parts in which the
subject is instructed to connect a set of 25 dots as fast as possible while still maintaining accu-
racy. Certain scores have different variants, yielding a total of 10 scores, and these are listed in
Table 4.

In our setting, each of the 10 cognitive scores correspond to one MTL problem, where the dif-
ferent time steps are considered as distinct tasks. Thus, the MTL models, including FL-SGL focus
on modeling the progression of these scores. Results will be reported on each of these 10 cognitive
scores separately.

Evaluation metrics: For the quantitative performance evaluation, we employed the metrics of
Correlation Coefficient (CC) and Root Mean Squared Error (rMSE) between the predicted clini-
cal scores and the target clinical scores for single time point. CC is used to calculate the value
of R in Figures 5–7. Moreover, for aggregated performance over all time points, the normalized
mean squared error (nMSE) (Argyriou et al. 2008; Zhou et al. 2013) and weighted R-value (wR)
(Stonningtona et al. 2010) are used. The nMSE and wR are defined as follows:

nMSE(Y , Ŷ ) =

∑k
h=1

‖Yh−Ŷh ‖22
σ (Yh )∑k

h=1 nh

, (32)

wR(Y , Ŷ ) =

∑k
h=1 Corr(Yh , Ŷh )nh∑k

h=1 nh

, (33)

where Y and Ŷ are the ground truth cognitive scores and the predicted cognitive scores, respec-
tively. A smaller (higher) value of nMSE and rMSE (CC and wR) represents better regression
performance. The average (avg) and standard deviation (std) of performance measures across 20
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Fig. 3. Hyper-parameter sensitivity analysis: hyper-parameter λ3 associated with the FL-SGL temporal
smooth term plays an important role in the prediction performance and should not be neglected. Larger
values for λ2 (associated with group lasso penalty) has a clear tendency to worsen the results, particularly
for larger values of λ1.

runs on different splits of data are shown as avg ± std for each experiment. A Student’s t-test
at a significance level of 0.05 is performed to determine whether the performances difference are
significant.

Experimental methodology: We randomly split the data into training and testing sets using a
ratio 9:1 and repeat 20 trials, i.e., we build models on 90% of the data (train-set) and evaluate
these models on the remaining 10% of the data (test-set). In each trial, a five-fold cross validation
on the train-set is done to select the regularization parameters (hyper-parameters) (λ1, λ2, λ3),
and the estimated model using these regularization parameters are used to predict on the test
set. For the cross-validation, for a fixed set of hyper-parameters, four folds are used for training,
one fold for evaluation using nMSE. For hyper-parameter selection, we consider a grid of
regularization parameter values, where each regularization parameter is varied from 10−1 to 103

in log scale. The data was z-scored before applying regression methods.

Hyper-parameter sensitivity: To assess the sensitivity of the three hyper-parameters in the FL-
SGL formulation (Equation (4)), we explored the three-dimension hyper-parameters space and plot
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Fig. 4. Convergence of Two-Block and Multi-Block ADMM for FL-SGL formulation. The Multi-block version
has a faster convergence rate and leads to a lower validation prediction error.

the NMSE metric for each combination of values. The sensitivity study is important to investigate
the influence of each term in the FL-SGL formulation, and provide a guidance on how to properly
set the hyper-parameters. The hyper-parameter space is defined as λ1 ∈ [0.1, 100], λ2 ∈ [0.1, 100],
and λ3 ∈ [50, 1000]. ρ = 10 was used in this experiment. The NMSE presented was computed in the
test set. Due to space limitations, Figure 3 only shows plots for ADAS, MMSE, and RAVLT.TOTAL
cognitive scores. It is possible to observe that for all cognitive scores, smaller values for λ3 led
to poor regression performance, indicating that the temporal smooth penalization term plays an
important role in the prediction and should not be neglected. Larger values for λ2 (associated with
group lasso penalty) has a clear tendency to worsen the results, particularly for larger values of λ1.
As λ1 increases, we enforce more sparsity on the θ parameters, hence breaking the group structure
present in the data.

4.2 Optimization: Multi-Block and Two-Block ADMM

In Section 3, we discussed two methods for solving the optimization problem associated with the
FL-SGL formulation, namely Linearized Two-Block ADMM and Linearized Multi-Block ADMM.
In this section, we empirically investigate and compare their performances based on the ADNI
dataset described in Section 4.1.
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Due to space limitations, we only show the convergence on three scores in Figure 4, namely
ADAS, MMSE, and RAVLT.TOTAL. The same behavior was observed for the other scores. The
(primal) objective value plots on the left column show that the Multi-block ADMM converged
to solutions with lower cost function in the training phase. It is worth mentioning that the cost
function does not monotonically decrease, because in the beginning of the optimization process
the solution is not feasible, and the objective function curve may change as the solution becomes
feasible. In ADMMs, the feasibility is reached during the optimization and it can be assessed by
looking at the primal residual, which is illustrated in the middle column plots. To compute the
validation curves in the right most column, 20% of the training data was used as a validation set
to measure the prediction power of intermediate solutions of both ADMMs. We carried out 30
independent runs with different sets of validation data splits, and the curves show the mean and
standard deviation NMSE over the multiple runs. For these experiments we used ρ = 10, which
showed to lead to more stable behavior of the methods. Notably, Multi-block ADMM achieved
solutions with higher generalization capacity. Guided by these results, we chose the Multi-Block
ADMM as our optimization algorithm for the remaining experiments.

4.3 Prediction Performance Based on MRI Features

Prediction performance results of 10 cognitive scores are reported in Table 5. We compare the
performance of FL-SGL with different regression methods, including ridge regression (Draper
and Smith 2014), lasso (Liu and Ye 2009), which are applied independently to each time point,
and cFSGL (Zhou et al. 2013), which is one of the state-of-the-art methods for characterizing
longitudinal AD progression. Recall that each experiment focuses on a specific cognitive score,
with different time points serving as different tasks for the MTL formulations. Since there
are a total of 10 cognitive scores, we run experiments and report results individually for each
score.

The average and standard deviation of performance measures are calculated by 20 iterations of
trials on different splits of data, and are shown in Table 5. It is worth noting that we use the same
training and test data across the experiments for all the methods for fair comparison.

The results show that multi-task temporal smoothness models (cFSGL, F-SGL, FL-SGL1, and
FL-SGL2) provide more accurate predictions of the cognitive scores when compared to single-task
learning models (ridge and lasso) in terms of both nMSE and wR over all scores. cFSGL outper-
forms F-SGL in terms of nMSE, wR and the rMSE in the most time points. As F-SGL and cFSGL
formulations are equivalent, it suggests that the different results due to the different optimization
methods. The results indicate the AGM is more effective than ADMM for optimizing the fused SGL-
based formulation. However, FL-SGL1 and FL-SGL2 outperform cFSGL, which demonstrates the
advantage of the proposed transform matrix taking into account all the time points. Between the
two proposed methods, FL-SGL2 outperforms FL-SGL1 in six tasks (RAVLT.TOTAL, RAVLT.TOT6,
RAVLT.RECOG, FLU.ANIM, FLU.VEG, and TRAILS.A) in terms of nMSE and seven tasks (ADAS,
MMSE, RAVLT.TOT6, RAVLT. RECOG, FLU.ANIM, and FLU.VEG) in terms of wR. The statistical
hypothesis test reveals that FL-SGL1 and FL-SGL2 are significantly better than the contenders for
most of the scores.

We show the scatter plots of actual values versus predicted values on testing data. Due to lack of
space, we only listed three scatter plots, including ADAS, MMSE, and RAVLT.TOTAL in Figures 5–
7, respectively. Since the sample size at the M48 time point is small, we only show the scatter plots
for the first four time points. The value of R in the figures is calculated by CC. From the scatter
plots, we can see that the predicted values and actual values scores have similar high correlation
for these three tasks. The scatter plots show that the prediction performance for ADAS is better
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Table 5. Prediction performance results of 10 cognitive scores of six time points based on MRI features

Ridge Lasso cFSGL F-SGL FL-SGL1 FL-SGL2
Score: ADAS

nMSE 10.01±0.794†∗ 6.613±0.474†∗ 5.030±0.310†∗ 5.642±0.380†∗ 4.969±0.318 4.975±0.329

wR 0.581±0.033†∗ 0.628±0.024†∗ 0.750±0.016 0.695±0.019†∗ 0.749±0.017 0.749±0.018

BL rMSE 7.831±0.719 6.922±0.630 6.278±0.462 6.143±0.609 6.033±0.496 6.182±0.502

M6 rMSE 8.700±0.922 7.645±0.749 6.532±0.648 6.913±0.727 6.576±0.705 6.520±0.686

M12 rMSE 9.771±0.810 8.636±0.816 7.240±0.630 7.992±0.747 7.293±0.638 7.243±0.637

M24 rMSE 11.81±1.263 10.29±0.866 9.115±1.034 9.685±0.817 8.950±0.958 8.992±0.976

M36 rMSE 12.82±1.750 9.496±1.291 8.183±0.854 9.036±1.180 8.331±0.775 8.204±0.855

M48 rMSE 20.07±3.749 9.125±2.088 8.104±1.296 9.142±1.810 8.105±1.352 8.164±1.338

Score: MMSE

nMSE 13.90±12.01†∗ 2.582±0.251†∗ 2.208±0.175†∗ 2.409±0.184†∗ 2.136±0.165 2.152±0.160

wR 0.424±0.038†∗ 0.575±0.033†∗ 0.652±0.031† 0.604±0.028†∗ 0.654±0.032 0.651±0.031

BL rMSE 2.716±0.283 2.205±0.188 2.198±0.243 2.133±0.207 2.207±0.226 2.223±0.205

M6 rMSE 3.410±0.223 2.875±0.272 2.605±0.257 2.733±0.255 2.619±0.259 2.624±0.259

M12 rMSE 3.888±0.363 3.191±0.328 2.852±0.273 3.036±0.297 2.825±0.253 2.833±0.263

M24 rMSE 4.951±0.423 3.886±0.483 3.540±0.468 3.840±0.499 3.468±0.456 3.491±0.451

M36 rMSE 5.901±1.202 3.299±0.660 3.065±0.525 3.295±0.705 3.045±0.497 3.029±0.526

M48 rMSE 29.94±1.466 4.334±1.200 4.240±1.399 4.533±1.586 3.226±0.847 3.297±0.864

Score: RAVLT.TOTAL

nMSE 17.69±1.207†∗ 9.679±0.501†∗ 7.025±0.419†∗ 8.246±0.483†∗ 6.845±0.467 6.842±0.454

wR 0.406±0.047†∗ 0.506±0.031†∗ 0.675±0.023†∗ 0.588±0.028†∗ 0.685±0.025 0.684±0.024

BL rMSE 11.37±0.848 9.826±0.753 8.994±0.730 9.075±0.659 8.860±0.815 8.969±0.763

M6 rMSE 11.62±0.844 10.08±0.804 8.720±0.848 9.363±0.802 8.745±0.798 8.694±0.791

M12 rMSE 12.90±1.221 11.57±1.011 9.633±0.927 10.43±1.002 9.463±0.866 9.415±0.873

M24 rMSE 14.88±1.639 12.27±1.049 9.979±0.997 11.24±0.944 9.793±0.801 9.776±0.816

M36 rMSE 16.66±1.969 11.71±1.415 9.394±1.187 10.95±1.324 9.259±1.166 9.162±1.181

M48 rMSE 41.21±3.442 11.88±1.801 9.611±1.990 11.81±2.050 9.069±2.318 9.277±2.340

Score: RAVLT.TOT6

nMSE 3.934±0.275†∗ 2.881±0.131†∗ 2.375±0.172†∗ 2.664±0.126†∗ 2.297±0.161 2.280±0.170

wR 0.459±0.044†∗ 0.542±0.031†∗ 0.655±0.031†∗ 0.583±0.029†∗ 0.666±0.031 0.669±0.031

BL rMSE 3.624±0.274 3.252±0.197 3.099±0.240 3.177±0.190 3.056±0.226 3.071±0.230

M6 rMSE 3.436±0.321 3.160±0.258 2.865±0.215 3.056±0.246 2.813±0.189 2.800±0.176

M12 rMSE 3.825±0.318 3.438±0.292 3.121±0.260 3.322±0.263 3.085±0.237 3.053±0.250

M24 rMSE 4.111±0.375 3.601±0.328 3.197±0.330 3.429±0.293 3.122±0.334 3.115±0.323

M36 rMSE 4.245±0.745 3.496±0.372 3.011±0.328 3.359±0.334 2.967±0.412 2.916±0.421

M48 rMSE 7.538±1.252 4.212±0.815 3.499±0.766 3.662±0.581 3.368±0.780 3.402±0.828

Score: RAVLT.T30

nMSE 3.869±0.240†∗ 3.012±0.131†∗ 2.392±0.179†∗ 2.770±0.140†∗ 2.369±0.169 2.370±0.163

wR 0.456±0.043†∗ 0.539±0.032†∗ 0.667±0.033 0.586±0.034†∗ 0.671±0.030 0.670±0.029

BL rMSE 3.831±0.277 3.443±0.224 3.273±0.266 3.356±0.222 3.216±0.258 3.257±0.253

M6 rMSE 3.454±0.298 3.176±0.309 2.881±0.192 3.067±0.281 2.897±0.178 2.885±0.187

(Continued)
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Table 5. Continued

Ridge Lasso cFSGL F-SGL FL-SGL1 FL-SGL2
M12 rMSE 4.026±0.406 3.753±0.339 3.264±0.325 3.597±0.343 3.281±0.328 3.245±0.318

M24 rMSE 4.126±0.439 3.707±0.319 3.191±0.303 3.543±0.332 3.183±0.316 3.177±0.308

M36 rMSE 4.097±0.778 3.428±0.399 2.935±0.381 3.313±0.378 2.882±0.429 2.860±0.414

M48 rMSE 7.029±1.602 4.669±0.966 3.603±0.767 3.950±0.640 3.598±0.756 3.693±0.786

Score: RAVLT.RECOG

nMSE 6.279±0.629†∗ 3.350±0.181†∗ 2.896±0.223†∗ 3.147±0.178†∗ 2.850±0.215 2.818±0.215

wR 0.341±0.037†∗ 0.470±0.033†∗ 0.578±0.036†∗ 0.512±0.031†∗ 0.588±0.033 0.595±0.035

BL rMSE 4.259±0.278 3.554±0.231 3.447±0.250 3.479±0.230 3.394±0.277 3.434±0.282

M6 rMSE 4.491±0.339 3.833±0.329 3.576±0.382 3.750±0.345 3.597±0.399 3.532±0.392

M12 rMSE 4.776±0.364 3.809±0.220 3.534±0.277 3.723±0.250 3.555±0.278 3.503±0.272

M24 rMSE 4.983±0.465 3.771±0.277 3.404±0.386 3.680±0.294 3.316±0.391 3.289±0.366

M36 rMSE 5.340±0.476 3.629±0.281 3.381±0.378 3.468±0.320 3.353±0.395 3.333±0.415

M48 rMSE 12.59±0.901 4.856±0.703 3.560±0.692 4.096±1.103 3.300±0.561 3.343±0.605

Score: FLU.ANIM

nMSE 9.497±0.817†∗ 5.080±0.325†∗ 3.966±0.395†∗ 4.640±0.283†∗ 3.901±0.360 3.896±0.361

wR 0.300±0.061†∗ 0.402±0.048†∗ 0.592±0.046†∗ 0.479±0.041†∗ 0.602±0.040 0.602±0.040

BL rMSE 6.369±0.509 5.366±0.413 4.984±0.360 5.105±0.410 4.858±0.370 4.956±0.369

M6 rMSE 6.017±0.507 5.178±0.559 4.633±0.419 4.946±0.497 4.649±0.386 4.602±0.381

M12 rMSE 6.678±0.905 5.783±0.929 4.902±0.998 5.387±0.860 4.864±0.941 4.816±0.962

M24 rMSE 7.278±0.570 5.744±0.547 5.068±0.558 5.588±0.523 5.034±0.551 5.025±0.545

M36 rMSE 7.655±1.026 5.439±0.743 4.550±0.623 5.309±0.728 4.558±0.627 4.535±0.649

M48 rMSE 20.42±2.239 6.357±1.301 5.131±1.082 6.300±1.307 5.128±1.013 5.014±1.019

Score: FLU.VEG

nMSE 6.622±0.447†∗ 3.477±0.197†∗ 2.830±0.169†∗ 3.273±0.206†∗ 2.800±0.187 2.797±0.174

wR 0.382±0.041†∗ 0.502±0.043†∗ 0.634±0.030∗ 0.544±0.035†∗ 0.637±0.031 0.638±0.030

BL rMSE 4.449±0.343 3.643±0.319 3.503±0.306 3.552±0.311 3.445±0.309 3.511±0.306

M6 rMSE 4.674±0.447 3.913±0.373 3.517±0.303 3.813±0.359 3.516±0.306 3.481±0.301

M12 rMSE 4.802±0.490 3.971±0.260 3.489±0.344 3.824±0.282 3.503±0.357 3.476±0.350

M24 rMSE 5.297±0.531 4.308±0.431 3.870±0.365 4.169±0.441 3.832±0.333 3.840±0.338

M36 rMSE 6.567±0.661 4.222±0.334 3.762±0.295 4.109±0.348 3.779±0.310 3.717±0.297

M48 rMSE 13.89±1.565 5.102±0.880 3.634±0.512 4.865±0.894 3.513±0.544 3.534±0.520

Score: TRAILS.A

nMSE 33.31±3.152†∗ 23.62±1.922†∗ 18.99±1.645†∗ 21.41±1.688†∗ 18.38±1.696 18.31±1.612

wR 0.360±0.056†∗ 0.391±0.043†∗ 0.576±0.049†∗ 0.482±0.046†∗ 0.597±0.052 0.596±0.049

BL rMSE 27.60±3.255 24.98±3.246 22.36±2.611 23.55±2.839 21.89±2.764 22.26±2.696

M6 rMSE 28.10±3.267 24.93±3.403 22.76±2.593 23.94±3.277 22.64±2.716 22.28±2.686

M12 rMSE 28.56±3.394 25.66±4.284 21.98±2.288 24.26±3.295 21.25±2.013 21.01±2.042

M24 rMSE 30.68±5.957 27.91±5.404 23.83±4.680 26.22±4.878 23.29±4.382 23.24±4.372

M36 rMSE 31.67±5.915 23.89±5.073 22.71±3.094 23.46±4.503 22.81±3.081 22.78±3.121

M48 rMSE 51.79±10.68 27.12±13.39 23.61±7.991 25.46±10.91 22.75±7.584 23.31±7.906

(Continued)
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Table 5. Continued

Ridge Lasso cFSGL F-SGL FL-SGL1 FL-SGL2
Score: TRAILS.B

nMSE 91.14±7.728†∗ 65.90±5.027†∗ 55.54±4.238 59.59±5.114†∗ 55.65±4.021 55.98±4.240

wR 0.404±0.044†∗ 0.451±0.040†∗ 0.568±0.030 0.515±0.037†∗ 0.570±0.029 0.567±0.031

BL rMSE 80.03±5.554 71.40±5.356 67.64±5.241 67.63±5.158 67.28±5.344 67.78±5.608

M6 rMSE 79.51±9.557 71.42±7.229 66.07±7.492 67.58±7.642 66.21±7.353 66.14±7.402

M12 rMSE 77.88±7.025 71.61±5.791 64.75±5.848 67.96±5.975 65.51±5.933 65.44±6.014

M24 rMSE 90.88±12.90 78.03±8.892 69.61±8.652 73.56±8.536 69.43±8.431 69.20±8.455

M36 rMSE 93.62±21.31 75.01±20.42 69.51±20.56 72.92±21.21 69.39±19.04 70.28±18.83

M48 rMSE 131.2±21.75 69.42±19.59 57.10±16.40 68.06±17.11 56.23±16.46 56.98±16.88

Note that the best results are boldfaced, superscript symbols † and ∗ indicate that FL-SGL1 and FL-SGL2, respectively,

significantly outperformed that method on that score. Student’s t -test at a level of 0.05 was used.

Fig. 5. Scatter plots of actual ADAS versus predicted values on testing data using FL-SGL2 based on MRI
features. The value of R is calculated by Correlation Coefficient. Strong correlation is observed for the ADAS
score in all time points.
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Fig. 6. Scatter plots of actual MMSE versus predicted values on testing data using FL-SGL2 based on MRI
features. The value of R is calculated by Correlation Coefficient. Strong correlation is observed for the MMSE
score in all time points.

than that of MMSE and RAVLT.TOTAL. In the future, we will add more modalities, such as PET,
CSF to improve the performance.

4.4 Identification of Longitudinal MRI Biomarkers

One of the primary goals of our formulation is to identify the temporal imaging markers which
are highly correlated to the longitudinal AD progression and are also clinically meaningful. In this
subsection, we first identify statistically stable biomarkers (Section 4.4.1) and discuss their clinical
relevance based on existing literature (Section 4.4.2).

4.4.1 Stable Longitudinal Biomarkers. We study the temporal imaging markers identified by
our method using longitudinal stability selection (Zhou et al. 2013). Broadly speaking, the sta-
bility selection procedure consists in running FL-SGL to numerous random subsets of data and
computing the frequency with which each feature was selected (corresponding model weight is
greater than a threshold value) for each cognitive score and time point across the runs. A feature
is claimed to be stable if it was selected in a large portion of the runs (high frequency). For more
details, see Meinshausen and Bühlmann (2010) and Zhou et al. (2013). The computed frequency
vector is referred here as stability vector.
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Fig. 7. Scatter plots of actual RAVLT.TOTAL versus predicted values on testing data using FL-SGL2 based on
MRI features. The value of R is calculated by Correlation Coefficient. Strong correlation is observed for the
RAVLT.TOTAL score in all time points.

Since there are few samples available for the last time point (M48), we only performed longi-
tudinal stability selection for the first four time points. Due to lack of space, we only show three
stability vectors with the top 30 stable features for ADAS, MMSE, and RAVLT.TOTAL by obtaining
an average stability score for four time points, respectively, in Figure 8. We also listed the top 10
stable features for all the scores in Table 6.

The top 30 stable MRI features for ADAS score are shown in Figure 8(a). We note that most
features provide significant information that span across all the time points, which demonstrates
that these biomarkers are longitudinally stable due to the advantage of smooth temporal regu-
larization. It is interesting to note that the selected stable features are consistent with respect to
the stable score, which indicates that our method has a good performance for later time points
where few samples are available. Moreover, it also demonstrates there exists a strong correlation
among the multiple tasks of score prediction at multiple time points. SV of left hippocampus, cor-
tical TA of left middle temporal, and CV of left pars opercularis have large longitudinal stability
scores.

Figure 8(b) presents the top 30 stable MRI features for MMSE. We observe that the stable
biomarkers have different patterns than for ADAS score. Notably, the stability vectors are not
consistent across of multiple time points for MMSE as for ADAS, which suggests a weaker
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Fig. 8. Stability vectors of stable MRI features generated by FL-SGL2 for ADAS, MMSE, and RAVLT.TOTAL
using longitudinal stability selection. The larger the value more stable is the feature.

correlation among multiple time points if compared to ADAS and RAVLT.TOTAl. Additionally,
we note that most biomarkers provide significant information for the last stage (M36) and few
of them are significant in the first two years, which possibly is the factor by which our method
obtained higher performance in later time points. However, SA of left and right hemisphere, and
CV and SA of left middle temporal are important biomarkers for all time points.

The stability vectors of the top 30 stable MRI features for RAVLT.TOTAL are shown in Fig-
ure 8(c). Similar to ADAS, most features are longitudinally stable, but more features have large
longitudinal stability vectors than ADAS, such as SV of left hippocampus, cortical TA of left mid-
dle temporal, SA of left rostral middle frontal, right caudal middle frontal and right hemisphere.
It can be the reason for the FL-SGL consistent results for all the times points. The identified tem-
poral patterns of MRI biomarkers for these three scores suggest that different time points share
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Table 6. The Top 10 Features Identified by Our FL-SGL2 Method for the
10 Prediction Tasks of Cognitive Scores

Score Name Features

ADAS

SV of L.Hippocampus, TA of L.MiddleTemporal, CV of L.ParsOpercularis,

SA of R.CaudalMiddleFrontal, SA of R.InferiorParietal, SV of L.CerebellumCortex,

SA of R.Hemisphere, SA of L.RostralAnteriorCingulate, SA of R.PosteriorCingulate,

SA of L.ParsOpercularis

MMSE

SA of R.Hemisphere, SA of L.Hemisphere, CV of L.MiddleTemporal,

CV of L.InferiorParietal, SA of L.MiddleTemporal, CV of R.InferiorParietal,

TA of L.MiddleTemporal, CV of R.Precentral, CV of R.SuperiorParietal,

CV of R.ParsOpercularis

RAVLT.TOTAL

SV of L.Hippocampus, TA of L.MiddleTemporal, SA of L.RostralMiddleFrontal,

SA of R.CaudalMiddleFrontal, CV of L.RostralMiddleFrontal, SA of L.Supramarginal,

SA of R.Hemisphere, CV of L.Supramarginal, TA of L.RostralMiddleFrontal,

CV of R.CaudalMiddleFrontal

RAVLT.TOT6

SV of L.Hippocampus, TA of L.MiddleTemporal, CV of L.RostralMiddleFrontal,

SA of L.RostralMiddleFrontal, CV of R.CaudalMiddleFrontal, SA of R.CaudalMiddleFrontal,

TA of R.CaudalMiddleFrontal, TA of R.Lingual, CV of L.ParsOpercularis,

TA of L.RostralMiddleFrontal

RAVLT.T30

CV of R.RostralAnteriorCingulate, SV of L.Hippocampus, CV of L.RostralMiddleFrontal,

SA of L.RostralMiddleFrontal, SV of R.InferiorLateralVentricle, TA of R.Lingual,

TA of L.RostralMiddleFrontal, CV of R.Lingual, SA of R.CaudalMiddleFrontal,

TA of L.MiddleTemporal

RAVLT.RECOG

SV of L.Hippocampus, CV of L.ParsOpercularis, SA of L.RostralMiddleFrontal,

SA of L.ParsOpercularis, SA of L.ParsTriangularis, SA of R.CaudalMiddleFrontal,

CV of L.ParsTriangularis, CV of R.CaudalMiddleFrontal, CV of L.RostralMiddleFrontal,

TA of L.RostralMiddleFrontal

FLU.ANIM

TA of R.SuperiorParietal, SA of R.MiddleTemporal, SA of L.Supramarginal,

SA of R.SuperiorParietal, CV of R.SuperiorFrontal, TA of L.MiddleTemporal,

CV of R.MiddleTemporal, TA of R.MiddleTemporal, CV of L.Supramarginal,

SA of L.MedialOrbitofrontal

FLU.VEG

CV of L.SuperiorFrontal, CV of L.ParsOpercularis, CV of L.CaudalMiddleFrontal,

SV of L.Hippocampus, CV of R.Precuneus, SA of L.ParsOpercularis,

SA of L.ParsTriangularis, SA of R.MiddleTemporal, TA of R.SuperiorParietal,

SA of L.SuperiorFrontal

TRAILS.A

SA of L.MedialOrbitofrontal, CV of R.FrontalPole, SA of R.FrontalPole,

CV of L.MedialOrbitofrontal, SA of R.CaudalMiddleFrontal, CV of R.CaudalMiddleFrontal,

TA of L.SuperiorFrontal, CV of R.SuperiorTemporal, SA of R.SuperiorTemporal,

CV of L.ParsOrbitalis

TRAILS.B

TA of L.MiddleTemporal, TA of L.Insula, TA of R.Entorhinal,

TA of L.InferiorParietal, SV of R.LateralVentricle, SA of L.SuperiorFrontal,

TA of R.InferiorParietal, TA of R.Lingual, SV of FourthVentricle,

TS of L.ParsTriangularis

Many features have been simultaneously identified as stable features for multiple cognitive measures.
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Fig. 9. An alternative view from Table 6. The top 10 features identified by our FL-SGL2 method for the 10
prediction tasks of cognitive scores. Several features have been identified as an important marker by different
scores.

similar features, which demonstrates that these biomarkers are longitudinally important due to
the advantage of smooth temporal regularization.

The top 10 stable features selected by ranking the average of the four stability vectors from
time points M6, M12, M24, and M36 are listed in Table 6. And the alternative view from Table 6 is
shown in Figure 9. The total number of features for the 10 scores is 56. This is due to the fact that
some features were identified as stable for many scores, which suggests that different scores share
similar features.
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Fig. 10. The histogram of the top ROIs by stability selection. Middle temporal, caudal middle frontal, and
hippocampus are selected, relevant according to existing AD domain knowledge.

To clear summarize the biomarkers identified by our method for multiple cognitive scores, we
assume the p covariates to be divided into q disjoint groups G�, � = 1, . . . ,q, with each group
having ν� covariates, respectively. In the context of AD, each group corresponds to a ROI in
the brain, and the covariates in each group correspond to specific features of that region. For
AD, the number of features in each group, ν� , is 1 or 4, and the number of groups q can be
in the hundreds. Figure 10 illustrates the histogram of the ROIs name from the perspective of
regions.

4.4.2 Clinical Relevance of Identified ROIs. We briefly discuss the clinical relevance of the ROIs
identified based on statistical stability. The identified regions include middle temporal, caudal mid-
dle frontal, hippocampus (Risacher et al. 2009; Wang et al. 2009; Apostolova et al. 2006), which have
been found to be predicted during disease progression. Furthermore, we show the brain maps of
the top ROIs in Figure 11, including cortical ROIs and sub-cortical ROIs. These findings are con-
sistent with their atrophy pattern and prediction power of AD found in the literature (Wang et al.
2012; Wan et al. 2012; Zhou et al. 2013).

We observe that different cognitive scores also share similar ROIs, which demonstrate that there
exists a strong correlation among the multiple tasks of score prediction at multiple time points.
For example, the number of the common top 10 features is 19 for the score of RAVLT, including
TOTAL, TOT6, T30, and RECOG, which implies that these four scores are strongly correlated.
Interestingly, the top 10 features of TRAILS.A and TRAILS.B are exactly different, indicating that
they are weakly correlated.

On the whole, some important brain regions are selected by our method, such as Middle Tem-
poral (Yan et al. 2015; Xu et al. 2016; Visser et al. 2002; Zhu et al. 2016), Hippocampus (Zhu et al.
2016), Entorhinal (Yan et al. 2015), Inferior lateral ventricle (Gutman et al. 2015; Wan et al. 2014),
and Parahipp (Echávarri et al. 2011), which are highly relevant to the cognitive impairment. These
findings are in accordance with the known knowledge that in the pathological pathway of AD.
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Fig. 11. Brain maps of the top ROIs selected by FL-SGL2 using stability selection. (a)–(d) are cortical ROIs
selected and (e)–(g) are sub-cortical ROIs selected.

These identified brain regions have been pointed out in the previous literatures and have been
also shown to be highly related to clinical functions. For example, hippocampus is located in the
temporal lobe of the brain, which are the role of the memory and spatial navigation. The Entorhinal
cortex is the first area of the brain to be affected in AD, and it is the most heavily damaged cortex
in AD (Van Hoesen et al. 1991). Hippocampus and entorhinal cortex have already been identified
as areas steadily affected by AD (Braak and Braak 1985; Van Hoesen et al. 1991). Recent studies
(Devanand et al. 2007; Khan et al. 2014; López et al. 2014) suggest that these are the first areas
damaged by AD, therefore, can be considered as an important biomarker for diagnosing AD in
early stages. Both hippocampus and entorhinal are part of the memory system, then it is expected
that such areas relate to AD as memory loss is one of the primaries AD clinical signs (Burns and
Iliffe 2009). Moreover, some recent results stress the importance of parahippocampal atrophy as
an early biomarker of AD, since parahippocampal volume discriminates better than hippocampal
volume between cases of healthy aging, MCI, and mild AD, in particular, in the early phase of the
disease (Echávarri et al. 2011). Additionally, results also suggest that changes in thickness of the
inferior parietal lobule are occurring early in the progression from normal to MCI, and related to
neuropsychological performance (Greene et al. 2010).
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Table 7. Prediction performance results of 10 cognitive scores of six time points based on MRI features,
demographic information, and ApoE genotyping information

Ridge Lasso cFSGL F-SGL FL-SGL1 FL-SGL2
Score: ADAS

nMSE 9.655±0.896†∗ 6.095±0.421†∗ 4.705±0.278†∗ 5.217±0.306†∗ 4.612±0.311 4.584±0.301

wR 0.599±0.028†∗ 0.665±0.022†∗ 0.769±0.016†∗ 0.723±0.018†∗ 0.773±0.017 0.774±0.017

BL rMSE 7.456±0.594 6.565±0.617 5.992±0.392 5.830±0.547 5.758±0.424 5.848±0.410

M6 rMSE 8.632±0.950 7.397±0.824 6.431±0.695 6.696±0.744 6.457±0.781 6.383±0.734

M12 rMSE 9.550±0.798 8.389±0.736 6.989±0.584 7.791±0.677 7.015±0.560 6.936±0.578

M24 rMSE 11.74±1.193 9.829±0.807 8.710±0.996 9.257±0.745 8.547±0.895 8.607±0.893

M36 rMSE 12.55±1.842 9.103±1.241 8.100±0.807 8.710±1.237 8.022±0.798 7.877±0.874

M48 rMSE 20.05±3.697 8.693±2.028 7.438±1.335 8.558±1.711 7.721±1.408 7.775±1.346

Score: MMSE

nMSE 13.63±12.01†∗ 2.399±0.223†∗ 2.034±0.189†∗ 2.237±0.178†∗ 1.970±0.172 1.978±0.184

wR 0.468±0.037†∗ 0.617±0.036†∗ 0.686±0.033 0.644±0.036†∗ 0.687±0.033 0.686±0.034

BL rMSE 2.630±0.256 2.151±0.200 2.132±0.230 2.074±0.225 2.124±0.230 2.131±0.242

M6 rMSE 3.309±0.267 2.790±0.270 2.512±0.269 2.678±0.259 2.529±0.275 2.538±0.278

M12 rMSE 3.698±0.366 3.122±0.323 2.765±0.294 2.965±0.326 2.735±0.286 2.727±0.278

M24 rMSE 4.780±0.414 3.727±0.429 3.401±0.444 3.611±0.414 3.334±0.428 3.358±0.427

M36 rMSE 5.701±1.003 3.136±0.627 2.795±0.439 3.056±0.569 2.851±0.467 2.820±0.501

M48 rMSE 29.99±1.447 3.924±0.914 3.986±1.269 4.412±1.437 3.044±0.810 3.154±0.850

Score: RAVLT.TOTAL

nMSE 15.94±1.091†∗ 8.523±0.497†∗ 6.216±0.347†∗ 7.284±0.440†∗ 6.011±0.363 6.015±0.353

wR 0.480±0.040†∗ 0.575±0.033†∗ 0.721±0.021†∗ 0.648±0.029†∗ 0.731±0.020 0.730±0.020

BL rMSE 10.45±0.886 9.142±0.642 8.387±0.689 8.366±0.654 8.281±0.728 8.384±0.709

M6 rMSE 10.82±0.923 9.443±0.902 8.198±0.760 8.768±0.776 8.204±0.736 8.169±0.725

M12 rMSE 12.10±0.938 10.70±0.919 8.958±0.684 9.747±0.841 8.802±0.713 8.757±0.705

M24 rMSE 13.91±1.484 11.58±1.154 9.413±0.987 10.63±0.859 9.140±0.797 9.128±0.813

M36 rMSE 15.64±1.784 11.19±1.319 9.017±1.067 10.55±1.205 8.779±1.033 8.692±1.035

M48 rMSE 41.24±3.362 11.51±1.659 9.420±1.844 11.44±1.630 8.825±1.979 9.067±1.947

Score: RAVLT.TOT6

nMSE 3.640±0.291†∗ 2.676±0.137†∗ 2.132±0.206†∗ 2.434±0.132†∗ 2.060±0.149 2.058±0.156

wR 0.517±0.045†∗ 0.587±0.033†∗ 0.696±0.036†∗ 0.630±0.031†∗ 0.708±0.028 0.708±0.029

BL rMSE 3.481±0.267 3.141±0.189 2.987±0.265 3.051±0.182 2.888±0.245 2.918±0.245

M6 rMSE 3.313±0.325 3.048±0.260 2.728±0.224 2.941±0.239 2.697±0.202 2.672±0.195

M12 rMSE 3.618±0.307 3.291±0.246 2.892±0.244 3.157±0.213 2.862±0.239 2.845±0.236

M24 rMSE 3.872±0.393 3.380±0.336 2.980±0.348 3.213±0.316 2.943±0.308 2.943±0.299

M36 rMSE 4.141±0.735 3.437±0.372 2.840±0.375 3.251±0.336 2.823±0.406 2.803±0.413

M48 rMSE 7.529±1.232 4.272±0.768 3.358±0.819 3.515±0.534 3.319±0.802 3.406±0.810

Score: RAVLT.T30

nMSE 3.639±0.247†∗ 2.854±0.129†∗ 2.218±0.162 2.595±0.143†∗ 2.211±0.161 2.219±0.157

wR 0.501±0.042†∗ 0.573±0.029†∗ 0.696±0.029† 0.619±0.033†∗ 0.698±0.029 0.696±0.028

BL rMSE 3.697±0.283 3.349±0.236 3.152±0.269 3.251±0.229 3.105±0.272 3.143±0.267

M6 rMSE 3.353±0.304 3.084±0.317 2.794±0.183 2.965±0.275 2.813±0.177 2.798±0.179

(Continued)
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Table 7. Continued

Ridge Lasso cFSGL F-SGL FL-SGL1 FL-SGL2
M12 rMSE 3.843±0.410 3.592±0.332 3.087±0.307 3.446±0.335 3.107±0.318 3.087±0.310

M24 rMSE 3.971±0.448 3.602±0.317 3.059±0.314 3.424±0.335 3.073±0.317 3.077±0.308

M36 rMSE 4.056±0.752 3.423±0.396 2.881±0.394 3.291±0.361 2.844±0.430 2.833±0.403

M48 rMSE 7.013±1.587 4.694±0.955 3.538±0.640 3.789±0.662 3.561±0.636 3.666±0.663

Score: RAVLT.RECOG

nMSE 6.024±0.668†∗ 3.208±0.189†∗ 2.717±0.200∗ 2.987±0.192†∗ 2.692±0.226 2.672±0.213

wR 0.371±0.036†∗ 0.503±0.031†∗ 0.606±0.034†∗ 0.545±0.030†∗ 0.615±0.033 0.620±0.033

BL rMSE 4.204±0.304 3.511±0.243 3.385±0.278 3.426±0.249 3.330±0.277 3.374±0.284

M6 rMSE 4.484±0.360 3.789±0.346 3.510±0.369 3.687±0.352 3.524±0.407 3.477±0.397

M12 rMSE 4.576±0.338 3.679±0.231 3.378±0.244 3.569±0.249 3.379±0.241 3.348±0.236

M24 rMSE 4.773±0.503 3.688±0.268 3.287±0.383 3.574±0.272 3.220±0.379 3.190±0.358

M36 rMSE 5.148±0.475 3.527±0.260 3.227±0.319 3.388±0.306 3.278±0.383 3.249±0.378

M48 rMSE 12.60±0.884 4.615±0.759 3.233±0.785 3.848±0.999 3.199±0.501 3.238±0.541

Score: FLU.ANIM

nMSE 9.011±0.741†∗ 4.636±0.327†∗ 3.631±0.330 4.259±0.282†∗ 3.598±0.319 3.596±0.327

wR 0.365±0.055†∗ 0.482±0.042†∗ 0.637±0.036 0.543±0.035†∗ 0.640±0.034 0.641±0.035

BL rMSE 6.139±0.504 5.180±0.414 4.748±0.416 4.912±0.438 4.665±0.399 4.748±0.402

M6 rMSE 5.805±0.493 4.938±0.553 4.410±0.348 4.704±0.459 4.452±0.325 4.408±0.329

M12 rMSE 6.386±0.800 5.448±0.862 4.677±0.840 5.132±0.783 4.659±0.844 4.615±0.872

M24 rMSE 7.054±0.634 5.526±0.572 4.877±0.580 5.378±0.557 4.830±0.548 4.822±0.542

M36 rMSE 7.452±0.930 5.168±0.681 4.439±0.576 5.066±0.643 4.422±0.534 4.424±0.529

M48 rMSE 20.44±2.203 6.057±1.368 4.793±1.059 6.139±1.329 4.893±1.025 4.825±0.962

Score: FLU.VEG

nMSE 6.080±0.355†∗ 3.164±0.200†∗ 2.551±0.177†∗ 2.904±0.214†∗ 2.523±0.185 2.526±0.177

wR 0.436±0.044†∗ 0.569±0.041†∗ 0.676±0.030†∗ 0.613±0.036†∗ 0.681±0.030 0.681±0.029

BL rMSE 4.280±0.316 3.510±0.314 3.387±0.279 3.432±0.297 3.341±0.291 3.394±0.293

M6 rMSE 4.341±0.412 3.644±0.340 3.270±0.283 3.513±0.326 3.283±0.271 3.260±0.267

M12 rMSE 4.583±0.488 3.802±0.281 3.324±0.341 3.622±0.315 3.319±0.372 3.298±0.367

M24 rMSE 4.959±0.561 4.095±0.413 3.659±0.371 3.879±0.380 3.614±0.360 3.615±0.349

M36 rMSE 6.240±0.548 4.008±0.318 3.602±0.270 3.862±0.314 3.609±0.283 3.566±0.267

M48 rMSE 13.90±1.548 5.106±1.186 3.286±0.416 4.519±0.827 3.178±0.503 3.259±0.461

Score: TRAILS.A

nMSE 32.79±2.971†∗ 23.36±1.910†∗ 18.48±1.688†∗ 20.95±1.739†∗ 17.79±1.652 17.73±1.582

wR 0.381±0.053†∗ 0.407±0.044†∗ 0.591±0.046†∗ 0.498±0.048†∗ 0.614±0.049 0.613±0.046

BL rMSE 27.28±3.172 24.85±3.196 22.08±2.481 23.38±2.747 21.58±2.689 21.97±2.678

M6 rMSE 27.71±3.081 24.74±3.353 22.35±2.517 23.63±3.202 22.20±2.567 21.84±2.501

M12 rMSE 28.41±3.422 25.51±4.226 21.77±2.378 24.05±3.301 20.96±1.926 20.63±1.868

M24 rMSE 30.38±5.968 27.51±5.388 23.35±4.718 25.77±4.839 22.76±4.379 22.71±4.349

M36 rMSE 31.53±6.059 23.87±5.127 22.32±3.171 23.19±4.644 22.41±2.972 22.41±3.045

M48 rMSE 51.83±10.60 27.23±11.88 24.06±7.931 25.38±10.89 22.97±7.499 23.63±7.868

(Continued)
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Table 7. Continued

Ridge Lasso cFSGL F-SGL FL-SGL1 FL-SGL2
Score: TRAILS.B

nMSE 85.08±7.532†∗ 61.12±5.448†∗ 51.39±4.527 55.15±5.024†∗ 51.79±4.482 52.23±4.655

wR 0.466±0.046†∗ 0.511±0.041†∗ 0.613±0.029 0.567±0.035†∗ 0.610±0.031 0.607±0.033

BL rMSE 76.34±5.687 68.03±5.317 64.46±5.445 64.57±5.307 64.15±5.554 64.62±5.636

M6 rMSE 76.37±8.422 68.32±6.678 63.17±6.524 64.54±6.543 63.26±6.299 63.20±6.250

M12 rMSE 75.16±7.410 69.11±6.308 62.47±6.082 65.72±6.268 63.25±6.479 63.24±6.487

M24 rMSE 87.49±12.82 74.74±9.097 66.53±8.602 70.20±8.755 66.66±8.952 66.59±8.895

M36 rMSE 91.11±21.42 74.34±19.97 68.16±20.64 71.44±20.72 68.58±19.24 69.60±19.09

M48 rMSE 131.3±21.55 66.99±19.34 56.11±16.37 66.80±16.98 56.80±16.16 58.18±16.72

Note that the best results are boldfaced, superscript symbols † and ∗ indicate that FL-SGL1 and FL-SGL2, respectively,

significantly outperformed that method on that score. Student’s t-test at a level of 0.05 was used.

Another area identified by our method, fusiform gyrus has been primarily involved in visual
perception and recognition, essential for tasks like face/object recognition and color information
processing. Several studies have related AD with changes in fusiform areas. Cronin-Golomb (1995)
reported visual cognition deficits accompanying the progression of AD. MCI patients had wide-
spread changes in fusiform connectivity during the performance of a face-matching task, as re-
ported by Bokde et al. (2006).

4.5 MRI Features and Demographic Information

We also explore the prediction models by involving two other modalities: demographic informa-
tion (age, gender, and years of education) and ApoE genotyping information. We followed the same
experimental procedure as described in Section 4.3. As it is shown in Table 7, the FL-SGL method
with multi-modality can achieve a higher performance than the one with only MRI modality with
respect to nMSE and wR. Specially, the nMSE and wR of FL-SGL2 have improved from 4.975 to
4.584 (p < 10−8) and from 0.749 to 0.774 (p < 10−10) for the prediction of ADAS, respectively, and
from 2.152 to 1.978 (p < 10−7) and from 0.651 to 0.686 (p < 10−9) for the prediction of MMSE. In
addition, we also witness the improvement in prediction performance at all time points.

5 CONCLUSIONS

In this article, we investigated the progression of AD by means of multiple cognitive scores. We
proposed a MTL formulation with a general temporal smoothness regularization that can jointly
predict the cognitive scores based on a set of MRI features extracted from imaging data. The pro-
posed model is capable of revealing the relationship between longitudinal cognitive measures and
neuroimaging markers. Two efficient ADMM) methods are presented to tackle the associated op-
timization problem.

We performed a longitudinal stability selection using our proposed formulation to identify and
analyze the temporal patterns of the biomarkers selected by our models. An experimental study
on the ADNI dataset was conducted to validated the effectiveness of the proposed method by
comparing with the state-of-the-art and single-task learning methods. The proposed algorithm not
only showed the highest prediction performance, but also demonstrated the ability to accurately
identify imaging biomarkers that are consistent with prior knowledge.

While the current study illustrates the power of MTL, especially FL-SGL formulations, each
cognitive score was considered separately with multiple tasks corresponding to the same cognitive
score across multiple time points. Since the cognitive scores are different ways to measure the same
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underlying medical condition, we expect that a more general MTL framework that considers all
cognitive scores across all time points simultaneously may be more effective as a predictive model.
Such general models will be investigated as part of our future work.
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